1
|
Ma T, Ding Y, Xu F, Zhang C, Zhou M, Tang Y, Chen Y, Wen Y, Chen R, Tang B, Wang S. Effects of acute and chronic chromium stress on the expression of heat shock protein genes and activities of antioxidant enzymes in larvae of Orthetrum albistylum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122712. [PMID: 37813144 DOI: 10.1016/j.envpol.2023.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The dragonfly species Orthetrum albistylum, can accumulate heavy metals from its aquatic environment and thus serves as a biological indicator for monitoring and evaluating water quality. Heat shock proteins (HSPs) play important biological roles in resistance to various types of environmental stress. The full-length cDNA sequences of the heat shock cognate (hsc) 70 and heat shock protein (hsp) 70 genes were cloned from O. albistylum larvae. Relative levels of expression of hsc70 and hsp70 in the head, epidermis, midgut, and adipose tissue were measured by qRT-PCR after chronic and acute contamination of 5-8 instar larvae with chromium (Cr) solution, and under control conditions. Activities of superoxide dismutase (SOD) and catalase (CAT) in chronically contaminated larvae were also measured. Phylogenetic analysis revealed that the cloned hsc70 and hsp70 genes were highly homologous to known HSP70 family members reported in other insects. The mRNA levels of hsc70 and hsp70 did not differ significantly in various larval tissues. Under chronic chromium stress, hsc70 and hsp70 expression were upregulated to a maximum and then downregulated; hsp70 mRNA levels were higher than those of hsc70 at all concentrations of chromium. Under acute chromium stress, hsc70 expression was inhibited at low chromium concentrations and upregulated at chromium concentrations higher than 125 mg/L. However, hsp70 expression was higher than that in the control group and markedly higher than that of hsc70. Changes in SOD and CAT activities displayed consistent trends for different chronic chromium concentrations, first increasing and then decreasing over time. Collectively, these findings demonstrated the response of the HSP family of genes and antioxidant enzymes following exposure to heavy metal stress, as well as their potential applicability as biomarkers for monitoring environmental pollutants.
Collapse
Affiliation(s)
- Tingting Ma
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanjuan Ding
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fengjiao Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Chen Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanrong Chen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yating Wen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Rufei Chen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Bai F, Fan C, Lin X, Wang HY, Wu B, Feng CL, Zhou R, Wu YW, Tang W. Hemin protects UVB-induced skin damage through inhibiting keratinocytes apoptosis and reducing neutrophil infiltration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112604. [PMID: 36525776 DOI: 10.1016/j.jphotobiol.2022.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 μM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.
Collapse
Affiliation(s)
- Fang Bai
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Lin
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-Yu Wang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Protective Effects of Fermented Houttuynia cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes. Appl Biochem Biotechnol 2022; 195:3027-3046. [PMID: 36495375 DOI: 10.1007/s12010-022-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
The biological activities of Houttuynia cordata (H. cordata) fermented with Aureobasidium pullulans (A. pullulans) was investigated for human skin keratinocyte-induced chemical and photo oxidations. In this research, H2O2/UVA-induced HaCaT cell lines were treated with H. cordata water/ethanol extracts (HCW/HCE) and fermented with A. pullulans water/ethanol extracts (HCFW/HCFE). A. pullulans fermented with H. cordata (HCFW) increased in 5.4-folds of total polyphenol (HCFW 46.89 mg GAE/extract g), and 2.3-folds in flavonoids (HCFW 53.80 mg GAE/extract g) compared with water extracts of H. cordata (HCW). Further, no significant cytotoxicity for HaCaT cells showed by all the extracts of H. cordata fermented with A. pullulans. HCFW extracts have significantly lowered inflammation factors such as COX-2 and Hsp70 proteins in oxidative stressed HaCaT cells induced by H2O2 and UVA treatments. All H. cordata extracts significantly downregulated gene expression involved in oxidative stress and inflammation factors, including IL-1β, IL-6, COX-2, TNF-α, NF-κB, and MMP-1 in the H2O2/UVA-treated HaCaT cells. However, keratin-1 gene expression in the UVA-treated HaCaT cells was increased in twofolds by HCFW extracts. Further, A. pullulans fermented H. cordata extracts (HCFW/HCFE) reduced the genes involved in oxidative stresses more effectively than those of H. cordata extract only. Overall, the polyphenol-rich extracts of H. cordata fermented with A. pullulans showed synergistic protective effects for human epidermal keratinocytes to prevent photoaging and intrinsic aging by anti-oxidation and anti-inflammatory functions.
Collapse
|
4
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Kim HM, Oh S, Choi CH, Yang JY, Kim S, Kang D, Son KH, Byun K. Attenuation Effect of Radiofrequency Irradiation on UV-B-Induced Skin Pigmentation by Decreasing Melanin Synthesis and through Upregulation of Heat Shock Protein 70. Molecules 2021; 26:molecules26247648. [PMID: 34946730 PMCID: PMC8708156 DOI: 10.3390/molecules26247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Sunggeun Kim
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Donghwan Kang
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
- Correspondence: (K.H.S.); (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
- Correspondence: (K.H.S.); (K.B.)
| |
Collapse
|
7
|
Sheykhbahaei N, Koopaie M, Ansari M. Evaluation of exposure to environmental stressors on heat-shock protein 70 expression in normal oral keratinocyte cells. Clin Exp Dent Res 2021; 8:176-183. [PMID: 34545710 PMCID: PMC8874095 DOI: 10.1002/cre2.493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives This study aimed to investigate the effect of cortisol, estrogen, and nicotine on heat shock protein 70 (HSP70) expressions at the level of normal oral mucosa keratinocyte cells. Methods In this in vitro study, keratinocytes were derived from rat oral cavity and cultured. Stressors were applied, including three groups, group 1: estrogen to simulate the postmenopausal state; group 2: cortisol to simulate psychological stress situation; group 3: nicotine to simulate smoking state. To determine the exact nature of keratinocyte cells, two surface markers, cytokeratin 18 and cytokeratin 14 were examined using the flow cytometry method. Then, the immunocytochemistry technique with three repetitions in each group was used to evaluate the HSP70 expression before and after applying the stressor. Results HSP70 expressions in the three stressor groups (estrogen, cortisol, and nicotine) were significantly lower than in the control group (p = 0.0001). The HSPs expression difference between cortisol and nicotine was statistically significant (p = 0.0001). Based on the results of MTT analysis, the mean cell viability of oral mucosal keratinocytes in all three intervention groups decreased compared to the control group. In the cortisol and nicotine groups, cell death was significantly higher than in the control group. In the estrogen group, cell death was significantly lower than in the nicotine group (p > 0.05). Conclusions The specific concentrations of cortisol, estrogen, and nicotine as stressors can effectively reduce the expression of HSP70 in normal oral mucosal keratinocytes. These phenomena can be effective in cell viability and the development of oral lichen planus.
