1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
O’Rourke D, Gravato-Nobre MJ, Stroud D, Pritchett E, Barker E, Price RL, Robinson SA, Spiro S, Kuwabara P, Hodgkin J. Isolation and molecular identification of nematode surface mutants with resistance to bacterial pathogens. G3 (BETHESDA, MD.) 2023; 13:jkad056. [PMID: 36911920 PMCID: PMC10151413 DOI: 10.1093/g3journal/jkad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Numerous mutants of the nematode Caenorhabditis elegans with surface abnormalities have been isolated by utilizing their resistance to a variety of bacterial pathogens (Microbacterium nematophilum, Yersinia pseudotuberculosis, and 2 Leucobacter strains), all of which are able to cause disease or death when worms are grown on bacterial lawns containing these pathogens. Previous work led to the identification of 9 srf or bus genes; here, we report molecular identification and characterization of a further 10 surface-affecting genes. Three of these were found to encode factors implicated in glycosylation (srf-2, bus-5, and bus-22), like several of those previously reported; srf-2 belongs to the GT92 family of putative galactosyltransferases, and bus-5 is homologous to human dTDP-D-glucose 4,6-dehydratase, which is implicated in Catel-Manzke syndrome. Other genes encoded proteins with sequence similarity to phosphatidylinositol phosphatases (bus-6), Patched-related receptors (ptr-15/bus-13), steroid dehydrogenases (dhs-5/bus-21), or glypiation factors (bus-24). Three genes appeared to be nematode-specific (srf-5, bus-10, and bus-28). Many mutants exhibited cuticle fragility as revealed by bleach and detergent sensitivity; this fragility was correlated with increased drug sensitivity, as well as with abnormal skiddy locomotion. Most of the genes examined were found to be expressed in epidermal seam cells, which appear to be important for synthesizing nematode surface coat. The results reveal the genetic and biochemical complexity of this critical surface layer, and provide new tools for its analysis.
Collapse
Affiliation(s)
- Delia O’Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Pritchett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Barker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Rebecca L Price
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah A Robinson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon Spiro
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
5
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
6
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
7
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
8
|
Schifano E, Ficociello G, Vespa S, Ghosh S, Cipollo JF, Talora C, Lotti LV, Mancini P, Uccelletti D. Pmr-1 gene affects susceptibility of Caenorhabditis elegans to Staphylococcus aureus infection through glycosylation and stress response pathways' alterations. Virulence 2019; 10:1013-1025. [PMID: 31771413 PMCID: PMC6930020 DOI: 10.1080/21505594.2019.1697118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling can elicit different pathways involved in an extreme variety of biological processes. Calcium levels must be tightly regulated in a spatial and temporal manner in order to be efficiently and properly utilized in the host physiology. The Ca2+-ATPase, encoded by pmr-1 gene, was first identified in yeast and localized to the Golgi and it appears to be involved in calcium homeostasis. PMR-1 function is evolutionary conserved from yeast to human, where mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. In this work, we used the Caenorhabditis elegans model system to gain insight into the downstream response elicited by the loss of pmr-1 gene. We found that pmr-1 knocked down animals not only showed defects in the oligosaccharide structure of glycoproteins at the cell surface but also were characterized by reduced susceptibility to bacterial infection. Although increased resistance to the infection might be related to lack of regular recognition of C. elegans surface glycoproteins by microbial agents, we provide genetic evidence that pmr-1 interfered nematodes mounted a stronger innate immune response to Gram-positive bacterial infection. Thus, our observations indicate pmr-1 as a candidate gene implicated in mediating the worm's innate immune response.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Simone Vespa
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Salil Ghosh
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| |
Collapse
|
9
|
Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Sci Rep 2019; 9:11477. [PMID: 31391531 PMCID: PMC6685954 DOI: 10.1038/s41598-019-47942-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/26/2019] [Indexed: 01/28/2023] Open
Abstract
Plant-parasitic nematodes are associated with specifically attached soil bacteria. To investigate these bacteria, we employed culture-dependent methods to isolate a representative set of strains from the cuticle of the infective stage (J2) of the root-knot nematode Meloidogyne hapla in different soils. The bacteria with the highest affinity to attach to J2 belonged to the genera Microbacterium, Sphingopyxis, Brevundimonas, Acinetobacter, and Micrococcus as revealed by 16S rRNA gene sequencing. Dynamics of the attachment of two strains showed fast adhesion in less than two hours, and interspecific competition for attachment sites. Isolates from the cuticle of M. hapla J2 attached to the lesion nematode Pratylenchus penetrans, and vice versa, suggesting similar attachment sites on both species. Removal of the surface coat by treatment of J2 with the cationic detergent CTAB reduced bacterial attachment, but did not prevent it. Some of the best attaching bacteria impaired M. hapla performance in vitro by significantly affecting J2 mortality, J2 motility and egg hatch. Most of the tested bacterial attachers significantly reduced the invasion of J2 into tomato roots, suggesting their beneficial role in soil suppressiveness against M. hapla.
