1
|
Schirripa Spagnolo C, Luin S. Trajectory Analysis in Single-Particle Tracking: From Mean Squared Displacement to Machine Learning Approaches. Int J Mol Sci 2024; 25:8660. [PMID: 39201346 PMCID: PMC11354962 DOI: 10.3390/ijms25168660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Single-particle tracking is a powerful technique to investigate the motion of molecules or particles. Here, we review the methods for analyzing the reconstructed trajectories, a fundamental step for deciphering the underlying mechanisms driving the motion. First, we review the traditional analysis based on the mean squared displacement (MSD), highlighting the sometimes-neglected factors potentially affecting the accuracy of the results. We then report methods that exploit the distribution of parameters other than displacements, e.g., angles, velocities, and times and probabilities of reaching a target, discussing how they are more sensitive in characterizing heterogeneities and transient behaviors masked in the MSD analysis. Hidden Markov Models are also used for this purpose, and these allow for the identification of different states, their populations and the switching kinetics. Finally, we discuss a rapidly expanding field-trajectory analysis based on machine learning. Various approaches, from random forest to deep learning, are used to classify trajectory motions, which can be identified by motion models or by model-free sets of trajectory features, either previously defined or automatically identified by the algorithms. We also review free software available for some of the analysis methods. We emphasize that approaches based on a combination of the different methods, including classical statistics and machine learning, may be the way to obtain the most informative and accurate results.
Collapse
Affiliation(s)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| |
Collapse
|
2
|
Manca F, Eich G, N'Dao O, Normand L, Sengupta K, Limozin L, Puech PH. Probing mechanical interaction of immune receptors and cytoskeleton by membrane nanotube extraction. Sci Rep 2023; 13:15652. [PMID: 37730849 PMCID: PMC10511455 DOI: 10.1038/s41598-023-42599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The role of force application in immune cell recognition is now well established, the force being transmitted between the actin cytoskeleton to the anchoring ligands through receptors such as integrins. In this chain, the mechanics of the cytoskeleton to receptor link, though clearly crucial, remains poorly understood. To probe this link, we combine mechanical extraction of membrane tubes from T cells using optical tweezers, and fitting of the resulting force curves with a viscoelastic model taking into account the cell and relevant molecules. We solicit this link using four different antibodies against various membrane bound receptors: antiCD3 to target the T Cell Receptor (TCR) complex, antiCD45 for the long sugar CD45, and two clones of antiCD11 targeting open or closed conformation of LFA1 integrins. Upon disruption of the cytoskeleton, the stiffness of the link changes for two of the receptors, exposing the existence of a receptor to cytoskeleton link-namely TCR-complex and open LFA1, and does not change for the other two where a weaker link was expected. Our integrated approach allows us to probe, for the first time, the mechanics of the intracellular receptor-cytoskeleton link in immune cells.
Collapse
Affiliation(s)
- Fabio Manca
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Gautier Eich
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Omar N'Dao
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Lucie Normand
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Kheya Sengupta
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Laurent Limozin
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Pierre-Henri Puech
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| |
Collapse
|
3
|
Mørch AM, Schneider F. Investigating Diffusion Dynamics and Interactions with Scanning Fluorescence Correlation Spectroscopy (sFCS). Methods Mol Biol 2023; 2654:61-89. [PMID: 37106176 DOI: 10.1007/978-1-0716-3135-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Activation of immune cells and formation of immunological synapses (IS) rely critically on the reorganization of the plasma membrane. These highly orchestrated processes are driven by diffusion and oligomerization dynamics, as well as by single molecule interactions. While slow macro- and meso-scale changes in organization can be observed with conventional imaging, fast nano-scale dynamics are often missed with traditional approaches, but resolving them is, nonetheless, essential to understand the underlying biological mechanisms at play. Here, we describe the use of scanning fluorescence correlation spectroscopy (sFCS) and scanning fluorescence cross-correlation spectroscopy (sFCCS) to study reorganization and changes in molecular diffusion dynamics and interactions during IS formation and in other biological settings. We focus on the practical aspects of the measurements including calibration and alignment of the optical setup, present a comprehensive protocol to perform the measurements, and provide data analysis pipelines and strategies. Finally, we show an exemplary application of the technology to studying Lck diffusion during T-cell signaling.