Collapse
Affiliation(s)
- Nafiseh Sheykhbahaei
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Ansari
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pourang A, Dourra M, Ezekwe N, Kohli I, Hamzavi I, Lim HW. The potential effect of Polypodium leucotomos extract on ultraviolet- and visible light-induced photoaging. Photochem Photobiol Sci 2021; 20:1229-1238. [PMID: 34449075 DOI: 10.1007/s43630-021-00087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Photoaging induced by both ultraviolet and visible light has been shown to lead to increased inflammation and dysregulation of the extracellular matrix. Standardized extract of the Polypodium leucotomos fern, PLE, possesses anti-inflammatory and antioxidant properties, and has been shown to potentially mitigate photoaging through various mechanisms. This comprehensive review presents the data available on the effects of P. leucotomos extract on UV and VL-induced photoaging in vitro as well as in vivo in murine and human models.
Collapse
Affiliation(s)
- Aunna Pourang
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Mohsen Dourra
- College of Medicine, Michigan State University, East Lansing, MI, USA
| | - Nneamaka Ezekwe
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Iltefat Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Guo P, Liu Y, Li J, Zhang N, Zhou M, Li Y, Zhao G, Wang N, Wang A, Wang Y, Wang F, Huang L. A novel atmospheric-pressure air plasma jet for wound healing. Int Wound J 2021; 19:538-552. [PMID: 34219379 PMCID: PMC8874047 DOI: 10.1111/iwj.13652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Current low‐temperature plasma (LTP) devices essentially use a rare gas source with a short working distance (8 to 20 mm), low gas flow rate (0.12 to 0.3 m3/h), and small effective treatment area (1‐5 cm2), limiting the applications for which LTP can be utilised in clinical therapy. In the present study, a novel type of LTP equipment was developed, having the advantages of a free gas source (surrounding air), long working distance (8 cm), high gas flow rate (10 m3/h), large effective treatment area (20 cm2), and producing an abundance of active substances (NOγ, OH, N2, and O), effectively addressing the shortcomings of current LTP devices. Furthermore, it has been verified that the novel LTP device displays therapeutic efficacy in terms of acceleration of wound healing in normal and Type I diabetic rats, with enhanced wound kinetics, rate of condensation of wound area, and recovery ratio. Cellular and molecular analysis indicated that LTP treatment significantly reduced inflammation and enhanced re‐epithelialization, fibroblast proliferation, deposition of collagen, neovascularization, and expression of TGF‐β, superoxide dismutase, glutathione peroxidase, and catalase in Type I diabetic rats. In conclusion, the novel LTP device provides a convenient and efficient tool for the treatment of clinical wounds.
Collapse
Affiliation(s)
- Peng Guo
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Juan Li
- Yantai Healing Technology Co. Ltd, Yantai, Shandong, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Zhou
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Yantai Healing Technology Co. Ltd, Yantai, Shandong, China
| | - Guozhu Zhao
- Yantai Healing Technology Co. Ltd, Yantai, Shandong, China
| | - Ning Wang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Yupeng Wang
- Yantai Healing Technology Co. Ltd, Yantai, Shandong, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Liping Huang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Chaouhan HS, Jha RR, Patel DK, Kar Chowdhuri D. Cr(VI)-induced DNA damage is lessened by the modulation of hsp70 via increased GSH de novo synthesis in Drosophila melanogaster. J Biochem Mol Toxicol 2021; 35:e22819. [PMID: 34056787 DOI: 10.1002/jbt.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a genotoxic chemical, and in the chemical-exposed organism, oxidative stress is one of the leading causative mechanisms of genotoxicity. Heat shock protein-70 (Hsp70) is reported to be modulated in environmental chemical exposed organisms. Inadequate information on the protective role of Hsp70 in chemical-induced DNA lesions prompted us to investigate this possibility in a well-studied genetically tractable in vivo model Drosophila melanogaster. In the midgut cells of Cr(VI)-exposed hsp70-knockout (KO), -knockdown (KD), and -overexpression Drosophila strains, no significant change in double-strand breaks generation was observed in comparison to similarly exposed w 1118 and the respective genetic control strain after 48 h. Therefore, the role of hsp70 was investigated on oxidative DNA damage induction in the exposed organisms after 24 h. Oxidized DNA lesions (particularly oxidized purine-based lesions), 8-oxo-dG level, and oxidative stress endpoints were found to be significantly elevated in hsp70-KO and -KD strains in comparison to similarly exposed w 1118 and respective genetic control strain. On the contrary, in ubiquitous hsp70-overexpression strain exposed to Cr(VI), these endpoints were significantly lowered concurrently with increased GSH level through elevated gclc, and gclm expression, Gclc level, and GCL activity. The study suggests that as a consequence of hsp70 overexpression, the augmented GSH level in cells vis-a-vis GSH de novo synthesis can counteract Cr(VI)-induced oxidized DNA lesions.
Collapse
Affiliation(s)
- Hitesh S Chaouhan
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Rakesh R Jha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Devendra K Patel
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.,Environmental Monitoring Laboratory, Regulatory Toxicology Group, Environmental Toxicology Group, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Ko HJ, Kim J, Ahn M, Kim JH, Lee GS, Shin T. Ergothioneine alleviates senescence of fibroblasts induced by UVB damage of keratinocytes via activation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes. Exp Cell Res 2021; 400:112516. [PMID: 33577831 DOI: 10.1016/j.yexcr.2021.112516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 01/15/2023]
Abstract
Ultraviolet B (UVB) irradiation induces skin damage and photoaging through several deleterious effects, including generation of reactive oxygen species (ROS), apoptosis of epidermal cells, inflammation, and collagen degradation in fibroblasts. Ergothioneine (EGT) is a naturally occurring amino acid with potential biological properties. We evaluated whether EGT protects against UVB-induced photoaging using a keratinocyte/fibroblast co-culture system. Keratinocytes were pretreated with EGT, irradiated with UVB, and co-cultured with fibroblasts. In keratinocytes, ROS production and apoptosis were assessed. We also analyzed the Nrf2/HO-1 pathway, HSP70, proapoptotic proteins, and paracrine cytokines by Western blotting and real-time PCR. Collagen degradation-related genes and senescence were also assessed in fibroblasts. EGT pretreatment of keratinocytes significantly inhibited downregulation of the Nrf2/HO-1 pathway and HSP70, and protected keratinocytes by suppressing production of ROS and cleavage of proapoptotic proteins, including caspase-8 and PARP. Furthermore, EGT significantly reduced the paracrine cytokines, including IL-1β, IL-6, and TNF-α. In co-cultures of fibroblasts with EGT-treated keratinocytes, the expression levels of collagen degradation-related genes and fibroblast senescence were significantly decreased; however, synthesis of procollagen type I was significantly increased. Our results confirm that EGT suppresses the modification of collagen homeostasis in fibroblasts by preventing downregulation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes following UVB irradiation.
