1
|
Roy SK, Biswas MS, Foyzur Raman M, Hasan R, Rahmann Z, Uddin PK MM. A computational approach to developing a multi-epitope vaccine for combating Pseudomonas aeruginosa-induced pneumonia and sepsis. Brief Bioinform 2024; 25:bbae401. [PMID: 39133098 PMCID: PMC11318047 DOI: 10.1093/bib/bbae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.
Collapse
Affiliation(s)
- Suronjit Kumar Roy
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Mohammad Shahangir Biswas
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
- Department of Public Health, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md Foyzur Raman
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Rubait Hasan
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Zahidur Rahmann
- Institute of Biological Science, Rajshahi University, Motihar, Rajshahi 6205, Bangladesh
| | - Md Moyen Uddin PK
- Riceland Healthcare, 538 Broadway Ave, Winnie, TX 77665, United States
| |
Collapse
|
2
|
Cianciulli Sesso A, Resch A, Moll I, Bläsi U, Sonnleitner E. The FinO/ProQ-like protein PA2582 impacts antimicrobial resistance in Pseudomonas aeruginosa. Front Microbiol 2024; 15:1422742. [PMID: 39011145 PMCID: PMC11247311 DOI: 10.3389/fmicb.2024.1422742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacteria employ small regulatory RNAs (sRNA) and/or RNA binding proteins (RBPs) to respond to environmental cues. In Enterobacteriaceae, the FinO-domain containing RBP ProQ associates with numerous sRNAs and mRNAs, impacts sRNA-mediated riboregulation or mRNA stability by binding to 5'- or 3'-untranslated regions as well as to internal stem loop structures. Global RNA-protein interaction studies and sequence comparisons identified a ProQ-like homolog (PA2582/ProQ Pae ) in Pseudomonas aeruginosa (Pae). To address the function of ProQ Pae , at first a comparative transcriptome analysis of the Pae strains PAO1 and PAO1ΔproQ was performed. This study revealed more than 100 differentially abundant transcripts, affecting a variety of cellular functions. Among these transcripts were pprA and pprB, encoding the PprA/PprB two component system, psrA, encoding a transcriptional activator of pprB, and oprI, encoding the outer membrane protein OprI. RNA co-purification experiments with Strep-tagged Pae ProQ protein corroborated an association of ProQ Pae with these transcripts. In accordance with the up-regulation of the psrA, pprA, and pprB genes in strain PAO1ΔproQ a phenotypic analysis revealed an increased susceptibility toward the aminoglycosides tobramycin and gentamicin in biofilms. Conversely, the observed down-regulation of the oprI gene in PAO1ΔproQ could be reconciled with a decreased susceptibility toward the synthetic cationic antimicrobial peptide GW-Q6. Taken together, these studies revealed that ProQ Pae is an RBP that impacts antimicrobial resistance in Pae.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, Pan D, Tu M. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:80-93. [PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
Collapse
Affiliation(s)
- Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Singh A, Amod A, Mulpuru V, Mishra N, Sahoo AK, Samanta SK. Finding Novel AMPs Secreted from the Human Microbiome as Potent Antibacterial and Antibiofilm Agents and Studying Their Synergistic Activity with Ag NCs. ACS APPLIED BIO MATERIALS 2023; 6:3674-3682. [PMID: 37603700 DOI: 10.1021/acsabm.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane. We attempted to find potent intracellular cationic AMPs that can demonstrate antibacterial activity through interaction with DNA. As a source of AMPs, we have utilized those that are secreted from the human microbiome with the anticipation that these will be non-toxic in nature. Out of the total 1087 AMPs, 27 were screened on the basis of amino acid length and efficacy to cross the cell membrane barrier. From the list of 27 peptides, 4 candidates were selected through the docking score of these peptides with the DNA binding domain of H2A proteins. Further, the molecular dynamics simulation analysis demonstrated that 2 AMPs, i.e., peptides 7 and 25, are having considerable membrane permeation and DNA binding ability. Further, the in vitro analysis indicated that both peptides 7 and 25 could exhibit potent antibacterial and antibiofilm activities. In order to further enhance the antibiofilm potency, the above AMPs were used as supplements to silver nanoclusters (Ag NCs) to get synergistic activity. The synergistic activity of Ag NCs was found to be significantly increased with both the above AMPs.