Collapse
Affiliation(s)
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Porciello N, Cipria D, Masi G, Lanz AL, Milanetti E, Grottesi A, Howie D, Cobbold SP, Schermelleh L, He HT, D'Abramo M, Destainville N, Acuto O, Nika K. Role of the membrane anchor in the regulation of Lck activity. J Biol Chem 2022; 298:102663. [PMID: 36372231 PMCID: PMC9763865 DOI: 10.1016/j.jbc.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.
Collapse
Affiliation(s)
- Nicla Porciello
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Deborah Cipria
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Giulia Masi
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna-Lisa Lanz
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Edoardo Milanetti
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | | | - Duncan Howie
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Steve P Cobbold
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Hai-Tao He
- Aix Marseille Université, CNRS, INSERM, CINL, Marseille, France
| | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, UPS, Toulouse, France.
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom; Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
5
|
Ton Tran HT, Li C, Chakraberty R, Cairo CW. NEU1 and NEU3 enzymes alter CD22 organization on B cells. BIOPHYSICAL REPORTS 2022; 2:100064. [PMID: 36425332 PMCID: PMC9680808 DOI: 10.1016/j.bpr.2022.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (cis-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca2+ levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.
Collapse
Affiliation(s)
- Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
6
|
Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function. Cell Rep 2022; 39:111006. [PMID: 35767951 DOI: 10.1016/j.celrep.2022.111006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.
Collapse
|
7
|
Simulation of receptor triggering by kinetic segregation shows role of oligomers and close-contacts. Biophys J 2022; 121:1660-1674. [PMID: 35367423 PMCID: PMC9117938 DOI: 10.1016/j.bpj.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of T cells, key players of the immune system, involves local evacuation of phosphatase CD45 from a region of the T cell's surface, segregating it from the T cell receptor. What drives this evacuation? In the presence of antigen, what ensures evacuation happens in the subsecond timescales necessary to initiate signaling? In the absence of antigen, what mechanisms ensure that evacuation does not happen spontaneously, which could cause signaling errors? Phenomena known to influence spatial organization of CD45 or similar surface molecules include diffusive motion in the lipid bilayer, oligomerization reactions, and mechanical compression against a nearby surface, such as that of the cell presenting the antigen. Computer simulations can investigate hypothesized spatiotemporal mechanisms of T cell signaling. The challenge to computational studies of evacuation is that the base process, spontaneous evacuation by simple diffusion, is in the extreme rare event limit, meaning direct stochastic simulation is unfeasible. Here, we combine particle-based spatial stochastic simulation with the weighted ensemble method for rare events to compute the mean first passage time for cell surface availability by surface reorganization of CD45. We confirm mathematical estimates that, at physiological concentrations, spontaneous evacuation is extremely rare, roughly 300 years. We find that dimerization decreases the time required for evacuation. A weak bimolecular interaction (dissociation constant estimate 460 μM) is sufficient for an order of magnitude reduction of spontaneous evacuation times, and oligomerization to hexamers reduces times to below 1 s. This introduces a mechanism whereby externally induced CD45 oligomerization could significantly modify T cell function. For large regions of close contact, such as those induced by large microvilli, molecular size and compressibility imply a nonzero reentry probability of 60%, decreasing evacuation times. Simulations show that these reduced evacuation times are still unrealistically long (even with a fourfold variation centered around previous estimates of parameters), suggesting that a yet-to-be-described mechanism, besides compressional exclusion at a close contact, drives evacuation.
Collapse
|
8
|
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 2022; 5:40. [PMID: 35017678 PMCID: PMC8752658 DOI: 10.1038/s42003-021-02995-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ashwin K Jainarayanan
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Quantitative Analysis of Single Quantum Dot Trajectories. Methods Mol Biol 2020. [PMID: 32246331 DOI: 10.1007/978-1-0716-0463-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Single quantum dot tracking (SQDT) is a powerful technique for interrogating biomolecular dynamics in living cells and tissue. SQDT has particularly excelled in driving discovery at the single-molecule level in the fields of neuronal communication, plasma membrane organization, viral infection, and immune system response. Here, we briefly characterize various elements of the SQDT analytical framework and provide the reader with a detailed set of executable commands to implement commonly used algorithms for SQDT data processing.