Collapse
|
10
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2019; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
11
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
12
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
13
|
Jankowska E, Parsons LM, Song X, Smith DF, Cummings RD, Cipollo JF. A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology 2018; 28:223-232. [PMID: 29325093 DOI: 10.1093/glycob/cwy002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Here we present a Caenorhabditis elegans N-glycan shotgun array. This nematode serves as a model organism for many areas of biology including but not limited to tissue development, host-pathogen interactions, innate immunity, and genetics. Caenorhabditis elegans N-glycans contain structural motifs that are also found in other nematodes as well as trematodes and lepidopteran species. Glycan binding toxins that interact with C. elegans glycoconjugates also do so with some agriculturally relevant species, such as Haemonchus contortus, Ascaris suum, Oesophagostomum dentatum and Trichoplusia ni. This situation implies that protein-carbohydrate interactions seen with C. elegans glycans may also occur in other species with related glycan structures. Therefore, this array may be useful to study these relationships in other nematodes as well as trematode and insect species. The array contains 134 distinct glycomers spanning a wide range of C. elegans N-glycans including the subclasses high mannose, pauci mannose, high fucose, mammalian-like complex and phosphorylcholine substituted forms. The glycans presented on the array have been characterized by two-dimensional separation, ion trap mass spectrometry, and lectin affinity. High fucose glycans were well represented and contain many novel core structures found in C. elegans as well as other species. This array should serve as an investigative platform for carbohydrate binding proteins that interact with N-glycans of C. elegans and over a range of organisms that contain glycan motifs conserved with this nematode.
Collapse
Affiliation(s)
- Ewa Jankowska
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Lisa M Parsons
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Xuezheng Song
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Dave F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
14
|
A novel assay for the detection of anthelmintic activity mediated by cuticular damage to nematodes: validation on Caenorhabditis elegans exposed to cysteine proteinases. Parasitology 2017; 144:583-593. [PMID: 28134060 DOI: 10.1017/s0031182016002353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plant cysteine proteinases (CPs) from Carica papaya kill parasitic and free-living nematodes in vitro by hydrolysis of the worm cuticle, a mechanism that is different to all commercially available synthetic anthelmintics. We have developed a cheap and effective, rapid-throughput Caenorhabditis elegans-based assay for screening plant CP extracts for anthelmintic activity targeting cuticular integrity. The assay exploits colorimetric methodology for assessment of cuticular damage, and is based on the ability of viable cells to incorporate and bind Neutral red dye within lysosomes and to release the dye when damaged. Living worms are pre-stained with the dye, exposed to CPs and then leakage of the dye through the damaged cuticle is quantified by spectrophotometry. In contrast to motility assays and semi-subjective interpretation of microscopical images, this colorimetric assay is independent of observer bias. Our assay was applied to a series of C. elegans bus mutant strains with leaky cuticles and to cystatin knockout mutants. At ambient temperature and over 0.5-24 h, both bus mutants and the cystatin knockouts were highly susceptible to CPs, whereas wild-type Bristol N2 worms were essentially unstained by Neutral red and unaffected by CPs, providing validation for the utility of this assay.
Collapse
|
15
|
Battisti JM, Watson LA, Naung MT, Drobish AM, Voronina E, Minnick MF. Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii. Innate Immun 2016; 23:111-127. [PMID: 27884946 DOI: 10.1177/1753425916679255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(-) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(-) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(-) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- James M Battisti
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Lance A Watson
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Myo T Naung
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Adam M Drobish
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ekaterina Voronina
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
16
|
Takeuchi T, Arata Y, Kasai KI. Galactoseβ1-4fucose: A unique disaccharide unit found inN-glycans of invertebrates including nematodes. Proteomics 2016; 16:3137-3147. [DOI: 10.1002/pmic.201600001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoichiro Arata
- Faculty of Pharmaceutical Sciences; Josai University; Saitama Japan
| | - Ken-ichi Kasai
- School of Pharmaceutical Sciences; Teikyo University; Tokyo Japan
| |
Collapse
|
17
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
18
|
Taffoni C, Pujol N. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 2015; 3:e1078432. [PMID: 26716073 PMCID: PMC4681281 DOI: 10.1080/21688370.2015.1078432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/26/2023] Open
Abstract
The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals.