Collapse
Affiliation(s)
- Hyun Ju Ko
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea; Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Jin Hwa Kim
- Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Geun Soo Lee
- Skin science research team, Creation & Innovation research institute, It's hanbul Co., LTD., Gangnam-gu, Seoul, 06101, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
12
|
42 °C heat stress pretreatment protects human melanocytes against 308-nm laser-induced DNA damage in vitro. Lasers Med Sci 2020; 35:1801-1809. [DOI: 10.1007/s10103-020-03012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/29/2020] [Indexed: 01/03/2023]
|
13
|
Ali TFS, Taira N, Iwamaru K, Koga R, Kamo M, Radwan MO, Tateishi H, Kurosaki H, Abdel-Aziz M, Abuo-Rahma GEDAA, Beshr EAM, Otsuka M, Fujita M. HSP70 induction by bleomycin metal core analogs. Bioorg Med Chem Lett 2020; 30:127002. [PMID: 32044184 DOI: 10.1016/j.bmcl.2020.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Induction of heat shock protein 70 (HSP70) is known to be effective against various diseases. We are interested in HSP70 induction capability of an antitumor antibiotic bleomycin which produces oxidative stress by iron chelate formation and oxygen activation in a cell. The HSP70 induction activity of bleomycin and its six metal core analogs was examined, and a compound HPH-1Trt of 10 μM was found to induce this protein in a pheochromocytoma cell line and some T cell and monocytic cell lines. Its mechanism is increase of HSP70 mRNA, but higher concentration of this compound showed toxicity. Two new derivatives were then synthesized, and one of them named DHPH-1Trt was shown to have less toxicity and higher HSP70 induction activity. This study would lead to a clue for new HSP70 inducer clinically used in near future.
Collapse
Affiliation(s)
- Taha F S Ali
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan; Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Naomi Taira
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Kana Iwamaru
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Masahiro Kamo
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Hiromasa Kurosaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, Kumamoto 862-0976, Japan.
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan.
| |
Collapse
|
14
|
Role of alpha-melanocyte stimulating hormone (α-MSH) in modulating the molecular mechanism adopted by melanocytes of Bos indicus under UVR stress. Mol Cell Biochem 2019; 465:141-153. [PMID: 31823188 DOI: 10.1007/s11010-019-03674-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/07/2019] [Indexed: 12/23/2022]
Abstract
Ultraviolet radiations (UVR) are responsible for a wide variety of acute and chronic effects on the animal skin. However, the effect of UVR-induced oxidative stress and protection through paracrine factors on animal skin has received little attention. We previously demonstrated how heat stress-induced adaptation in Bos indicus melanocytes was dependent on the level of melanin and reduction of apoptosis. Therefore, in the present investigation, the survival mechanisms adopted by melanocytes under UV stress and the role of α-MSH in cell survival under in vitro conditions were studied. After the treatment of melanocyte cells with UVR (using Osram ultravitalux 300 W lamp), analysis of Gene expression using Real-Time PCR was done to study the adopted molecular pathways under stressful conditions. In addition, α-MSH was used to assess its modulating role in cell survival under stress. This study revealed the increase in the expression of genes related to melanogenesis, cell cycle, heat shock proteins, and apoptosis of the cells after UVR stress and demonstrated the role of paracrine factor (α-MSH) in elevating the protection response to stressful conditions like UVR stress by increasing the melanogenesis and decreasing the mitochondrial-mediated apoptosis. Based on the results of the present study, it can be stated that α-MSH can play a pivotal role in the protection of animal skin cells under stressful conditions in climate-changing scenario.
Collapse
|
15
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
16
|
The Beneficial Regulation of Extracellular Matrix and Heat Shock Proteins, and the Inhibition of Cellular Oxidative Stress Effects and Inflammatory Cytokines by 1α, 25 dihydroxyvitaminD3 in Non-Irradiated and Ultraviolet Radiated Dermal Fibroblasts. COSMETICS 2019. [DOI: 10.3390/cosmetics6030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1α, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells. With regard to anti-inflammation, vitamin D inhibited expression of Il-1 and IL-8 in UVA-radiated fibroblasts, and stimulated HSP-70 in UVA-radiated and UVB-radiated fibroblasts. Overall, vitamin D is predominantly beneficial in preventing UVA-radiation induced photoaging through the differential regulation of the ECM, HSPs, and inflammatory cytokines, and protective effects on the cellular biomolecules. It is also beneficial in preventing UVB-radiation associated photoaging through the stimulation of cell viability and HSP-70, and the inhibition of cellular oxidative damage, and in preventing intrinsic aging through the stimulation of type I collagen and inhibition of cellular oxidative damage.
Collapse
|
17
|
Chakraborty A, Nandi SK, Panda AK, Mahapatra PP, Giri S, Biswas A. Probing the structure-function relationship of Mycobacterium leprae HSP18 under different UV radiations. Int J Biol Macromol 2018; 119:604-616. [DOI: 10.1016/j.ijbiomac.2018.07.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
|
18
|
Maekawa T, Ohta T, Kume S. Pathophysiological abnormalities in the brains of Spontaneously Diabetic Torii-Lepr fa (SDT fatty) rats, a novel type 2 diabetic model. J Vet Med Sci 2018; 80:1385-1391. [PMID: 30012919 PMCID: PMC6160888 DOI: 10.1292/jvms.18-0296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In recent years, a relationship between diabetes and neurodegenerative diseases, such as Parkinson's disease, Alzheimer disease or depression, has been proposed. In this study, pathophysiological changes in the brain, especially in the hippocampus, of male SDT fatty rats with obesity and hyperglycemia were investigated. Brains of SD rats and SDT fatty rats were collected at 32 and 58 weeks of age, and parietal cortical thickness and number of pyramidal cells in the hippocampal cornu ammonis 1 and 3 (CA1 and CA3) regions were measured. At 58 weeks of age, the parietal cortical thickness and number of pyramidal cells in the hippocampal CA1 and CA3 regions were lower in SDT fatty rats than in age-matched SD rats. Measurements of mRNA in rat brains at 58 weeks of age showed that the expression of genes related to inflammatory responses (S100a9, TNFα, NF-κB) was elevated in SDT fatty rats. From the aforementioned results, changes suggestive of brain atrophy and impairment in cognitive function were observed in male SDT fatty rat brains.
Collapse
Affiliation(s)
- Tatsuya Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Ohta
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shinichi Kume
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Common Genetic Variants of MUTYH are not Associated with Cutaneous Malignant Melanoma: Application of Molecular Screening by Means of High-Resolution Melting Technique in a Pilot Case-Control Study. Int J Biol Markers 2018; 26:37-42. [DOI: 10.5301/jbm.2011.6285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2010] [Indexed: 01/09/2023]
Abstract
MUTYH glycosylase recognizes the 8-oxoG:A mismatch and is able to excise the adenine base using proofreading mechanisms. Some papers have reported a strong association between cancer development or aggressiveness and MUTYH gene mutations. The aim of this study was to find a possible association between the most frequent MUTYH mutations and melanoma in the context of a case-control pilot study. One hundred ninety-five melanoma patients and 195 healthy controls were matched for sex and age. Clinical and laboratory data were collected in a specific database and all individuals were analyzed for MUTYH mutations by high-resolution melting and direct sequencing techniques. Men and women had significantly different distributions of tumor sites and phototypes. No significant associations were observed between the Y165C, G382D and V479F MUTYH mutations and risk of melanoma development or aggressiveness. Our preliminary findings therefore do not confirm a role for MUTYH gene mutations in the melanoma risk. Further studies are necessary for the assessment of MUTYH not only in melanoma but also other cancer types with the same embryonic origin, in the context of larger arrays studies of genes involved in DNA stability or integrity.