Collapse
|
10
|
Falcao RC, Coombs D. Diffusion analysis of single particle trajectories in a Bayesian nonparametrics framework. Phys Biol 2020; 17:025001. [DOI: 10.1088/1478-3975/ab64b3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed J 2019; 42:218-232. [PMID: 31627864 PMCID: PMC6818156 DOI: 10.1016/j.bj.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
CD22 is an inhibitory B cell co-receptor that recognizes sialic acid-containing glycoconjugates as ligands. Interactions with its glycan ligands are key to regulating the ability of CD22 to modulate B cell function, the most widely explored of which is antagonizing B cell receptor (BCR) signaling. Most importantly, interactions of CD22 with ligands on the same cell (cis) control the organization of CD22 on the cell surface, which minimizes co-localization with the BCR. In contrast with the modest ability of CD22 to intrinsically dampen BCR signaling, glycan ligands presented on another cell (trans) along with an antigen drawn CD22 and the BCR together within an immunological synapse, strongly inhibiting BCR signaling. New concepts are emerging for how CD22 controls B cell function, such as changes in glycosylation at different stages of B cell differentiation, specifically on GC B cells. Related to these changes, new players, such galectin-9, have been discovered that regulate cell surface nanoclusters of CD22. Roles of glycan ligands in controlling CD22 are the primary focus of this review as we highlight the ability of CD22 to modulate B cell function.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Chemistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
12
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
13
|
Meissner JM, Sikorski AF, Nawara T, Grzesiak J, Marycz K, Bogusławska DM, Michalczyk I, Lecomte MC, Machnicka B. αII-spectrin in T cells is involved in the regulation of cell-cell contact leading to immunological synapse formation? PLoS One 2017; 12:e0189545. [PMID: 29244882 PMCID: PMC5731749 DOI: 10.1371/journal.pone.0189545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
T-lymphocyte activation after antigen presentation to the T-Cell Receptor (TCR) is a critical step in the development of proper immune responses to infection and inflammation. This dynamic process involves reorganization of the actin cytoskeleton and signaling molecules at the cell membrane, leading to the formation of the Immunological Synapse (IS). The mechanisms regulating the formation of the IS are not completely understood. Nonerythroid spectrin is a membrane skeletal protein involved in the regulation of many cellular processes, including cell adhesion, signaling and actin cytoskeleton remodeling. However, the role of spectrin in IS formation has not been explored. We used molecular, imaging and cellular approaches to show that nonerythroid αII-spectrin redistributes to the IS during T-cell activation. The redistribution of spectrin coincides with the relocation of CD45 and LFA-1, two components essential for IS formation and stability. We assessed the role of spectrin by shRNA-mediated depletion from Jurkat T cells and show that spectrin-depleted cells exhibit decreased adhesion and are defective in forming lamellipodia and filopodia. Importantly, IS formation is impaired in spectrin-depleted cells. Thus, spectrin may be engaged in regulation of distinct events necessary for the establishment and maturity of the IS: besides the involvement of spectrin in the control of CD45 and LFA-1 surface display, spectrin acts in the establishment of cell-cell contact and adhesion processes during the formation of the IS.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
- Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wrocław, Wrocław, Poland
| | - Aleksander F. Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Tomasz Nawara
- Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wrocław, Wrocław, Poland
| | - Jakub Grzesiak
- Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wrocław, Wrocław, Poland
| | - Krzysztof Marycz
- Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wrocław, Wrocław, Poland
| | | | - Izabela Michalczyk
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wrocław, Poland
| | - Marie-Christine Lecomte
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles, Paris, France
| | - Beata Machnicka
- Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
- * E-mail:
| |
Collapse
|
14
|
Abstract
Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey.
