1
|
Du Y, Benny PA, Shao Y, Schlueter RJ, Gurary A, Lum-Jones A, Lassiter CB, AlAkwaa FM, Tiirikainen M, Towner D, Ward WS, Garmire LX. Multi-omics Analysis of Umbilical Cord Hematopoietic Stem Cells from a Multi-ethnic Cohort of Hawaii Reveals the Intergenerational Effect of Maternal Pre-Pregnancy Obesity and Risk Prediction for Cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.27.24310936. [PMID: 39108521 PMCID: PMC11302719 DOI: 10.1101/2024.07.27.24310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Maternal obesity is a health concern that may predispose newborns to a high risk of medical problems later in life. To understand the intergenerational effect of maternal obesity, we hypothesized that the maternal obesity effect is mediated by epigenetic changes in the CD34+/CD38-/Lin- hematopoietic stem cells (uHSCs) in the offspring. Towards this, we conducted a DNA methylation centric multi-omics study. We measured the DNA methylation and gene expression in the CD34+/CD38-/Lin- uHSCs and metabolomics of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii (collected between 2016 and 2018). Results Differential methylation (DM) analysis unveiled a global hypermethylation pattern in the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical confounders. KEGG pathway enrichment, WGCNA, and PPI analyses revealed hypermethylated CpG sites were involved in critical biological processes, including cell cycle, protein synthesis, immune signaling, and lipid metabolism. . Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the findings at the epigenetic level. Furthermore, we trained a random forest classifier using the CpG sites in the genes of the top pathways associated with maternal obesity, and applied it to predict cancer vs. adjacent normal labels from samples in 14 Cancer Genome Atlas (TCGA) cancer types. Five of 14 cancers showed balanced accuracy of 0.6 or higher: LUSC (0.87), PAAD (0.83), KIRC (0.71), KIRP (0.63) and BRCA (0.60). Conclusions This study revealed the significant correlation between pre-pregnancy maternal obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA methylation. Moreover, these maternal obesity epigenetic markers in uHSCs may predispose offspring to higher risks in certain cancers.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Paula A. Benny
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Yuchen Shao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
| | - Ryan J. Schlueter
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Alexandra Gurary
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Annette Lum-Jones
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | - Cameron B Lassiter
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | | | - Maarit Tiirikainen
- University of Hawaii Cancer Center, Population Sciences of the Pacific Program-Epidemiology, Honolulu, HI
| | - Dena Towner
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - W. Steven Ward
- Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci 2024; 31:16. [PMID: 38280996 PMCID: PMC10821541 DOI: 10.1186/s12929-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Tsan-Tzu Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Zhen H, Yao Y, Yang H. SAFB2 Inhibits the Progression of Breast Cancer by Suppressing the Wnt/β-Catenin Signaling Pathway via NFAT5. Mol Biotechnol 2023; 65:1465-1475. [PMID: 36652182 DOI: 10.1007/s12033-022-00649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Aberrant scaffold attachment factor-B2 (SAFB2) expression is associated with several malignant tumors. In this study, we investigated how SAFB2 worked in the process of breast cancer as well as the underlying mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were used to investigate the expression of SAFB2 and nuclear factor of activated T cells 5 (NFAT5). Cellular proliferative ability was detected with cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) staining assays. Cell apoptosis was measured via flow cytometry and western blotting analysis. Wound healing, transwell assays, and western blotting analysis were executed to estimate cell migration and invasion. The relationship between SAFB2 and NFAT5 was verified by RNA immunoprecipitation (RIP) assay and NFAT5 mRNA stability was examined with actinomycin (Act) D assay. Western blotting analysis also tested the expression of Wnt/β-catenin signaling-associated proteins. As a result, SAFB2 was downregulated in breast cancer cell lines, while NFAT5 was highly expressed in most breast cancer cell lines. Overexpression of SAFB2 suppressed the proliferation, migration, and invasion while exacerbated the apoptosis of breast cancer cells. SAFB2 interacted with NFAT5 mRNA and declined the stability of NFAT5 mRNA. Overexpression of NFAT5 counteracted anti-proliferative, anti-metastatic and pro-apoptotic effects of SAFB2 in breast cancer cells. Mechanistically, SAFB2 overexpression inhibited the Wnt/β-catenin signaling pathway, while this effect was partially eliminated by NFAT5. Collectively, SAFB2 hindered breast cancer development and inactivated Wnt/β-catenin signaling via regulation of NFAT5, suggesting that SAFB2 might be a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Huifen Zhen
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Yarong Yao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Haibo Yang
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China.