Collapse
Affiliation(s)
- Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Viswajit Mulpuru
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| |
Collapse
|
5
|
Li R, Hou M, Yu L, Luo W, Kong J, Yu R, Liu R, Li Q, Tan L, Pan C, Wang H. Anti-biofilm effect of salivary histatin 5 on Porphyromonas gingivalis. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12664-4. [PMID: 37395749 DOI: 10.1007/s00253-023-12664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the effects of salivary histatin 5 (Hst5) on Porphyromonas gingivalis (P. gingivalis) biofilms in vitro and in vivo and the possible mechanisms. In in vitro experiments, P. gingivalis biomass was determined by crystal violet staining. Polymerase chain reaction, scanning electron microscopy, and confocal laser scanning microscopy were used to determine the Hst5 concentration. A search for potential targets was performed using transcriptomic and proteomic analyses. In vivo experimental periodontitis was established in rats to evaluate the effects of Hst5 on periodontal tissues. Experimental results showed that 25 µg/mL Hst5 effectively inhibited biofilm formation, and increased concentrations of Hst5 increased the inhibitive effect. Hst5 might bind to the outer membrane protein RagAB. A combination of transcriptomic and proteomic analyses revealed that Hst5 could regulate membrane function and metabolic processes in P. gingivalis, in which RpoD and FeoB proteins were involved. In the rat periodontitis model, alveolar bone resorption and inflammation levels in periodontal tissues were reduced by 100 µg/mL Hst5. This study showed that 25 µg/mL Hst5 inhibited P. gingivalis biofilm formation in vitro by changing membrane function and metabolic process, and RpoD and FeoB proteins might play important roles in this process. Moreover, 100 µg/mL Hst5 inhibited periodontal inflammation and alveolar bone loss in rat periodontitis via its antibacterial and anti-inflammatory effects. KEY POINTS: • Anti-biofilm activity of histatin 5 on Porphyromonas gingivalis was investigated. • Histatin 5 inhibited Porphyromonas gingivalis biofilm formation. • Histatin 5 showed inhibitory effects on the occurrence of rat periodontitis.
Collapse
Affiliation(s)
- Rui Li
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Mengjie Hou
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Liying Yu
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Wen Luo
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Jie Kong
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Renmei Yu
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Ruihan Liu
- Clinical Medicine, Shenyang Medical College, Huanghe North Street 146, Shenyang, 110034, Liaoning Province, China
| | - Qian Li
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Lisi Tan
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Chunling Pan
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Hongyan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
6
|
Abstract
The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1–8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Han
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Undergraduate Program in Public Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Corresponding author
| |
Collapse
|
7
|
Garrido C, Wollman FA, Lafontaine I. The evolutionary history of peptidases involved in the processing of Organelle-Targeting Peptides. Genome Biol Evol 2022; 14:6618273. [PMID: 35758251 PMCID: PMC9291397 DOI: 10.1093/gbe/evac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Most of the proteins present in mitochondria and chloroplasts, the organelles acquired via endosymbiotic events, are encoded in the nucleus and translated into the cytosol. Most of such nuclear-encoded proteins are specifically recognized via an N-terminal-encoded targeting peptide (TP) and imported into the organelles via a translocon machinery. Once imported, the TP is degraded by a succession of cleavage steps ensured by dedicated peptidases. Here, we retrace the evolution of the families of the mitochondrial processing peptidase (MPP), stromal processing peptidase (SPP), presequence protease (PreP), and organellar oligo-peptidase (OOP) that play a central role in TP processing and degradation across the tree of life. Their bacterial distributions are widespread but patchy, revealing unsurprisingly complex history of lateral transfers among bacteria. We provide evidence for the eukaryotic acquisition of MPP, OOP, and PreP by lateral gene transfers from bacteria at the time of the mitochondrial endosymbiosis. We show that the acquisition of SPP and of a second copy of OOP and PreP at the time of the chloroplast endosymbiosis was followed by a differential loss of one PreP paralog in photosynthetic eukaryotes. We identified some contrasting sequence conservations between bacterial and eukaryotic homologs that could reflect differences in the functional context of their peptidase activity. The close vicinity of the eukaryotic peptidases MPP and OOP to those of several bacterial pathogens, showing antimicrobial resistance, supports a scenario where such bacteria were instrumental in the establishment of the proteolytic pathway for TP degradation in organelles. The evidence for their role in the acquisition of PreP is weaker, and none is observed for SPP, although it cannot be excluded by the present study.