Collapse
Affiliation(s)
- Philip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON M5C 1N8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
15
|
Phagocytosis: A Fundamental Process in Immunity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9042851. [PMID: 28691037 PMCID: PMC5485277 DOI: 10.1155/2017/9042851] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this he gave us the basis for our modern understanding of inflammation and the innate and acquired immune responses. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In recent years, the use of new tools of molecular biology and microscopy has provided new insights into the cellular mechanisms of phagocytosis. In this review, we present a general view of our current knowledge on phagocytosis. We emphasize novel molecular findings, particularly on phagosome formation and maturation, and discuss aspects that remain incompletely understood.
Collapse
|
16
|
Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S. Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell 2016; 164:128-140. [PMID: 26771488 DOI: 10.1016/j.cell.2015.11.048] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/12/2023]
Abstract
Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wendy Furuya
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Elliot C Woods
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599-7260, USA
| | - Boris Hinz
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | - Raibatak Das
- Department of Integrative Biology, University of Colorado, Denver, CO 80217-3364, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON M5S 1T8, Canada.
| |
Collapse
|
17
|
Bernstein J, Fricks J. Analysis of single particle diffusion with transient binding using particle filtering. J Theor Biol 2016; 401:109-21. [PMID: 27107737 DOI: 10.1016/j.jtbi.2016.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/27/2015] [Accepted: 04/11/2016] [Indexed: 12/27/2022]
Abstract
Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm.
Collapse
Affiliation(s)
- Jason Bernstein
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, United States
| | - John Fricks
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
18
|
Newby J, Allard J. First-Passage Time to Clear the Way for Receptor-Ligand Binding in a Crowded Environment. PHYSICAL REVIEW LETTERS 2016; 116:128101. [PMID: 27058103 DOI: 10.1103/physrevlett.116.128101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Certain biological reactions, such as receptor-ligand binding at cell-cell interfaces and macromolecules binding to biopolymers, require many smaller molecules crowding a reaction site to be cleared. Examples include the T-cell interface, a key player in immunological information processing. Diffusion sets a limit for such cavitation to occur spontaneously, thereby defining a time scale below which active mechanisms must take over. We consider N independent diffusing particles in a closed domain, containing a subregion with N_{0} particles, on average. We investigate the time until the subregion is empty, allowing a subsequent reaction to proceed. The first-passage time is computed using an efficient exact simulation algorithm and an asymptotic approximation in the limit that cavitation is rare. In this limit, we find that the mean first-passage time is subexponential, T∝e^{N_{0}}/N_{0}^{2}. For the case of T-cell receptors, we find that stochastic cavitation is exceedingly slow, 10^{9} s at physiological densities; however, it can be accelerated to occur within 5 s with only a fourfold dilution.
Collapse
Affiliation(s)
- Jay Newby
- Department of Mathematics, University of North Carolina, Chapel Hill, 329 Phillips Hall, Chapel Hill, North Carolina 27599, USA
| | - Jun Allard
- Department of Mathematics, University of California, Irvine, 340 Rowland Hall, Irvine, California 92697, USA
| |
Collapse
|
19
|
Pisarev AS, Rukolaine SA, Samsonov AM, Samsonova MG. Numerical analysis of particle trajectories in living cells under uncertainty conditions. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Inferring transient particle transport dynamics in live cells. Nat Methods 2015; 12:838-40. [PMID: 26192083 DOI: 10.1038/nmeth.3483] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/14/2015] [Indexed: 12/29/2022]
Abstract
Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.
Collapse
|
21
|
Freeman SA, Jaumouillé V, Choi K, Hsu BE, Wong HS, Abraham L, Graves ML, Coombs D, Roskelley CD, Das R, Grinstein S, Gold MR. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat Commun 2015; 6:6168. [PMID: 25644899 PMCID: PMC4327415 DOI: 10.1038/ncomms7168] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 12/22/2014] [Indexed: 01/26/2023] Open
Abstract
Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. Microbial pathogens can activate both innate and adaptive receptors, and integration of these signals may enhance the sensitivity of the immune response. Freeman et al. show that innate microbial cues sensitize B cells to antigen by increasing actin dynamics and reducing the actin-dependent confinement of the B-cell receptor.