| |
Collapse
|
4
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Demel UM, Böger M, Yousefian S, Grunert C, Zhang L, Hotz PW, Gottschlich A, Köse H, Isaakidis K, Vonficht D, Grünschläger F, Rohleder E, Wagner K, Dönig J, Igl V, Brzezicha B, Baumgartner F, Habringer S, Löber J, Chapuy B, Weidinger C, Kobold S, Haas S, Busse AB, Müller S, Wirth M, Schick M, Keller U. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest 2022; 132:152383. [PMID: 35499080 PMCID: PMC9057585 DOI: 10.1172/jci152383] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell–mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell–mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Uta M. Demel
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Marlitt Böger
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Schayan Yousefian
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Corinna Grunert
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Paul W. Hotz
- Institute of Biochemistry II, Goethe University Frankfurt, Medical School, Frankfurt, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Hazal Köse
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dominik Vonficht
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Florian Grünschläger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Elena Rohleder
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University Frankfurt, Medical School, Frankfurt, Germany
| | - Judith Dönig
- Institute of Biochemistry II, Goethe University Frankfurt, Medical School, Frankfurt, Germany
| | - Veronika Igl
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | | | - Francis Baumgartner
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Jens Löber
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Carl Weidinger
- Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- German Center for Translational Cancer Research (DKTK), DKFZ, Heidelberg, Germany
- DKTK, Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Simon Haas
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Antonia B. Busse
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical School, Frankfurt, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Translational Cancer Research (DKTK), DKFZ, Heidelberg, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Translational Cancer Research (DKTK), DKFZ, Heidelberg, Germany
| |
Collapse
|
6
|
Jones K, Zhang Y, Kong Y, Farah E, Wang R, Li C, Wang X, Zhang Z, Wang J, Mao F, Liu X, Liu J. Epigenetics in prostate cancer treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:341-356. [PMID: 35372800 PMCID: PMC8974353 DOI: 10.20517/jtgg.2021.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic modifications in PCa development and its function in the progression of the disease to resistant forms and introduce therapeutic strategies that have demonstrated successful results as PCa treatment.
Collapse
Affiliation(s)
- Katelyn Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Elia Farah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - ZhuangZhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proc Natl Acad Sci U S A 2020; 117:31914-31922. [PMID: 33257571 DOI: 10.1073/pnas.2005712117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
Collapse
|
8
|
Scaffold attachment factor B: distribution and interaction with ERα in the rat brain. Histochem Cell Biol 2020; 153:323-338. [PMID: 32086573 DOI: 10.1007/s00418-020-01853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Scaffold attachment factor (SAFB) 1 and its homologue SAFB2 are multifunctional proteins that are involved in various cellular mechanisms, including chromatin organization and transcriptional regulation, and are also corepressors of estrogen receptor alpha (ERα). Both SAFBs are expressed at high levels in the brain. However, the distributions of SAFB1 and SAFB2 have yet to be characterized in detail and it is unclear whether both proteins interact with ERα in the brain. In this study, we investigated the expression and distribution of both SAFBs and their interaction with ERα in adult male rat brain. Immunohistochemical staining showed that SAFB1 and SAFB2 have a similar distribution pattern and are widely expressed throughout the brain. Double-fluorescence immunohistochemical and immunocytochemical analyses in primary cultures showed that the two SAFB proteins are localized in nuclei of neurons, astrocytes, and oligodendrocytes. Of note, SAFB2 was also found in cytoplasmic regions in these cell lineages. Both SAFB proteins were also expressed in ERα-positive cells in the medial preoptic area (MPOA) and arcuate and ventromedial hypothalamic nuclei. Co-immunoprecipitation experiments revealed that both SAFB proteins from the MPOA reciprocally interact with endogenous ERα. These results indicate that, in addition to a role in basal cellular function in the brain, the SAFB proteins may serve as ERα corepressors in hormone-sensitive regions.