Collapse
Affiliation(s)
- Clara Taffoni
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| | - Nathalie Pujol
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| |
Collapse
|
19
|
Heim C, Hertzberg H, Butschi A, Bleuler-Martinez S, Aebi M, Deplazes P, Künzler M, Štefanić S. Inhibition of Haemonchus contortus larval development by fungal lectins. Parasit Vectors 2015; 8:425. [PMID: 26283415 PMCID: PMC4539729 DOI: 10.1186/s13071-015-1032-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lectins are carbohydrate-binding proteins that are involved in fundamental intra- and extracellular biological processes. They occur ubiquitously in nature and are especially abundant in plants and fungi. It has been well established that certain higher fungi produce lectins in their fruiting bodies and/or sclerotia as a part of their natural resistance against free-living fungivorous nematodes and other pests. Despite relatively high diversity of the glycan structures in nature, many of the glycans targeted by fungal lectins are conserved among organisms of the same taxon and sometimes even among different taxa. Such conservation of glycans between free-living and parasitic nematodes is providing us with a useful tool for discovery of novel chemotherapeutic and vaccine targets. In our study, a subset of fungal lectins emanating from toxicity screens on Caenorhabditis elegans was tested for their potential to inhibit larval development of Haemonchus contortus. Methods The effect of Coprinopsis cinerea lectins - CCL2, CGL2, CGL3; Aleuria aurantia lectin – AAL; Marasmius oreades agglutinin - MOA; and Laccaria bicolor lectin – Lb-Tec2, on cultivated Haemonchus contortus larval stages was investigated using a larval development test (LDT). To validate the results of the toxicity assay and determine lectin binding capacity to the nematode digestive tract, biotinylated versions of lectins were fed to pre-infective larval stages of H. contortus and visualized by fluorescent microscopy. Lectin histochemistry on fixed adult worms was performed to investigate the presence and localisation of lectin binding sites in the disease-relevant developmental stage. Results Using an improved larval development test we found that four of the six tested lectins: AAL, CCL2, MOA and CGL2, exhibited a dose-dependent toxicity in LDT, as measured by the number of larvae developing to the L3 stage. In the case of AAL, CGL2 and MOA lectin, doses as low as 5 μg/ml caused >95 % inhibition of larval development while 40 μg/ml were needed to achieve the same inhibition by CCL2 lectin. MOA was the only lectin tested that caused larval death while other toxic lectins had larvistatic effect manifesting as L1 growth arrest. Using lectin histochemistry we demonstrate that of all lectins tested, only the four toxic ones displayed binding to the larvae’s gut and likewise were found to interact with glycans localized to the gastrodermal tissue of adults. Conclusion The results of our study suggest a correlation between the presence of target glycans of lectins in the digestive tract and the lectin-mediated toxicity in Haemonchus contortus. We demonstrate that binding to the structurally conserved glycan structures found in H. contortus gastrodermal tissue by the set of fungal lectins has detrimental effect on larval development. Some of these glycan structures might represent antigens which are not exposed to the host immune system (hidden antigens) and thus have a potential for vaccine or drug development. Nematotoxic fungal lectins prove to be a useful tool to identify such targets in parasitic nematodes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1032-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Heim
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Hubertus Hertzberg
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Alex Butschi
- Malcisbo AG, Wagistrasse 27a, 8952, Schlieren, Switzerland.
| | - Silvia Bleuler-Martinez
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Markus Aebi
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Markus Künzler
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland.
| | - Saša Štefanić
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
21
|
Parsons LM, Mizanur RM, Jankowska E, Hodgkin J, O′Rourke D, Stroud D, Ghosh S, Cipollo JF. Caenorhabditis elegans bacterial pathogen resistant bus-4 mutants produce altered mucins. PLoS One 2014; 9:e107250. [PMID: 25296196 PMCID: PMC4189790 DOI: 10.1371/journal.pone.0107250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022] Open
Abstract
Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.
Collapse
Affiliation(s)
- Lisa M. Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Rahman M. Mizanur
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Jonathan Hodgkin
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Delia O′Rourke
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dave Stroud
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salil Ghosh
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - John F. Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hodgkin J, Clark LC, Gravato-Nobre MJ. Worm-stars and half-worms: Novel dangers and novel defense. WORM 2014; 3:e27939. [PMID: 25254146 PMCID: PMC4165538 DOI: 10.4161/worm.27939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of “worm-star” aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
Collapse
Affiliation(s)
| | - Laura C Clark
- Department of Biochemistry; University of Oxford; Oxford, UK
| | | |
Collapse
|
23
|
Rouger V, Bordet G, Couillault C, Monneret S, Mailfert S, Ewbank JJ, Pujol N, Marguet D. Independent synchronized control and visualization of interactions between living cells and organisms. Biophys J 2014; 106:2096-104. [PMID: 24853738 PMCID: PMC4052360 DOI: 10.1016/j.bpj.2014.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/21/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022] Open
Abstract
To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode's surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion.
Collapse
Affiliation(s)
- Vincent Rouger
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France
| | - Guillaume Bordet
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France
| | - Carole Couillault
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France
| | - Serge Monneret
- Aix Marseille Université, CNRS UMR 7249, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Sébastien Mailfert
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France.