Collapse
Affiliation(s)
- Spencer A Freeman
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Cellular &Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [3] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [4] Program in Cell Biology, The Hospital for Sick Kids Research Institute, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Valentin Jaumouillé
- Program in Cell Biology, The Hospital for Sick Kids Research Institute, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Kate Choi
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Brian E Hsu
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Harikesh S Wong
- Program in Cell Biology, The Hospital for Sick Kids Research Institute, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Libin Abraham
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Mathematics and Institute of Applied Mathematics, 1984 Mathematics Road, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Marcia L Graves
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Cellular &Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [3] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, 1984 Mathematics Road, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Calvin D Roskelley
- 1] Department of Cellular &Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe, Denver, Colorado 80204, USA
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Kids Research Institute, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Michael R Gold
- 1] Department of Microbiology &Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3 [2] Life Sciences Institute I3 and Cell Research Groups, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
22
|
Baumgart F, Schütz GJ. Detecting protein association at the T cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:791-801. [PMID: 25300585 DOI: 10.1016/j.bbamcr.2014.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Florian Baumgart
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| |
Collapse
|
23
|
Forster F, Paster W, Supper V, Schatzlmaier P, Sunzenauer S, Ostler N, Saliba A, Eckerstorfer P, Britzen-Laurent N, Schütz G, Schmid JA, Zlabinger GJ, Naschberger E, Stürzl M, Stockinger H. Guanylate binding protein 1-mediated interaction of T cell antigen receptor signaling with the cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2013; 192:771-81. [PMID: 24337748 DOI: 10.4049/jimmunol.1300377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GTPases act as important switches in many signaling events in cells. Although small and heterotrimeric G proteins are subjects of intensive studies, little is known about the large IFN-inducible GTPases. In this article, we show that the IFN-γ-inducible guanylate binding protein 1 (GBP-1) is a regulator of T cell activation. Silencing of GBP-1 leads to enhanced activation of early T cell Ag receptor/CD3 signaling molecules, including Lck, that is translated to higher IL-2 production. Mass spectrometry analyses showed that regulatory cytoskeletal proteins, like plastin-2 that bundles actin fibers and spectrin β-chain, brain 1 that links the plasma membrane to the actin cytoskeleton, are binding partners of GBP-1. The spectrin cytoskeleton influences cell spreading and surface expression of TCR/CD3 and the leukocyte phosphatase CD45. We found higher cell spreading and enhanced surface expression of TCR/CD3 and CD45 in GBP-1 silenced T cells that explain their enhanced TCR/CD3 signaling. We conclude that GBP-1 is a downstream processor of IFN-γ via which T cells regulate cytoskeleton-dependent cell functions.
Collapse
Affiliation(s)
- Florian Forster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang R, Zhang C, Zhao Q, Li D. Spectrin: structure, function and disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1076-85. [PMID: 24302288 DOI: 10.1007/s11427-013-4575-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Spectrin is a large, cytoskeletal, and heterodimeric protein composed of modular structure of α and β subunits, it typically contains 106 contiguous amino acid sequence motifs called "spectrin repeats". Spectrin is crucial for maintaining the stability and structure of the cell membrane and the shape of a cell. Moreover, it contributes to diverse cell functions such as cell adhesion, cell spreading, and the cell cycle. Mutations of spectrin lead to various human diseases such as hereditary hemolytic anemia, type 5 spinocerebellar ataxia, cancer, as well as others. This review focuses on recent advances in determining the structure and function of spectrin as well as its role in disease.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
25
|
Farlow J, Seo D, Broaders KE, Taylor MJ, Gartner ZJ, Jun YW. Formation of targeted monovalent quantum dots by steric exclusion. Nat Methods 2013; 10:1203-5. [PMID: 24122039 PMCID: PMC3968776 DOI: 10.1038/nmeth.2682] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/30/2013] [Indexed: 11/09/2022]
Abstract
Precise control over interfacial chemistry between nanoparticles and other materials remains a major challenge that limits broad application of nanotechnology in biology. To address this challenge, we used 'steric exclusion' to completely convert commercial quantum dots (QDs) into monovalent imaging probes by wrapping each QD with a functionalized oligonucleotide. We demonstrated the utility of these QDs as modular and nonperturbing imaging probes by tracking individual Notch receptors on live cells.