Collapse
|
9
|
Wang Y, Wang Z. Identification of dysregulated genes and pathways of different brain regions in Alzheimer's disease. Int J Neurosci 2020; 130:1082-1094. [PMID: 32019384 DOI: 10.1080/00207454.2020.1720677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Alzheimer's disease (AD) is a degenerative neurologic disease. The study aimed to identify the key differentially expressed genes (DEGs) and pathways in AD pathogenesis and obtain potential biomarkers in AD diagnosis.Methods: An integrated analysis of publicly available Gene Expression Omnibus datasets of AD was performed. DEGs in hippocampus tissue (HIP), temporal gyrus tissue (TG), frontal gyrus tissue (FG) and whole blood (WB) were identified. Bioinformatics analyses were used to insight into the functions of DEGs. The expression levels of candidate DEGs were preliminarily validated in GSE1297. The discriminatory ability of candidate DEGs in WB samples of AD patients and healthy individuals was evaluated in GSE63060 and GSE63061 datasets through receiver operating characteristic (ROC) analysis.Results: The DEGs in HIP, TG and FG tissues of AD were identified. Functions involved in regulation of apoptotic process, apoptotic process and cell death were significantly enriched from DEGs in AD. MAPK signaling pathway and Wnt signaling pathway were significantly enriched. YAP1, MAPK9 and GJA1 were the hub proteins in protein-protein interaction network in HIP, TG and FG. The expression levels of 14 DEGs in GSE1297 dataset were consistent with our integrated analysis. Moreover, 7 out of 14 DEGs had the diagnostic value in distinguishing AD patients from healthy controls in both GSE630060 and GSE630061 datasets.Conclusion: The DEGs including YAP1, MAPK1, GJA1 and pathways including MAPK signaling pathway and Wnt signaling pathway may be related to AD progression. RAD51C, SAFB2, SSH3 and TXNDC9 might be potential biomarkers in AD diagnosis.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Neurology, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Nankai District, Tianjin, China
| |
Collapse
|
10
|
Karakülah G, Arslan N, Yandım C, Suner A. TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ 2019; 7:e8192. [PMID: 31824778 PMCID: PMC6899341 DOI: 10.7717/peerj.8192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/11/2019] [Indexed: 01/24/2023] Open
Abstract
Introduction Recent studies highlight the crucial regulatory roles of transposable elements (TEs) on proximal gene expression in distinct biological contexts such as disease and development. However, computational tools extracting potential TE -proximal gene expression associations from RNA-sequencing data are still missing. Implementation Herein, we developed a novel R package, using a linear regression model, for studying the potential influence of TE species on proximal gene expression from a given RNA-sequencing data set. Our R package, namely TEffectR, makes use of publicly available RepeatMasker TE and Ensembl gene annotations as well as several functions of other R-packages. It calculates total read counts of TEs from sorted and indexed genome aligned BAM files provided by the user, and determines statistically significant relations between TE expression and the transcription of nearby genes under diverse biological conditions. Availability TEffectR is freely available at https://github.com/karakulahg/TEffectR along with a handy tutorial as exemplified by the analysis of RNA-sequencing data including normal and tumour tissue specimens obtained from breast cancer patients.
Collapse
Affiliation(s)
- Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | | | - Cihangir Yandım
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
11
|
Damineni S, Balaji SA, Shettar A, Nayanala S, Kumar N, Kruthika BS, Subramanian K, Vijayakumar M, Mukherjee G, Gupta V, Kondaiah P. Expression of tripartite motif-containing protein 28 in primary breast carcinoma predicts metastasis and is involved in the stemness, chemoresistance, and tumor growth. Tumour Biol 2017; 39:1010428317695919. [PMID: 28381187 DOI: 10.1177/1010428317695919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The prediction of who develops metastasis has been the most difficult aspect in the management of breast cancer patients. The lymph node metastasis has been the most useful predictor of prognosis and patient management. However, a good proportion of patients with lymph node positivity remain disease free for 5 years or more, while about a third of those who were lymph node negative develop distant metastasis within the same period. This warrants a robust biomarker(s), preferably gene expression based. In order to elucidate gene-based biomarkers for prognosis of breast cancers, gene expression profiling of primary tumors and follow-up for over 5 years has been performed. The analysis revealed a network of genes centered around the tripartite motif-containing protein 28 as an important indicator of disease progression. Short hairpin RNA-mediated knockdown of tripartite motif-containing protein 28 in breast cancer cells revealed a decreased expression of epithelial-to-mesenchymal transition markers and increased expression of epithelial markers, decreased migration and invasion, and increased chemosensitivity to doxorubicin, 5-fluorouracil, and methotrexate. Furthermore, knockdown of tripartite motif-containing protein 28 resulted in the decrease of stemness as revealed by sphere formation assay as well as decreased expression of CD44 and Bmi1. Moreover, tripartite motif-containing protein 28 knockdown significantly reduced the tumor size and lung metastasis in orthotopic tumor xenograft assay in immunocompromised mice. The tumor size was further reduced when these mice were treated with doxorubicin. These data provide evidence for tripartite motif-containing protein 28 as a biomarker and a potential therapeutic target for breast cancer.