Collapse
|
20
|
Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol 2018; 25:969-976. [PMID: 27305603 DOI: 10.1111/exd.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The cytokine TNF-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are involved in cell survival and cytokine production. The TWEAK/Fn14 pathway plays a role in the pathogenesis of spontaneous cutaneous lesions in the MRL/lpr lupus strain; however, the role of TWEAK/Fn14 in disease induced by ultraviolet B (UVB) irradiation has not been explored. MRL/lpr Fn14 knockout (KO) was compared to MRL/lpr Fn14 wild-type (WT) mice following exposure to UVB. We found that irradiated MRL/lpr KO mice had significantly attenuated cutaneous disease when compared to their WT counterparts. There were also fewer infiltrating immune cells (CD3+ , IBA-1+ and NGAL+ ) in the UVB-exposed skin of MRL/lpr Fn14KO mice, as compared to Fn14WT. Furthermore, we identified several macrophage-derived proinflammatory chemokines with elevated expression in MRL/lpr mice after UV exposure. Depletion of macrophages, using a CSF-1R inhibitor, was found to be protective against the development of skin lesions after UVB exposure. In combination with the phenotype of the MRL/lpr Fn14KO mice, these findings indicate a critical role for Fn14 and recruited macrophages in UVB-triggered cutaneous lupus. Our data strongly suggest that TWEAK/Fn14 signalling is important in the pathogenesis of UVB-induced cutaneous disease manifestations in the MRL/lpr model of lupus and further support this pathway as a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Abstract
The aim of this study was to develop a purified diet that mimics the characteristics of the Japanese diet using readily available materials with a simpler composition and a focus on quality, with the goal of facilitating performance of studies on the Japanese diet worldwide. The utility of the new diet was examined as a mimic of the standard Japanese diet for use in animal experiments. We examined whether a key characteristic of the Japanese diet of being less likely to cause obesity could be reproduced. The mimic diet had a balance of protein, fat and carbohydrate based on the 1975 Japanese diet, which is the least likely to cause obesity, and materials chosen with reference to the National Health and Nutrition Survey (NHNS). To examine similarities of the mimic diet with the model 1975 Japanese diet, we created a menu of the 1975 diet based on the NHNS and prepared the freeze-dried and powdered diet. The mimic diet, the 1975 Japanese diet, a control AIN-93G diet and a Western diet were fed to mice for 4 weeks. As a result, the mimic diet and the 1975 diet resulted in less accumulation of visceral fat and liver fat. Mice given these two diets showed similar effects. This indicates that the mimic diet used in this study has characteristics of the 1975 Japanese diet and could be used as a standard Japanese diet in animal experiments.
Collapse
|
22
|
Gogler-Pigłowska A, Klarzyńska K, Sojka DR, Habryka A, Głowala-Kosińska M, Herok M, Kryj M, Halczok M, Krawczyk Z, Scieglinska D. Novel role for the testis-enriched HSPA2 protein in regulating epidermal keratinocyte differentiation. J Cell Physiol 2017; 233:2629-2644. [PMID: 28786487 DOI: 10.1002/jcp.26142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023]
Abstract
HSPA2, a poorly characterized member of the HSPA (HSP70) chaperone family, is a testis-enriched protein involved in male germ cell differentiation. Previously, we revealed that HSPA2 is present in human stratified epithelia, including epidermis, however the contribution of this protein to epithelial biology remained unknown. Here, we show for the first time that HSPA2 is expressed in basal epidermal keratinocytes, albeit not in keratinocytes exhibiting features attributed to primitive undifferentiated progenitors, and participates in the keratinocyte differentiation process. We found that HSPA2 is dispensable for protection of HaCaT keratinocytes against heat shock-induced cytotoxicity. We also shown that lentiviral-mediated shRNA silencing of HSPA2 expression in HaCaT cells caused a set of phenotypic changes characteristic for keratinocytes committed to terminal differentiation such as reduced clonogenic potential, impaired adhesiveness and increased basal and confluency-induced expression of differentiation markers. Moreover, the fraction of undifferentiated cells that rapidly adhered to collagen IV was less numerous in HSPA2-deficient cells than in the control. In a 3D reconstructed human epidermis model, HSPA2 deficiency resulted in accelerated development of a filaggrin-positive layer. Collectively, our results clearly show a link between HSPA2 expression and maintenance of keratinocytes in an undifferentiated state in the basal layer of the epidermis. It seems that HSPA2 could retain keratinocytes from premature entry into the terminal differentiation process. Overall, HSPA2 appears to be necessary for controlling development of properly stratified epidermis and thus for maintenance of skin homeostasis.
Collapse
Affiliation(s)
- Agnieszka Gogler-Pigłowska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Klarzyńska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.,Department of Molecular Biology and Genetics, Medical University of Silesia in Katowice, Katowice, Poland
| | - Damian R Sojka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Habryka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Magdalena Głowala-Kosińska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marcin Herok
- Nencki Institute of Experimental Biology Polish Academy of Science, Warsaw, Poland.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mariusz Kryj
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Monika Halczok
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zdzisław Krawczyk
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dorota Scieglinska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
23
|
Geranylgeranylacetone induces apoptosis via the intrinsic pathway in human melanoma cells. Biomed Pharmacother 2016; 82:15-9. [PMID: 27470333 DOI: 10.1016/j.biopha.2016.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to test the anti-cancer effects of geranylgeranylacetone (GGA), an isoprenoid compound, on human melanoma cells. Human melanoma cell lines G361, SK-MEL-2, and SK-MEL-5 were treated with GGA at various doses (1-100μM). Cell viability was measured by crystal violet assay. Western blot analysis was adopted to detect marker proteins of apoptosis. GGA significantly reduced the viability of G361, SK-MEL-2, and SK-MEL-5 human melanoma cells at concentrations above 10μM. Western blot analysis showed the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) after GGA treatment, as well as activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP) cleavage. GGA also induced p53 and Bax expression, but did not affect expression of Bcl-2 and MITF. These findings suggest that GGA induces apoptosis through the intrinsic pathway. Accordingly, GGA should be considered for further development as a potential agent for melanoma.