Collapse
Affiliation(s)
- Clotilde Garrido
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis André Wollman
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
8
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
9
|
Tang WH, Wang SH, Wang CF, Mou Y, Lin MG, Hsiao CD, Liao YD. The lipid components of high-density lipoproteins (HDL) are essential for the binding and transportation of antimicrobial peptides in human serum. Sci Rep 2022; 12:2576. [PMID: 35173253 PMCID: PMC8850444 DOI: 10.1038/s41598-022-06640-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been developed for the treatment of bacterial infections, but their applications are limited to topical infections since they are sequestered and inhibited in serum. Here we have discovered that the inhibition of AMPs by human serum was mediated through high-density lipoproteins (HDL) which are known to remove cholesterol from peripheral tissues. The susceptibility of AMPs to HDL varied depending on the degree of hydrophobicity of AMPs and their binding affinities to HDL. The phospholipids, such as phosphatidylcholine, of HDL were essential for AMP-binding. The dynamic binding interactions between AMPs and HDL were mediated through the hydrophobic interactions rather than by ionic strength. Interestingly, some AMPs, such as SMAP29, dissociated from the AMP-HDL complex and translocated to bacteria upon contact, while some AMPs, such as LL37, remained in complex with HDL. These results suggest that HDL binds AMPs and facilitates the translocation of them to the bacteria.
Collapse
Affiliation(s)
- Wen-Hung Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shi-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chiu-Feng Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
10
|
Qi S, Gao B, Zhu S. A Fungal Defensin Inhibiting Bacterial Cell-Wall Biosynthesis with Non-Hemolysis and Serum Stability. J Fungi (Basel) 2022; 8:jof8020174. [PMID: 35205928 PMCID: PMC8877149 DOI: 10.3390/jof8020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Defensins are a class of cationic disulfide-bridged antimicrobial peptides (AMPs) present in many eukaryotic organisms and even in bacteria. They primarily include two distinct but evolutionarily related superfamilies (cis and trans). Defensins in fungi belong to the members of the cis-superfamily with the cysteine-stabilized α-helical and β-sheet fold. To date, many fungal defensin-like peptides (fDLPs) have been found through gene mining of the genome resource, but only a few have been experimentally characterized. Here, we report the structural and functional characterization of Pyronesin4 (abbreviated as Py4), a fDLP previously identified by genomic sequencing of the basal filamentous ascomycete Pyronema confluens. Chemically, synthetic Py4 adopts a native-like structure and exhibits activity on an array of Gram-positive bacteria including some clinical isolates of Staphylococcus and Staphylococcus warneri, a conditioned pathogen inhabiting in human skin. Py4 markedly altered the bacterial morphology and caused cytoplasmic accumulation of the cell-wall synthesis precursor through binding to the membrane-bound Lipid II, indicating that it works as an inhibitor of cell-wall biosynthesis. Py4 showed no hemolysis and high mammalian serum stability. This work identified a new fungal defensin with properties relevant to drug exploration. Intramolecular epistasis between mutational sites of fDLPs is also discussed.