Collapse
|
12
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
13
|
Glorieux C, Sandoval JM, Fattaccioli A, Dejeans N, Garbe JC, Dieu M, Verrax J, Renard P, Huang P, Calderon PB. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress. Free Radic Biol Med 2016; 99:436-450. [PMID: 27591797 DOI: 10.1016/j.freeradbiomed.2016.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/27/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.
Collapse
Affiliation(s)
- Christophe Glorieux
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510275 Guangzhou, China.
| | - Juan Marcelo Sandoval
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Nicolas Dejeans
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium
| | - James C Garbe
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Dieu
- Mass Spectrometry University of Namur (MaSUN), University of Namur, 5000 Namur, Belgium
| | - Julien Verrax
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510275 Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro Buc Calderon
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|
14
|
Légaré S, Basik M. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Mol Endocrinol 2016; 30:965-76. [PMID: 27581354 DOI: 10.1210/me.2016-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| | - Mark Basik
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|
15
|
Unravelling the RNA-Binding Properties of SAFB Proteins in Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:395816. [PMID: 26273616 PMCID: PMC4529905 DOI: 10.1155/2015/395816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/15/2015] [Indexed: 01/06/2023]
Abstract
Scaffold attachment factor B1 (SAFB1) and SAFB2 proteins are oestrogen (ER) corepressors that bind to and modulate ER activity through chromatin remodelling or interaction with the basal transcription machinery. SAFB proteins also have an internal RNA-recognition motif but little is known about the RNA-binding properties of SAFB1 or SAFB2. We utilised crosslinking and immunoprecipitation (iCLIP) coupled with high-throughput sequencing to enable a transcriptome-wide mapping of SAFB1 protein-RNA interactions in breast cancer MCF-7 cells. Analysis of crosslinking frequency mapped to transcript regions revealed that SAFB1 binds to coding and noncoding RNAs (ncRNAs). The highest proportion of SAFB1 crosslink sites mapped to ncRNAs, followed by intergenic regions, open reading frames (ORFs), introns, and 3′ or 5′ untranslated regions (UTR). Furthermore, we reveal that SAFB1 binds directly to RNA and its binding is particularly enriched at purine-rich sequences not dissimilar to the RNA-binding motifs for SR proteins. Using RNAi, we also show, for the first time, that single depletion of either SAFB1 or SAFB2 leads to an increase in expression of the other SAFB protein in both MCF-7 and MDA-MD231 breast cancer cells.
Collapse
|
16
|
Jiang S, Katz TA, Garee JP, DeMayo FJ, Lee AV, Oesterreich S. Scaffold attachment factor B2 (SAFB2)-null mice reveal non-redundant functions of SAFB2 compared with its paralog, SAFB1. Dis Model Mech 2015; 8:1121-7. [PMID: 26092125 PMCID: PMC4582101 DOI: 10.1242/dmm.019885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Scaffold attachment factors SAFB1 and SAFB2 are multifunctional proteins that share >70% sequence similarity. SAFB1-knockout (SAFB1(-/-)) mice display a high degree of lethality, severe growth retardation, and infertility in male mice. To assess the in vivo role of SAFB2, and to identify unique functions of the two paralogs, we generated SAFB2(-/-) mice. In stark contrast to SAFB1(-/-), SAFB2(-/-) offspring were born at expected Mendelian ratios and did not show any obvious defects in growth or fertility. Generation of paralog-specific antibodies allowed extensive expression analysis of SAFB1 and SAFB2 in mouse tissues, showing high expression of both SAFB1 and SAFB2 in the immune system, and in hormonally controlled tissues, with especially high expression of SAFB2 in the male reproductive tract. Further analysis showed a significantly increased testis weight in SAFB2(-/-) mice, which was associated with an increased number of Sertoli cells. Our data suggest that this is at least in part caused by alterations in androgen-receptor function and expression upon deletion of SAFB2. Thus, despite a high degree of sequence similarity, SAFB1(-/-) and SAFB2(-/-) mice do not totally phenocopy each other. SAFB2(-/-) mice are viable, and do not show any major defects, and our data suggest a role for SAFB2 in the differentiation and activity of Sertoli cells that deserves further study.