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy UM2, Aix Marseille Université, Marseille, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS) UMR 7280, Marseille, France.
| |
Collapse
|
24
|
Parsons LM, Cipollo J. Oral ingestion of Microbacterium nematophilum leads to anal-region infection in Caenorhabditis elegans. Microbes Infect 2014; 16:356-61. [DOI: 10.1016/j.micinf.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
|
25
|
Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ. Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol 2013; 23:2157-61. [PMID: 24206844 PMCID: PMC3898767 DOI: 10.1016/j.cub.2013.08.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023]
Abstract
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
26
|
Gaunitz S, Jin C, Nilsson A, Liu J, Karlsson NG, Holgersson J. Mucin-type proteins produced in the Trichoplusia ni and Spodoptera frugiperda insect cell lines carry novel O-glycans with phosphocholine and sulfate substitutions. Glycobiology 2013; 23:778-96. [PMID: 23463814 DOI: 10.1093/glycob/cwt015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The O-glycans of a recombinant mucin-type protein expressed in insect cell lines derived from Trichoplusia ni (Hi-5) and Spodoptera frugiperda (Sf9) were characterized. The P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG2b) fusion protein carrying 106 potential O-glycosylation sites and 6 potential N-glycosylation sites was expressed and purified from the Hi-5 and Sf9 cell culture medium using affinity chromatography and gel filtration. Liquid chromatography mass spectrometry (LC-MS) of O-glycans released from PSGL-1/mIgG2b revealed a large repertoire of structurally diverse glycans, which is in contrast to previous reports of only simple glycans. O-Glycans containing hexuronic acid (HexA, here glucuronic acid and galacturonic acid) were found to be prevalent. Also sulfate (Hi-5 and Sf9) and phosphocholine (PC; Sf9) O-glycan substitutions were detected. Western blotting confirmed the presence of O-linked PC on PSGL-1/mIG2b produced in Sf9 cells. To our knowledge, this is the first structural characterization of PC-substituted O-glycans in any species. The MS analyses revealed that Sf9 oligosaccharides consisted of short oligosaccharides (<6 residues) low in hexose (Hex) and with terminating N-acetylhexosamine (HexNAc) units, whereas Hi-5 produced a family of large O-glycans with (HexNAc-HexA-Hex) repeats and sulfate substitution on terminal residues. In both cell lines, the core N-acetylgalactosamine was preferentially non-branched, but small amounts of O-glycan cores with single fucose or hexose branches were found.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital at Huddinge, SE-141 86 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
27
|
Geyer H, Schmidt M, Müller M, Schnabel R, Geyer R. Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos. Glycoconj J 2012; 29:135-45. [PMID: 22407488 DOI: 10.1007/s10719-012-9371-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/29/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a well-characterized eukaryotic model organism. Recent glycomic analyses of the glycosylation potential of this worm revealed an extremely high structural variability of its N-glycans. Moreover, the glycan patterns of each developmental stage appeared to be unique. In this study we have determined the N-glycan profiles of wild-type embryos in comparison to mutant embryos arresting embryogenesis early before differentiation and causing extensive transformations of cell identities, which allows to follow the diversification of N-glycans during development using mass spectrometry. As a striking feature, wild-type embryos obtained from liquid culture expressed a less heterogeneous oligosaccharide pattern than embryos recovered from agar plates. N-glycan profiles of mutant embryos displayed, in part, distinct differences in comparison to wild-type embryos suggesting alterations in oligosaccharide trimming and processing, which may be linked to specific cell fate alterations in the embryos.
Collapse
Affiliation(s)
- Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
28
|
Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 2012; 78:2075-81. [PMID: 22286994 DOI: 10.1128/aem.07486-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a powerful experimental organism for almost half a century. Over the past 10 years, researchers have begun to exploit the power of C. elegans to investigate the biology of a number of human pathogens. This work has uncovered mechanisms of host immunity and pathogen virulence that are analogous to those involved during pathogenesis in humans or other animal hosts, as well as novel immunity mechanisms which appear to be unique to the worm. More recently, these investigations have uncovered details of the natural pathogens of C. elegans, including the description of a novel intracellular microsporidian parasite as well as new nodaviruses, the first identification of viral infections of this nematode. In this review, we consider the application of C. elegans to human infectious disease research, as well as consider the nematode response to these natural pathogens.
Collapse
|
29
|
Gravato-Nobre MJ, Stroud D, O'Rourke D, Darby C, Hodgkin J. Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 2011; 187:141-55. [PMID: 20980242 PMCID: PMC3018313 DOI: 10.1534/genetics.110.122002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.
Collapse
Affiliation(s)
- Maria J. Gravato-Nobre
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Creg Darby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|