Collapse
Affiliation(s)
- Sudong Qi
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
- Correspondence: ; Tel.: +86-010-6480-7112
| |
Collapse
|
11
|
Sato Y, Wang Y, Song Y, Geng W, Yan S, Nakamura K, Kikukawa T, Demura M, Ayabe T, Aizawa T. Potent bactericidal activity of reduced cryptdin-4 derived from its hydrophobicity and mediated by bacterial membrane disruption. Amino Acids 2022; 54:289-297. [PMID: 35037097 DOI: 10.1007/s00726-021-03115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Defensin is a cysteine-rich antimicrobial peptide with three disulphide bonds under normal oxidative conditions. Cryptdin-4 (Crp4) is a defensin secreted by Paneth cells in the small intestine of mice, and only reduced Crp4 (Crp4red) shows activity against enteric commensal bacteria, although both oxidised Crp4 (Crp4ox) and Crp4red can kill non-commensal bacteria. To investigate the molecular factors that affect the potent antimicrobial activity of Crp4red, the bactericidal activities of Crp4ox and Crp4red, Crp4 with all Cys residues substituted with Ser peptide (6C/S-Crp4), and Crp4 with all thiol groups modified by N-ethylmaleimide (NEM-Crp4) were assessed. All peptides showed bactericidal activity against non-commensal bacteria, whereas Crp4red and NEM-Crp4 showed bactericidal activity against commensal bacteria. These potent peptides exhibited high hydrophobicity, which was strongly correlated with membrane insertion. Intriguingly, Crp4ox formed electrostatic interactions with the membrane surface of bacteria, even without exerting bactericidal activity. Moreover, the bactericidal activity of both oxidised and reduced forms of Crp4 was abolished by inhibition of electrostatic interactions; this finding suggests that Crp4red targets bacterial membranes. Finally, a liposome leakage assay against lipids extracted from commensal bacteria demonstrated a correlation with bactericidal activity. These results suggest that the potent bactericidal activity of Crp4red is derived from its hydrophobicity, and the bactericidal mechanism involves disruption of the bacterial membrane. Findings from this study provide a better understanding of the bactericidal mechanism of both Crp4ox and Crp4red.
Collapse
Affiliation(s)
- Yuji Sato
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yi Wang
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuchi Song
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Weiming Geng
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shaonan Yan
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Demura
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoyasu Aizawa
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
12
|
Cabak A, Hovold G, Petersson AC, Ramstedt M, Påhlman LI. Activity of airway antimicrobial peptides against cystic fibrosis pathogens. Pathog Dis 2021; 78:5898671. [PMID: 32857857 DOI: 10.1093/femspd/ftaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides are important players of the innate host defence against invading microorganisms. The aim of this study was to evaluate the activity of airway antimicrobial peptides against the common cystic fibrosis (CF) pathogen Pseudomonas aeruginosa, and to compare it to the emerging multi-drug resistant CF pathogens Achromobacter xylosoxidans and Stenotrophomonas maltophilia. Clinical bacterial isolates from CF patients were used, and the antimicrobial activity of human beta-defensin 2 and 3, LL37 and lysozyme was evaluated using radial diffusion assay and viable counts. The cell surface zeta potential was analysed to estimate the net charge at the bacterial surface. Of the bacterial species included in the study, A. xylosoxidans was the most resistant to antimicrobial peptides, whereas P. aeruginosa was the most susceptible. The net charge of the bacterial surface was significantly more negative for P. aeruginosa compared to A. xylosoxidans, which may in part explain the differences in susceptibility.