Collapse
Affiliation(s)
- Shiming Jiang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany A Katz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jason P Garee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adrian V Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Steffi Oesterreich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
17
|
Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene 2015; 567:1-11. [PMID: 25967390 DOI: 10.1016/j.gene.2015.04.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anna V Gaponova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rashid Gabbasov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Genetics, Kazan Federal University (Volga Region), Kazan, Tatarstan, Russia
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
18
|
Liu HW, Banerjee T, Guan X, Freitas MA, Parvin JD. The chromatin scaffold protein SAFB1 localizes SUMO-1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing. Nucleic Acids Res 2015; 43:3605-13. [PMID: 25800734 PMCID: PMC4402547 DOI: 10.1093/nar/gkv246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 01/29/2023] Open
Abstract
Early steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells, but the SUMOylated targets on the chromatin remained unclear. In this study, we found that SUMO-1 marks the promoters of ribosomal protein genes via modification of the Scaffold Associated Factor B (SAFB) protein, and the SUMOylated SAFB stimulated both the binding of RNA polymerase to promoters and pre-mRNA splicing. Depletion of SAFB decreased RNA polymerase II binding to promoters and nuclear processing of the mRNA, though mRNA stability was not affected. This study reveals an unexpected role of SUMO-1 and SAFB in the stimulatory coupling of promoter binding, transcription initiation and RNA processing.
Collapse
Affiliation(s)
- Hui-wen Liu
- Department of Biomedical Informatics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoyan Guan
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Altmeyer M, Toledo L, Gudjonsson T, Grøfte M, Rask MB, Lukas C, Akimov V, Blagoev B, Bartek J, Lukas J. The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling. Mol Cell 2013; 52:206-20. [PMID: 24055346 DOI: 10.1016/j.molcel.2013.08.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/08/2013] [Accepted: 08/14/2013] [Indexed: 01/25/2023]
Abstract
Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological barriers by making chromatin permissive for DNA damage signaling, whereas the ensuing exclusion of SAFB1 may help prevent excessive signaling.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Chromosome Stability and Dynamics Group, Department of Disease Biology, the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2. Oncogene 2013; 33:3235-45. [PMID: 23893242 DOI: 10.1038/onc.2013.294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022]
Abstract
The androgen receptor (AR) is a transcription factor that employs many diverse interactions with coregulatory proteins in normal physiology and in prostate cancer (PCa). The AR mediates cellular responses in association with chromatin complexes and kinase cascades. Here we report that the nuclear matrix protein, scaffold attachment factor B1 (SAFB1), regulates AR activity and AR levels in a manner that suggests its involvement in PCa. SAFB1 mRNA expression was lower in PCa in comparison with normal prostate tissue in a majority of publicly available RNA expression data sets. SAFB1 protein levels were also reduced with disease progression in a cohort of human PCa that included metastatic tumors. SAFB1 bound to AR and was phosphorylated by the MST1 (Hippo homolog) serine-threonine kinase, previously shown to be an AR repressor, and MST1 localization to AR-dependent promoters was inhibited by SAFB1 depletion. Knockdown of SAFB1 in androgen-dependent LNCaP PCa cells increased AR and prostate-specific antigen (PSA) levels, stimulated growth of cultured cells and subcutaneous xenografts and promoted a more aggressive phenotype, consistent with a repressive AR regulatory function. SAFB1 formed a complex with the histone methyltransferase EZH2 at AR-interacting chromatin sites in association with other polycomb repressive complex 2 (PRC2) proteins. We conclude that SAFB1 acts as a novel AR co-regulator at gene loci where signals from the MST1/Hippo and EZH2 pathways converge.