Collapse
|
24
|
Mao S, Yang G, Li W, Zhang J, Liang H, Li J, Zhang M. Gastroprotective Effects of Astragaloside IV against Acute Gastric Lesion in Rats. PLoS One 2016; 11:e0148146. [PMID: 26845156 PMCID: PMC4742075 DOI: 10.1371/journal.pone.0148146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 01/20/2023] Open
Abstract
Background Protection of the gastric mucosa from acute lesions induced by various irritants is a pertinent issue in the field of critical care medicine. In this study, we investigated the gastroprotective effects of astragaloside IV on acute gastric lesions in rats under stressful conditions. Methods Rats were randomized into six groups. Group 1 and 2 received 10% Tween 80 (vehicle). Group 3 received 20 mg/kg of omeprazole, a proton pump inhibitor. Groups 4, 5 and 6 received astragaloside IV at concentration of 1, 10, and 50 mg/kg, respectively. As a means to induce gastric lesions, Groups 2–6 were subjected to water immersion and restraint stress for 12 hours after treatment. Results Our present studies show that compared to rats in group 2, treatment with 1 to 50 mg/kg astragaloside IV significantly decreased the size of gastric lesions, MDA, TNFα and MCP1 levels, in addition to normalizing gastric pH, gastric mucus and SOD levels (P<0.05). Histomorphological examination confirmed that treatment with astragaloside IV elicited a dosage-dependent protective effect on the gastric mucosa. Furthermore, pretreatment with astragaloside IV resulted in significant elevations in HSP70 and reduction in Bax, along with over-expression of PLCγ response level, which was further confirmed via immunohistochemical analysis. Conclusions The acute gastric lesions induced are attenuated by pretreatment with astragaloside IV which is possibly due to the enhancing of the expression of HSP70 with concomitant antioxidant, anti-inflammatory and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Guang Yang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Winny Li
- Faculty of Medicine, University of Toronto, University Ave., Toronto M5G 0A4, Canada
| | - Jian Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Hailong Liang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Jian Li
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Minzhou Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
- * E-mail:
| |
Collapse
|
25
|
Shin JU, Lee WJ, Tran TN, Jung I, Lee JH. Hsp70 Knockdown by siRNA Decreased Collagen Production in Keloid Fibroblasts. Yonsei Med J 2015; 56:1619-26. [PMID: 26446645 PMCID: PMC4630051 DOI: 10.3349/ymj.2015.56.6.1619] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE There are currently no consistently effective treatments for the excessive collagen produced by keloid fibroblasts. Previously, we reported that heat shock protein 70 (Hsp70) is up-regulated in keloid fibroblasts and keloid tissue. We, therefore, investigated whether Hsp70 is related to excessive collagen production in keloid fibroblasts. MATERIALS AND METHODS We inhibited Hsp70 in keloid fibroblasts by RNA interference and examined the resulting collagen expression. Thus, we selected small interfering RNAs (siRNAs) specific for human Hsp70, transfected them into keloid fibroblasts, and evaluated the resulting phenotypes and protein production using real-time polymerase chain reaction (PCR), Western blot, and a collagen assay. RESULTS The siRNAs dramatically suppressed Hsp70 mRNA expression, resulting in a decrease in collagen production in the keloid fibroblasts compared with controls. The siRNAs did not influence the viability of the keloid fibroblasts. CONCLUSION Hsp70 overexpression likely plays an important role in the excessive collagen production by keloid fibroblasts. RNA interference has therapeutic potential for the treatment of keloids.
Collapse
Affiliation(s)
- Jung U Shin
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Severance Hospital, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Thanh-Nga Tran
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Inhee Jung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Duan MM, Xu RM, Yuan CX, Li YY, Liu Q, Cheng GF, Lin JJ, Feng XG. SjHSP70, a recombinant Schistosoma japonicum heat shock protein 70, is immunostimulatory and induces protective immunity against cercarial challenge in mice. Parasitol Res 2015; 114:3415-29. [PMID: 26091761 DOI: 10.1007/s00436-015-4567-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
High levels of protective immunity can be induced in different animals immunized with radiation-attenuated (RA) Schistosoma cercariae or schistosomula. However, the schistosome-derived molecules responsible for the strong protective effect elicited by RA schistosome larvae have not been identified or characterized. The 70-kDa heat shock proteins of schistosomes are considered major immunogens, and may play an important role in stimulating high levels of innate and adaptive immune responses in an RA schistosome vaccine model. Here, we demonstrate the immunobiological functions of Schistosoma japonicum heat shock protein 70 (SjHSP70) by investigating its expression profile in RA-schistosomula-derived cells, evaluating the protection induced by recombinant SjHSP70 (rSjHSP70) against cercarial challenge, and assaying the humoral and cellular immune responses to rSjHSP70 in BALB/c and C57BL/6 mice. The expression of SjHSP70 on the surfaces of cells from RA or normal schistosomula was determined with flow cytometry. Its expression was significantly higher on early RA schistosomula cells than on the cells from normal parasites. The protection afforded both BALB/c and C57BL/6 mice vaccinated with rSjHSP70 alone, rSj22.6 (a membrane-anchoring protein of S. japonicum) alone, or a combination of rSj22.6 and rSjHSP70 without adjuvant was evaluated. rSjHSP70 alone induced the highest protective effect against S. japonicum cercarial challenge, followed by the rSj22.6 plus rSjHSP70 combination and then rSj22.6 alone, in both mouse strains. Like ISA206 adjuvant, rSjHSP70 enhanced the protective efficacy induced by rSj22.6 in the C57BL/6 mouse strain. Antigen-specific IgG1 and IgG2a responses were detected with enzyme-linked immunosorbent assays in mice immunized with rSjHSP70 alone, rSj22.6 alone, or the rSj22.6 plus rSjHSP70 combination. Immunization with rSjHSP70 or the rSj22.6 plus rSjHSP70 combination induced mixed Th1/Th2-type antibody responses in BALB/c mice and a Th2-type antibody response in C57BL/6 mice. The profiles of cytokine production by splenic lymphocytes in both strains of mice immunized with the antigens described above were detected in vitro using a Cytometric Bead Array. The profiles of the proinflammatory cytokines interferon γ, tumor necrosis factor α, interleukin 6 (IL-6), and IL-17A and the regulatory cytokine IL-10 induced by the rSj22.6 plus rSjHSP70 combination were similar to those induced by rSj22.6 emulsified with the ISA206 adjuvant control. Like the ISA206 adjuvant, rSjHSP70 protein enhanced the proinflammatory and Th2-type or regulatory cytokine production induced by the rSj22.6 antigen. These results indicate that SjHSP70 is exposed on the surfaces of cells from RA schistosomula, and that rSjHSP70 protein is a promising protective antigen with a potential adjuvant function. Thus, SjHSP70 protein might play a key role in the protective immunity elicited by the RA schistosome vaccine.