Collapse
Affiliation(s)
- Justin Farlow
- 1] Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA. [2] Tetrad Graduate Program, University of California San Francisco, San Francisco, California, USA. [3] Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
27
|
Rizzo D, Lotay A, Gachard N, Marfak I, Faucher JL, Trimoreau F, Guérin E, Bordessoule D, Jaccard A, Feuillard J. Very low levels of surface CD45 reflect CLL cell fragility, are inversely correlated with trisomy 12 and are associated with increased treatment-free survival. Am J Hematol 2013; 88:747-53. [PMID: 23733486 DOI: 10.1002/ajh.23494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
It has recently been suggested that the percentage of smudge cells on blood smears from patients with chronic lymphocytic leukemia (CLL) could predict overall survival. However, smudge cells are a cytological artifact influenced by multiple physical factors not related to CLL. To identify simple parameters reflecting CLL cell fragility, we studied CD45 expression in a series of 66 patients with Binet stage A CLL. Decreased CD45 expression was specific for CLL cells when compared to 44 patients with a leukemic phase of B-cell non Hodgkin lymphoma and 42 control B-cells. CD45 expression was markedly decreased for all patients with CLL with high percentages of smudge cells. CLL cells with the lowest CD45 expression were the most sensitive to osmotic shock. Very low levels of CD45 expression were significantly associated with lack of CD38 expression, absence of trisomy 12, and with increased treatment free survival time. Altogether, these results demonstrate that low levels of CD45 expression are specific to CLL cells and reflect cell fragility, suggesting that this is an important intrinsic biological feature that determines disease course.
Collapse
Affiliation(s)
| | - Angad Lotay
- UMR CNRS 7276, Faculty of Medicine; Limoges; France
| | | | | | - Jean-Luc Faucher
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | - Franck Trimoreau
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | - Estelle Guérin
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | | | | | | |
Collapse
|
28
|
Byrum JN, Van Komen JS, Rodgers W. CD28 sensitizes TCR Ca²⁺ signaling during Ag-independent polarization of plasma membrane rafts. THE JOURNAL OF IMMUNOLOGY 2013; 191:3073-81. [PMID: 23966623 DOI: 10.4049/jimmunol.1300485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cells become polarized during initial interactions with an APC to form an Ag-independent synapse (AIS) composed of membrane rafts, TCR, and TCR-proximal signaling molecules. AISs occur temporally before TCR triggering, but their role in downstream TCR signaling is not understood. Using both human and murine model systems, we studied the signals that activate AIS formation and the effect of these signals on TCR-dependent responses. We show that CD28 produces AISs detectable by spinning disc confocal microscopy seconds following initial interactions between the T cell and APC. AIS formation by CD28 coincided with costimulatory signaling, evidenced by a cholesterol-sensitive activation of the MAPK ERK that potentiated Ca²⁺ signaling in response to CD3 cross-linking. CD45 also enriched in AISs but to modulate Src kinase activity, because localization of CD45 at the cell interface reduced the activation of proximal Lck. In summary, we show that signaling by CD28 during first encounters between the T cell and APC both sensitizes TCR Ca²⁺ signaling by an Erk-dependent mechanism and drives formation of an AIS that modulates the early signaling until TCR triggering occurs. Thus, early Ag-independent encounters are an important window for optimizing T cell responses to Ag by CD28.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
29
|
Monnier N, Guo SM, Mori M, He J, Lénárt P, Bathe M. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys J 2013; 103:616-626. [PMID: 22947879 DOI: 10.1016/j.bpj.2012.06.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/22/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies.