Collapse
|
21
|
Hernández-Hernández JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res 2013; 41:5704-16. [PMID: 23609547 PMCID: PMC3675494 DOI: 10.1093/nar/gkt285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of skeletal muscle gene expression during myogenesis is mediated by lineage-specific transcription factors in combination with numerous cofactors, many of which modify chromatin structure. However, the involvement of scaffolding proteins that organize chromatin and chromatin-associated regulatory proteins has not extensively been explored in myogenic differentiation. Here, we report that Scaffold attachment factor b1 (Safb1), primarily associated with transcriptional repression, functions as a positive regulator of myogenic differentiation. Knockdown of Safb1 inhibited skeletal muscle marker gene expression and differentiation in cultured C2C12 myoblasts. In contrast, over-expression resulted in the premature expression of critical muscle structural proteins and formation of enlarged thickened myotubes. Safb1 co-immunoprecipitated with MyoD and was co-localized on myogenic promoters. Upon Safb1 knockdown, the repressive H3K27me3 histone mark and binding of the Polycomb histone methyltransferase Ezh2 persisted at differentiation-dependent gene promoters. In contrast, the appearance of histone marks and regulators associated with myogenic gene activation, such as myogenin and the SWI/SNF chromatin remodelling enzyme ATPase, Brg1, was blocked. These results indicate that the scaffold protein Safb1 contributes to the activation of skeletal muscle gene expression during myogenic differentiation by facilitating the transition of promoter sequences from a repressive chromatin structure to one that is transcriptionally permissive.
Collapse
Affiliation(s)
- J. Manuel Hernández-Hernández
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Chandrashekara Mallappa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Brian T. Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA and Department of Pharmacology and Chemical Biology, Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +1 508 856 1029; Fax: +1 508 856 5612;
| |
Collapse
|
22
|
Abstract
SAFB1 (scaffold attachment factor B1) and a second family member SAFB2, are multifunctional proteins implicated in a variety of cellular processes including cell growth, apoptosis and stress response. Their potential function as tumour suppressors has been proposed based on well-described roles in tran-scriptional repression. The present review summarizes the current knowledge of SAFB1 and SAFB2 proteins in transcriptional repression with relevance to cancer.
Collapse
|
23
|
Wildenhain S, Ingenhag D, Ruckert C, Degistirici Ö, Dugas M, Meisel R, Hauer J, Borkhardt A. Homeobox protein HB9 binds to the prostaglandin E receptor 2 promoter and inhibits intracellular cAMP mobilization in leukemic cells. J Biol Chem 2012; 287:40703-12. [PMID: 23048027 DOI: 10.1074/jbc.m111.308965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND HB9 is highly expressed in translocation t(7;12) positive infant AML. RESULTS HB9 binds to the PTGER2 promoter, down-regulates PTGER2 gene expression and subsequently represses cAMP synthesis in hematopoietic cells. CONCLUSION Expression of HLXB9 represses PTGER2 mediated signaling. SIGNIFICANCE First molecular report of HB9-dependent target gene regulation in hematopoietic cells. The transcription factor HB9, encoded by the homeobox gene B9 (HLXB9), is involved in the development of pancreatic beta- and motor neuronal cells. In addition, HLXB9 is recurrently rearranged in young children with acute myeloid leukemia characterized by a chromosomal translocation t(7;12)-HLXB9/TEL and concomitant high expression of the unrearranged, wild-type HLXB9 allele. However, target genes of HB9 in hematopoietic cells are not known to date. In this study, we used ChIP-on-chip analysis together with expression profiling and identified PTGER2 (prostaglandin E receptor 2) as a target gene of HB9 in a hematopoietic cell line. The functional HB9 homeodomain as well as the HB9 binding domain within the PTGER2 promoter are essential for binding of HB9 to the PTGER2 promoter region and down-regulation of PTGER2 expression. Functionally, HB9 conducted down-regulation of PTGER2 results in a reduced content of intracellular cAMP mobilization and furthermore the decreased PTGER2 gene expression is valid in bone marrow cells from translocation t(7;12) positive patients. Among the primary and secondary target genes of HB9 in the myeloid cell line HL60, 78% of significantly regulated genes are down-regulated, indicating an overall repressive function of HB9. Differentially regulated genes were preferentially confined to pathways involved in cell-adhesion and cell-cell interactions, similar to the gene expression footprint of HLXB9-expressing cells from t(7;12) positive patients.
Collapse
Affiliation(s)
- Sarah Wildenhain
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen AC, Migliaccio I, Rimawi M, Lopez-Tarruella S, Creighton CJ, Massarweh S, Huang C, Wang YC, Batra SK, Gutierrez MC, Osborne CK, Schiff R. Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Res Treat 2012; 134:583-93. [PMID: 22644656 DOI: 10.1007/s10549-012-2082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/24/2022]
Abstract
We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin and eosin and with mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER, and HER2 signaling pathways was measured by immunohistochemistry and western blotting. The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam + LT) or estrogen deprivation (ED + LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype-a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene progesterone receptor. Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive.