Collapse
Affiliation(s)
- Ming Ming Duan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Stimulation of the Fibrillar Collagen and Heat Shock Proteins by Nicotinamide or Its Derivatives in Non-Irradiated or UVA Radiated Fibroblasts, and Direct Anti-Oxidant Activity of Nicotinamide Derivatives. COSMETICS 2015. [DOI: 10.3390/cosmetics2020146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Kuenstner JT, Chamberlin W, Naser SA, Collins MT, Dow CT, Aitken JM, Weg S, Telega G, John K, Haas D, Eckstein TM, Kali M, Welch C, Petrie T. Resolution of Crohn's disease and complex regional pain syndrome following treatment of paratuberculosis. World J Gastroenterol 2015; 21:4048-62. [PMID: 25852293 PMCID: PMC4385555 DOI: 10.3748/wjg.v21.i13.4048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
A cohort of family members with various chronic diseases including Crohn's disease, asthma, complex regional pain syndrome, hypothyroidism, type 1 diabetes mellitus, and lymphangiomatosis and/or evidence of infection by Mycobacterium avium subsp. paratuberculosis (MAP) are described in this series of case reports. MAP was cultured from the blood of three members affected by the first five diseases and there was accompanying elevated anti-MAP IgG in two members. The patient affected by the sixth disease has a markedly elevated anti-MAP titer. The two patients affected by the first four diseases have been treated with a combination of anti-MAP antibiotics and ultraviolet blood irradiation therapy with resolution of the disease symptomatology and inability to culture MAP in post treatment blood samples. These case reports of patients with MAP infections provide supportive evidence of a pathogenic role of MAP in humans.
Collapse
|
29
|
Identification of HSP70-inducing activity in Arnica montana extract and purification and characterization of HSP70-inducers. J Dermatol Sci 2015; 78:67-75. [DOI: 10.1016/j.jdermsci.2015.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
|
30
|
Doerner JL, Wen J, Xia Y, Paz KB, Schairer D, Wu L, Chalmers SA, Izmirly P, Michaelson JS, Burkly LC, Friedman AJ, Putterman C. TWEAK/Fn14 Signaling Involvement in the Pathogenesis of Cutaneous Disease in the MRL/lpr Model of Spontaneous Lupus. J Invest Dermatol 2015; 135:1986-1995. [PMID: 25826425 PMCID: PMC4504782 DOI: 10.1038/jid.2015.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK, TNFSF12) and its sole receptor Fn14, belonging to the TNF ligand and receptor superfamilies respectively, are involved in cell survival and cytokine production. The role of TWEAK/Fn14 interactions in the pathogenesis of cutaneous lupus has not been explored. TWEAK treatment of murine PAM212 keratinocytes stimulated the secretion of RANTES via Fn14 and promoted apoptosis. Parthenolide, but not wortmanin or the MAPK inhibitor PD98059, significantly decreased production of RANTES, indicating that this effect of TWEAK is mediated via NF-κB signaling. UVB irradiation significantly upregulated the expression of Fn14 on keratinocytes in vitro and in vivo and increased RANTES production. MRL/lpr Fn14 knockout (KO) lupus mice were compared with MRL/lpr Fn14 wild-type (WT) mice to evaluate for any possible differences in the severity of cutaneous lesions and the presence of infiltrating immune cells. MRL/lpr Fn14 KO mice had markedly attenuated cutaneous disease as compared with their Fn14 WT littermates, as evidenced by the well-maintained architecture of the skin and significantly decreased skin infiltration of T cells and macrophages. Our data strongly implicate TWEAK/Fn14 signaling in the pathogenesis of the cutaneous manifestations in the MRL/lpr model of spontaneous lupus and suggest a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica L Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yumin Xia
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karin Blecher Paz
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Schairer
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lan Wu
- Biogen Idec, Cambridge, Massachusetts, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peter Izmirly
- Division of Rheumatology, NYU-Langone Medical Center, New York, USA
| | | | | | - Adam J Friedman
- The Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
31
|
Hsu WL, Yoshioka T. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi) 2015; 11:25-32. [PMID: 27493511 PMCID: PMC4736782 DOI: 10.2142/biophysics.11.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.
Collapse
Affiliation(s)
- Wen-Li Hsu
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
32
|
Kleszczyński K, Zwicker S, Tukaj S, Kasperkiewicz M, Zillikens D, Wolf R, Fischer TW. Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes. J Pineal Res 2015; 58:117-26. [PMID: 25424643 DOI: 10.1111/jpi.12197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/21/2014] [Indexed: 12/25/2022]
Abstract
Melatonin, a lipophilic compound synthesized and released from the pineal gland, effectively acts against ultraviolet radiation (UVR), one of the main inducers of epidermal damage, skin cancer, inflammation, and DNA photo damage. One of the common known stress protein induced by UVR is heat shock protein 70 (Hsp70), highly expressed in human keratinocytes, providing cellular resistance to such stressors. Here, using human full-thickness skin and normal human epidermal keratinocytes (NHEK), we investigated the interaction of melatonin and Hsp70 toward UVR-induced inflammatory and apoptotic responses. The following observations were made: (i) UVR upregulated Hsp70 gene expression in human epidermis while melatonin significantly inverted this effect, (ii) similar patterns of regulation were observed within Hsp70 protein level, and (iii) mechanistic studies involving silencing of Hsp70 RNA (Hsp70 siRNA) showed prominent decrease of IκB-α (an inhibitor of NF-κB) and enhanced gene expression of pro-inflammatory cytokines (IL-1β, IL-6, Casp-1) and pro-apoptotic protein (Casp-3) in NHEK. Parallel investigation using melatonin (10(-3) m) significantly inverted these responses regardless depletion of Hsp70 RNA suggesting a compensatory action of this compound in the defense mechanisms. Our findings combined with data reported so far thus enrich existing knowledge about the potent anti-apoptotic and anti-inflammatory action of melatonin.
Collapse
|
33
|
Ramirez VP, Stamatis M, Shmukler A, Aneskievich BJ. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones 2015; 20:95-107. [PMID: 25073946 PMCID: PMC4255259 DOI: 10.1007/s12192-014-0529-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.
Collapse
Affiliation(s)
- Vincent P. Ramirez
- />Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Michael Stamatis
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Anastasia Shmukler
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Brian J. Aneskievich
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, U-3092, 69 North Eagleville Road, Storrs, CT 06269-3092 USA
- />University of Connecticut Stem Cell Institute, Storrs, CT 06269-3092 USA
| |
Collapse
|
34
|
Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection. Int J Mol Sci 2014; 16:68-90. [PMID: 25546388 PMCID: PMC4307236 DOI: 10.3390/ijms16010068] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 01/24/2023] Open
Abstract
The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320–400 nm and UVB, 280–320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.
Collapse
|
35
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
36
|
Özyurt H, Çevik Ö, Özgen Z, Özden AS, Çadırcı S, Elmas MA, Ercan F, Gören MZ, Şener G. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic Res 2014; 48:1247-55. [DOI: 10.3109/10715762.2014.945925] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Martinez-Levasseur LM, Birch-Machin MA, Bowman A, Gendron D, Weatherhead E, Knell RJ, Acevedo-Whitehouse K. Whales use distinct strategies to counteract solar ultraviolet radiation. Sci Rep 2014; 3:2386. [PMID: 23989080 PMCID: PMC3757271 DOI: 10.1038/srep02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.