Collapse
Affiliation(s)
- Andrea Cabak
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, BMC B14, Sölvegatan 19, S-221 84 Lund, Sweden
| | - Gisela Hovold
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, BMC B14, Sölvegatan 19, S-221 84 Lund, Sweden
| | - Ann-Cathrine Petersson
- Department of Clinical Microbiology, Laboratory medicine, Region Skåne, Sölvegatan 23B, S-221 85 Lund, Sweden
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå Centre of Microbial Research, Umeå University, S-901 87, Umeå, Sweden
| | - Lisa I Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, BMC B14, Sölvegatan 19, S-221 84 Lund, Sweden.,Division of Infectious Diseases, Skåne University Hospital Lund, Hälsogatan 3, S-221 85 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Klinikgatan 32, S-221 84, Lund, Sweden
| |
Collapse
|
13
|
Dang X, Wang G. Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019. Curr Top Med Chem 2021; 20:2984-2998. [PMID: 33092508 DOI: 10.2174/1568026620666201022143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Antibiotic resistance is a global issue and new anti-microbials are required. INTRODUCTION Anti-microbial peptides are important players of host innate immune systems that prevent infections. Due to their ability to eliminate drug-resistant pathogens, AMPs are promising candidates for developing the next generation of anti-microbials. METHODS The anti-microbial peptide database provides a useful tool for searching, predicting, and designing new AMPs. In the period from 2015-2019, ~500 new natural peptides have been registered. RESULTS This article highlights a selected set of new AMP members with interesting properties. Teixobactin is a cell wall inhibiting peptide antibiotic, while darobactin inhibits a chaperone and translocator for outer membrane proteins. Remarkably, cOB1, a sex pheromone from commensal enterococci, restricts the growth of multidrug-resistant Enterococcus faecalis in the gut at a picomolar concentration. A novel proline-rich AMP has been found in the plant Brassica napus. A shrimp peptide MjPen- II comprises three different sequence domains: serine-rich, proline-rich, and cysteine-rich regions. Surprisingly, an amphibian peptide urumin specifically inhibits H1 hemagglutinin-bearing influenza A virus. Defensins are abundant and typically consist of three pairs of intramolecular disulfide bonds. However, rat rattusin dimerizes via forming five pairs of intermolecular disulfide bonds. While human LL-37 can be induced by vitamin D, vitamin A induces the expression of resistin-like molecule alpha (RELMα) in mice. The isolation and characterization of an alternative human cathelicidin peptide, TLN-58, substantiates the concept of one gene multiple peptides. The involvement of a fly AMP nemuri in sleep induction may promote the research on the relationship between sleep and infection control. CONCLUSION The functional roles of AMPs continue to grow and the general term "innate immune peptides" becomes useful. These discoveries widen our view on the anti-microbial peptides and may open new opportunities for developing novel peptide therapeutics for different applications.
Collapse
Affiliation(s)
- Xiangli Dang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
14
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
15
|
Molecular Detection of Drug-Resistance Genes of blaOXA-23-blaOXA-51 and mcr-1 in Clinical Isolates of Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9040786. [PMID: 33918745 PMCID: PMC8069495 DOI: 10.3390/microorganisms9040786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa has caused high rates of mortality due to the appearance of strains with multidrug resistance (MDR) profiles. This study aimed to characterize the molecular profile of virulence and resistance genes in 99 isolates of P. aeruginosa recovered from different clinical specimens. The isolates were identified by the automated method Vitek2, and the antibiotic susceptibility profile was determined using different classes of antimicrobials. The genomic DNA was extracted and amplified by multiplex polymerase chain reaction (mPCR) to detect different virulence and antimicrobial resistance genes. Molecular typing was performed using the enterobacterial repetitive intergenic consensus (ERIC-PCR) technique to determine the clonal relationship among P. aeruginosa isolates. The drug susceptibility profiles of P. aeruginosa for all strains showed high levels of drug resistance, particularly, 27 (27.3%) isolates that exhibited extensively drug-resistant (XDR) profiles, and the other isolates showed MDR profiles. We detected the polymyxin E (mcr-1) gene in one strain that showed resistance against colistin. The genes that confer resistance to oxacillin (blaOXA-23 and blaOXA-51) were present in three isolates. One of these isolates carried both genes. As far as we know from the literature, this is the first report of the presence of blaOXA-23 and blaOXA-51 genes in P. aeruginosa.