Collapse
Affiliation(s)
- Albert C Chen
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tang CS, Ferreira MAR. A gene-based test of association using canonical correlation analysis. ACTA ACUST UNITED AC 2012; 28:845-50. [PMID: 22296789 DOI: 10.1093/bioinformatics/bts051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MOTIVATION Canonical correlation analysis (CCA) measures the association between two sets of multidimensional variables. We reasoned that CCA could provide an efficient and powerful approach for both univariate and multivariate gene-based tests of association without the need for permutation testing. RESULTS Compared with a commonly used permutation-based approach, CCA (i) is faster; (ii) has appropriate type-I error rate for normally distributed quantitative traits; (iii) provides comparable power for small to medium-sized genes (<100 kb); (iv) provides greater power when the causal variants are uncommon; (v) provides considerably less power for larger genes (≥100 kb) when the causal variants have a broad minor allele frequency (MAF) spectrum. Application to a GWAS of leukocyte levels identified SAFB and a histone gene cluster as novel putative loci harboring multiple independent variants regulating lymphocyte and neutrophil counts.
Collapse
Affiliation(s)
- Clara S Tang
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | |
Collapse
|
26
|
Izraely S, Sagi-Assif O, Klein A, Meshel T, Tsarfaty G, Pasmanik-Chor M, Nahmias C, Couraud PO, Ateh E, Bryant JL, Hoon DS, Witz IP. The metastatic microenvironment: Brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer 2011; 131:1071-82. [DOI: 10.1002/ijc.27324] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/10/2011] [Indexed: 12/18/2022]
|
27
|
Garee JP, Meyer R, Oesterreich S. Co-repressor activity of scaffold attachment factor B1 requires sumoylation. Biochem Biophys Res Commun 2011; 408:516-22. [PMID: 21527249 DOI: 10.1016/j.bbrc.2011.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/08/2011] [Indexed: 01/14/2023]
Abstract
Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.
Collapse
Affiliation(s)
- Jason P Garee
- Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
28
|
Roberts CG, Millar EKA, O'Toole SA, McNeil CM, Lehrbach GM, Pinese M, Tobelmann P, McCloy RA, Musgrove EA, Sutherland RL, Butt AJ. Identification of PUMA as an estrogen target gene that mediates the apoptotic response to tamoxifen in human breast cancer cells and predicts patient outcome and tamoxifen responsiveness in breast cancer. Oncogene 2011; 30:3186-97. [DOI: 10.1038/onc.2011.36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Peidis P, Voukkalis N, Aggelidou E, Georgatsou E, Hadzopoulou-Cladaras M, Scott RE, Nikolakaki E, Giannakouros T. SAFB1 interacts with and suppresses the transcriptional activity of p53. FEBS Lett 2010; 585:78-84. [DOI: 10.1016/j.febslet.2010.11.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023]
|
30
|
Alfonso-Parra C, Maggert KA. Drosophila SAF-B links the nuclear matrix, chromosomes, and transcriptional activity. PLoS One 2010; 5:e10248. [PMID: 20422039 PMCID: PMC2857882 DOI: 10.1371/journal.pone.0010248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/26/2010] [Indexed: 02/06/2023] Open
Abstract
Induction of gene expression is correlated with alterations in nuclear organization, including proximity to other active genes, to the nuclear cortex, and to cytologically distinct domains of the nucleus. Chromosomes are tethered to the insoluble nuclear scaffold/matrix through interaction with Scaffold/Matrix Attachment Region (SAR/MAR) binding proteins. Identification and characterization of proteins involved in establishing or maintaining chromosome-scaffold interactions is necessary to understand how the nucleus is organized and how dynamic changes in attachment are correlated with alterations in gene expression. We identified and characterized one such scaffold attachment factor, a Drosophila homolog of mammalian SAF-B. The large nuclei and chromosomes of Drosophila have allowed us to show that SAF-B inhabits distinct subnuclear compartments, forms weblike continua in nuclei of salivary glands, and interacts with discrete chromosomal loci in interphase nuclei. These interactions appear mediated either by DNA-protein interactions, or through RNA-protein interactions that can be altered during changes in gene expression programs. Extraction of soluble nuclear proteins and DNA leaves SAF-B intact, showing that this scaffold/matrix-attachment protein is a durable component of the nuclear matrix. Together, we have shown that SAF-B links the nuclear scaffold, chromosomes, and transcriptional activity.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Keith A. Maggert
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|