Collapse
|
38
|
Beneficial Regulation of Elastase Activity and Expression of Tissue Inhibitors of Matrixmetalloproteinases, Fibrillin, Transforming Growth Factor-β, and Heat Shock Proteins by P. leucotomos in Nonirradiated or Ultraviolet-Radiated Epidermal Keratinocytes. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/257463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is loss of the structural integrity of the extracellular matrix (ECM) with intrinsic aging as well as photoaging, largely due to reactive oxygen species (ROS). The structural ECM proteins include the microfibrils that are composed of fibrillin. The structural ECM proteins are primarily degraded by the matrixmetalloproteinases (MMPs) and elastase enzymes. The MMPs are inhibited by the tissue inhibitors of MMPs (TIMPs). A primary regulator of the ECM proteins is transforming growth factor-β (TGF-β), and the chaperone proteins important for its formation are the heat shock proteins (HSP). P. leucotomos extract beneficially regulates of MMPs, TIMPs, and TGF-β in nonirradiated or ultraviolet (UV) radiated fibroblasts and melanoma cells. The hypothesis of this research was that the antioxidant activity or chemistry of P. leucotomos extract would also directly inhibit elastase activity, stimulate the cellular expression of TIMPs, fibrillins, and TGF-β, and regulate HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. P. leucotomos directly inhibited elastase activity, stimulated the cellular expression of TIMPs, fibrillins, and TGF-β, and differentially regulated HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. We infer that the P. leucotomos extract strengthens the ECM and is effective in the prevention or treatment of intrinsic and photoaging of skin.
Collapse
|
39
|
Hoshino T, Suzuki K, Matsushima T, Yamakawa N, Suzuki T, Mizushima T. Suppression of Alzheimer's disease-related phenotypes by geranylgeranylacetone in mice. PLoS One 2013; 8:e76306. [PMID: 24098472 PMCID: PMC3788141 DOI: 10.1371/journal.pone.0076306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/23/2013] [Indexed: 01/11/2023] Open
Abstract
Amyloid-β peptide (Aβ) plays an important role in the pathogenesis of Alzheimer’s disease (AD). Aβ is generated by the secretase-mediated proteolysis of β-amyloid precursor protein (APP), and cleared by enzyme-mediated degradation and phagocytosis. Transforming growth factor (TGF)-β1 stimulates this phagocytosis. We recently reported that the APP23 mouse model for AD showed fewer AD-related phenotypes when these animals were crossed with transgenic mice expressing heat shock protein (HSP) 70. We here examined the effect of geranylgeranylacetone, an inducer of HSP70 expression, on the AD-related phenotypes. Repeated oral administration of geranylgeranylacetone to APP23 mice for 9 months not only improved cognitive function but also decreased levels of Aβ, Aβ plaque deposition and synaptic loss. The treatment also up-regulated the expression of an Aβ-degrading enzyme and TGF-β1 but did not affect the maturation of APP and secretase activities. These outcomes were similar to those observed in APP23 mice genetically modified to overexpress HSP70. Although the repeated oral administration of geranylgeranylacetone did not increase the level of HSP70 in the brain, a single oral administration of geranylgeranylacetone significantly increased the level of HSP70 when Aβ was concomitantly injected directly into the hippocampus. Since geranylgeranylacetone has already been approved for use as an anti-ulcer drug and its safety in humans has been confirmed, we propose that this drug be considered as a candidate drug for the prevention of AD.
Collapse
Affiliation(s)
- Tatsuya Hoshino
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Koichiro Suzuki
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Takahide Matsushima
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Yamakawa
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Toshiharu Suzuki
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tohru Mizushima
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
Martinez-Levasseur LM, Gendron D, Knell RJ, Acevedo-Whitehouse K. Control and target gene selection for studies on UV-induced genotoxicity in whales. BMC Res Notes 2013; 6:264. [PMID: 23837727 PMCID: PMC3716943 DOI: 10.1186/1756-0500-6-264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/11/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite international success in reducing ozone-depleting emissions, ultraviolet radiation (UV) is not expected to decrease for several decades. Thus, it is pressing to implement tools that allow investigating the capacity of wildlife to respond to excessive UV, particularly species like cetaceans that lack anatomical or physiological protection. One approach is to examine epidermal expression of key genes involved in genotoxic stress response pathways. However, quantitation of mRNA transcripts requires previous standardization, with accurate selection of control and target genes. The latter is particularly important when working with environmental stressors such as UV that can activate numerous genes. RESULTS Using 20 epidermal biopsies from blue, fin and sperm whale, we found that the genes encoding the ribosomal proteins L4 and S18 (RPL4 and RPS18) were the most suitable to use as controls, followed by the genes encoding phosphoglycerate kinase 1 (PGK1) and succinate dehydrogenase complex subunit A (SDHA). A careful analysis of the transcription pathways known to be activated by UV-exposure in humans and mice led us to select as target genes those encoding for i) heat shock protein 70 (HSP70) an indicator of general cell stress, ii) tumour suppressor protein P53 (P53), a transcription factor activated by UV and other cell stressors, and iii) KIN17 (KIN), a cell cycle protein known to be up-regulated following UV exposure. These genes were successfully amplified in the three species and quantitation of their mRNA transcripts was standardised using RPL4 and RPS18. Using a larger sample set of 60 whale skin biopsies, we found that the target gene with highest expression was HSP70 and that its levels of transcription were correlated with those of KIN and P53. Expression of HSP70 and P53 were both related to microscopic sunburn lesions recorded in the whales' skin. CONCLUSION This article presents groundwork data essential for future qPCR-based studies on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18.
Collapse
|
41
|
Dong Y, Wang Y, Yu H, Liu Y, Yang N, Zuo P. Involvement of heat shock protein 70 in the DNA protective effect from estrogen. Am J Alzheimers Dis Other Demen 2013; 28:269-77. [PMID: 23528882 PMCID: PMC10852587 DOI: 10.1177/1533317513481096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
As an endogenous cytoprotective factor, the protection of estrogen and heat shock protein-70 (Hsp70) on DNA has been documented, respectively, but the functional interaction between estrogen and Hsp70 on DNA damage repair is largely unknown. We therefore investigated the relation between estrogen and Hsp70 in terms of DNA protection in in vitro. The findings showed a significant reduction in cell survival and elevation in oxidative stress while cells were exposed to amyloid β (Aβ25-35) peptide, but preincubation of the cells with 17β-estradiol (17β-E2) ameliorated this situation. In addition, 17β-E2 alleviated oxidized DNA damage induced by Aβ and elevated the expression of Hsp70. However, the beneficial properties of 17β-E2 on reducing DNA damage were attenuated when Hsp70 gene was silenced accordingly. These results indicate that Hsp70 plays a role in DNA protection mediated by estrogen, and the DNA protection may be involved in Alzheimer's disease preventive effect from estrogen.
Collapse
Affiliation(s)
- Yilong Dong
- School of Medicine, Yunnan University, Kunming, Yunnan, China
- Institute of Basic Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanmei Wang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haijing Yu
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yanyong Liu
- Institute of Basic Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Yang
- Institute of Basic Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pingping Zuo
- Institute of Basic Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Isoir M, Roque T, Squiban C, Milliat F, Mondon P, Mas-Chamberlin C, Benderitter M, Guipaud O, Tamarat R. Protective Effect of Geranylgeranylacetone against Radiation-Induced Delayed Effects on Human Keratinocytes. Radiat Res 2013; 179:232-242. [DOI: 10.1667/rr2717.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
43
|
Abstract
p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.