Collapse
Affiliation(s)
- Nilah Monnier
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts
| | - Syuan-Ming Guo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jun He
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
30
|
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. CURRENT TOPICS IN MEMBRANES 2013; 72:89-120. [PMID: 24210428 PMCID: PMC4193470 DOI: 10.1016/b978-0-12-417027-8.00003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion. Several methods can be used to distinguish among the various modes of protein mobility, including fluorescence recovery after photobleaching, single-particle tracking, fluorescence correlation spectroscopy, and variations of these techniques. Here, we present both a brief overview of these methods and examples of their use to elucidate the dynamics of membrane proteins in mammalian cells-first in erythrocytes, then in erythroblasts and other cells in the hematopoietic lineage, and finally in non-hematopoietic cells. This multisystem analysis shows that the cytoskeleton frequently governs modes of membrane protein motion by stably anchoring the proteins through direct-binding interactions, by restricting protein diffusion through steric interactions, or by facilitating directed protein motion. Together, these studies have begun to delineate mechanisms by which membrane protein dynamics influence signaling sequelae and membrane mechanical properties, which, in turn, govern cell function.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Jaqaman K, Grinstein S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 2012; 22:515-26. [PMID: 22917551 DOI: 10.1016/j.tcb.2012.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation, and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the nonuniform distribution of immunoreceptors and their self-association may affect activation and signaling.
Collapse
Affiliation(s)
- Khuloud Jaqaman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
32
|
Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis. FEBS Lett 2012; 586:3229-35. [DOI: 10.1016/j.febslet.2012.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022]
|
33
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
34
|
Allard J, Dushek O, Coombs D, Anton van der Merwe P. Mechanical modulation of receptor-ligand interactions at cell-cell interfaces. Biophys J 2012; 102:1265-73. [PMID: 22455909 PMCID: PMC3309404 DOI: 10.1016/j.bpj.2012.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 01/13/2023] Open
Abstract
Cell surface receptors have been extensively studied because they initiate and regulate signal transduction cascades leading to a variety of functional cellular outcomes. An important class of immune receptors (e.g., T-cell antigen receptors) whose ligands are anchored to the surfaces of other cells remain poorly understood. The mechanism by which ligand binding initiates receptor phosphorylation, a process termed "receptor triggering", remains controversial. Recently, direct measurements of the (two-dimensional) receptor-ligand complex lifetimes at cell-cell interface were found to be smaller than (three-dimensional) lifetimes in solution but the underlying mechanism is unknown. At the cell-cell interface, the receptor-ligand complex spans a short intermembrane distance (15 nm) compared to long surface molecules (LSMs) whose ectodomains span >40 nm and these LSMs include phosphatases (e.g., CD45) that dephosphorylate the receptor. It has been proposed that size-based segregation of LSMs from a receptor-ligand complex is a mechanism of receptor triggering but it is unclear whether the mechanochemistry supports such small-scale segregation. Here we present a nanometer-scale mathematical model that couples membrane elasticity with the compressional stiffness and lateral mobility of LSMs. We find robust supradiffusive segregation of LSMs from a single receptor-ligand complex. The model predicts that LSM redistribution will result in a time-dependent tension on the complex leading to a decreased two-dimensional lifetime. Interestingly, the model predicts a nonlinear relationship between the three- and two-dimensional lifetimes, which can enhance the ability of receptors to discriminate between similar ligands.
Collapse
Affiliation(s)
- Jun F. Allard
- Department of Mathematics, University of California, Davis, California
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Centre for Mathematical Biology, University of Oxford, Oxford, United Kingdom
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
35
|
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 2011; 286:31993-2001. [PMID: 21757710 PMCID: PMC3173209 DOI: 10.1074/jbc.m111.219212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rajani V, Carrero G, Golan DE, de Vries G, Cairo CW. Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones. Biophys J 2011; 100:1463-72. [PMID: 21402028 DOI: 10.1016/j.bpj.2011.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 02/09/2023] Open
Abstract
The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a first-passage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion.
Collapse
Affiliation(s)
- Vishaal Rajani
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
37
|
Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol 2011; 29:527-85. [PMID: 21219182 DOI: 10.1146/annurev-immunol-030409-101317] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and to conduct simulations of immune function. We provide descriptions of the key data-gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and the reasons why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease.
Collapse
Affiliation(s)
- Ronald N Germain
- Program in Systems Immunology and Infectious Disease Modeling, National Institute of Allergy and Infectious Disease, Laboratory of Immunology, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
38
|
Ehrig J, Petrov EP, Schwille P. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys J 2011; 100:80-9. [PMID: 21190659 DOI: 10.1016/j.bpj.2010.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 12/29/2022] Open
Abstract
We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.
Collapse
Affiliation(s)
- Jens Ehrig
- Biophysics, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|