Collapse
|
44
|
Behzadi P, Behzadi E. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae. MAEDICA 2012; 7:315-318. [PMID: 23483816 PMCID: PMC3593282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVES The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. MATERIALS AND METHODS The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. OUTCOMES No unusual patterns including DNA laddering bands or smears were detected. CONCLUSIONS The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Payam Behzadi
- MSc, Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | | |
Collapse
|
45
|
Matsuda M, Hoshino T, Yamakawa N, Tahara K, Adachi H, Sobue G, Maji D, Ihn H, Mizushima T. Suppression of UV-induced wrinkle formation by induction of HSP70 expression in mice. J Invest Dermatol 2012; 133:919-28. [PMID: 23096703 DOI: 10.1038/jid.2012.383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UV-induced wrinkle formation owing to the degeneration of the extracellular matrix (ECM) is a major dermatological problem in which abnormal activation of matrix metalloproteinases (MMPs) and elastases have important roles. Heat shock protein 70 (HSP70) has cytoprotective and anti-inflammatory activities. In this study, we examined the effect of HSP70 expression on UV-induced wrinkle formation. Mild heat treatment (exposure to heated water at 42 °C) of the dorsal skin of hairless mice induced the expression of HSP70. The long-term repeated exposure to UV induced epidermal hyperplasia, decreased skin elasticity, degeneration of ECM, and wrinkle formation, which could be suppressed in mice concomitantly subjected to this heat treatment. The UV-induced epidermal hyperplasia, decreased skin elasticity, and degeneration of ECM were less apparent in transgenic mice expressing HSP70 than in wild-type mice. UV-induced fibroblast cell death, infiltration of inflammatory cells, and activation of MMPs and elastase in the skin were also suppressed in the transgenic mice. This study provides evidence for an inhibitory effect of HSP70 on UV-induced wrinkle formation. The results suggest that this effect is mediated by various properties of HSP70, including its cytoprotective and anti-inflammatory activities. We propose that HSP70 inducers used in a clinical context could prove beneficial for the prevention of UV-induced wrinkle formation.
Collapse
Affiliation(s)
- Minoru Matsuda
- Department of Analytical Chemistry, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanaka KI, Shirai A, Ito Y, Namba T, Tahara K, Yamakawa N, Mizushima T. Expression of 150-kDa oxygen-regulated protein (ORP150) stimulates bleomycin-induced pulmonary fibrosis and dysfunction in mice. Biochem Biophys Res Commun 2012; 425:818-24. [PMID: 22892132 DOI: 10.1016/j.bbrc.2012.07.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/28/2012] [Indexed: 11/29/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Nasti TH, Timares L. Inflammasome activation of IL-1 family mediators in response to cutaneous photodamage. Photochem Photobiol 2012; 88:1111-25. [PMID: 22631445 DOI: 10.1111/j.1751-1097.2012.01182.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although keratinocytes are relatively resistant to ultraviolet radiation (UVR) induced damage, repeated UVR exposure result in accumulated DNA mutations that can lead to epidermal malignancies. Keratinocytes play a central role in elaborating innate responses that lead to inflammation and influence the generation of adaptive immune responses in skin. Apart from the minor cellular constituents of the epidermis, specifically Langerhans cells and melanocytes, keratinocytes are the major source of cytokines. UVR exposure stimulates keratinocytes to secrete abundant pro-inflammatory IL-1-family proteins, IL-1α, IL-1β, IL-18, and IL-33. Normal skin contains only low levels of inactive precursor forms of IL-1β and IL-18, which require caspase 1-mediated proteolysis for their maturation and secretion. However, caspase-1 activation is not constitutive, but dependents on the UV-induced formation of an active inflammasome complex. IL-1 family cytokines can induce a secondary cascade of mediators and cytokines from keratinocytes and other cells resulting in wide range of innate processes including infiltration of inflammatory leukocytes, induction of immunosuppression, DNA repair or apoptosis. Thus, the ability of keratinocytes to produce a wide repertoire of proinflammatory cytokines can influence the immune response locally as well as systematically, and alter the host response to photodamaged cells. We will highlight differential roles played by each IL-1 family molecule generated by UV-damaged keratinocytes, and reveal their complementary influences in modulating acute inflammatory and immunological events that follow cutaneous UV exposure.
Collapse
Affiliation(s)
- Tahseen H Nasti
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
48
|
Yamashita Y, Ikeda T, Matsuda M, Maji D, Hoshino T, Mizushima T. Purification and characterization of HSP-inducers from Eupatorium lindleyanum. Biochem Pharmacol 2012; 83:909-22. [DOI: 10.1016/j.bcp.2011.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022]
|
49
|
Vehniäinen ER, Vähäkangas K, Oikari A. UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos. Photochem Photobiol 2012; 88:363-70. [PMID: 22145705 DOI: 10.1111/j.1751-1097.2011.01058.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- University of Jyväskylä, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | |
Collapse
|
50
|
Behzadi E, Behzadi P. An in vitro Study on the Apoptosis Inducing Effects of Ultraviolet B light in Staphylococcus aureus. MAEDICA 2012; 7:54-57. [PMID: 23118820 PMCID: PMC3484797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/29/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Staphylococcus aureus is a gram positive bacterium. In recent years, the incidence of Staphylococcus aureus skin and soft tissue infections has been steadily increased around the world. Nowaday, the phototherapy is a suitable alternative as a cheap and effective treatment and in some cases can be used in parallel with chemotherapy. That is why, in this survey, we tried to detect the eventual apoptosis feature in UVB-irradiated colonies of Staphylococcus aureus. MATERIALS AND METHODS The bacterial sample was harvested from the microbial collection center of Islamic Azad University, Shahr-e-Qods branch, Microbiology laboratory. The colonies of Staphylococcus aureus were radiated by UVB beam and then, the DNA molecules belonging to control and irradiated colonies were extracted by DNP kit. Next after DNA extraction, the DNA molecules mixed in loading dye were run in 1% agarose gel electrophoresis. Following the electrophoresis, the UV transilluminator was used to observe the orange luminescent DNA bands formed in agarose gel. OUTCOMES As it was indicated by experimental practices in the present investigation, no abnormalities, neither DNA laddering bands (apoptosis) nor smears (necrosis), were detected. CONCLUSIONS According to the results showing the lack of DNA denaturation after UVB light exposure, a hypothesis could be advanced on the role of the Heat shock proteins and in particular, HSP70 which would act as an anti-apoptotic mechanism inhibiting the induction of apoptosis in UVB light-exposed colonies of Staphylococcus aureus.
Collapse
Affiliation(s)
- Elham Behzadi
- MSc, Microbiology Department, Faculty of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | | |
Collapse
|