Collapse
|
16
|
Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021; 124:219-232. [PMID: 33556605 DOI: 10.1016/j.actbio.2021.02.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 01/28/2023]
Abstract
Wound management poses a considerable economic burden on the global healthcare system, considering the impacts of wound infection, delayed healing and scar formation. To this end, multifunctional dressings based on hydrogels have been developed to stimulate skin healing. Herein, we describe the design, fabrication, and characterization of a sprayable hydrogel-based wound dressing loaded with cerium oxide nanoparticles (CeONs) and an antimicrobial peptide (AMP), for combined reactive oxygen species (ROS)-scavenging and antibacterial properties. We adopted a mussel-inspired strategy to chemically conjugate gelatin with dopamine motifs and prepared a hydrogel dressing with improved binding affinity to wet skin surfaces. Additionally, the release of AMP from the hydrogel demonstrated rapid release ablation and contact ablation against four representative bacterial strains, confirming the desired antimicrobial activities. Moreover, the CeONs-loaded hydrogel dressing exhibited favorable ROS-scavenging abilities. The biocompatibility of the multifunctional hydrogel dressing was further proven in vitro by culturing with HaCaT cells. Overall, the benefits of the developed hydrogel wound dressing, including sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, highlight its promissing translational potentials in wound management. STATEMENT OF SIGNIFICANCE: Various hydrogel-based wound-dressing materials have been developed to stimulate wound healing. However, from the clinical perspective, few of the current wound dressings meet all the intended multifunctional requirements of preventing infection, promoting rapid wound closure, and minimizing scar formation, while simultaneously offering the convenience of application. In the current study, we adopted a mussel-inspired strategy to functionalize the GelMA hydrogels with DOPA to fabricate GelMA-DOPA hydrogel which exhibited an enhanced binding affinity for wound surfaces, AMP HHC-36 and CeONs are further encapsulated into the GelMA-DOPA hydrogel to confer the hydrogel wound dressing with antimicrobial and ROS-scavenging abilities. The GelMA-DOPA-AMP-CeONs dressing offered the benefits of sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, which might address the therapeutic and economic burdens associated with chronic wound treatment and management.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhe Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Xusheng Huang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichuan Xu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 43000, China
| | - Zhongqi Yao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Tang WH, Wang CF, Liao YD. Fetal bovine serum albumin inhibits antimicrobial peptide activity and binds drug only in complex with α1-antitrypsin. Sci Rep 2021; 11:1267. [PMID: 33446738 PMCID: PMC7809101 DOI: 10.1038/s41598-020-80540-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Several antimicrobial peptides (AMPs) have been developed for the treatment of infections caused by antibiotic-resistant microbes, but their applications are primarily limited to topical infections because in circulation they are bound and inhibited by serum proteins. Here we have found that some AMPs, such as TP4 from fish tilapia, and drugs, such as antipyretic ibuprofen, were bound by bovine serum albumin only in complex with α1-antitrypsin which is linked by disulfide bond. They existed in dimeric complex (2 albumin -2 α1-antitrypsin) in the bovine serum only at fetal stage, but not after birth. The hydrophobic residues of TP4 were responsible for its binding to the complex. Since bovine serum is a major supplement in most cell culture media, therefore the existence and depletion of active albumin/α1-antitrypsin complex are very important for the assay and production of biomolecules.
Collapse
Affiliation(s)
- Wen-Hung Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chiu-Feng Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
18
|
Wang SH, Tang TWH, Wu E, Wang DW, Wang CF, Liao YD. Inhibition of bacterial adherence to biomaterials by coating antimicrobial peptides with anionic surfactant. Colloids Surf B Biointerfaces 2020; 196:111364. [PMID: 33002763 DOI: 10.1016/j.colsurfb.2020.111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/13/2020] [Accepted: 09/05/2020] [Indexed: 01/19/2023]
Abstract
Medical devices are widely used in modern medicine, but their utilities are often limited by the biofilm formation of bacteria that are tolerant to most antibiotics. In this report, antimicrobial peptides (AMPs) were coated onto biomaterials by the aid of surfactant through hydrophobic interactions. To increase the coating efficiency, stability of AMPs in body fluids and spectrum of antimicrobial activity, pairs of AMPs were coated simultaneously onto various substrates, such as silicone, polyurethane and titanium, which are commonly used components of biomedical devices. These coated AMPs exhibited very low cytotoxicity and hemolytic activities because they were gradually released into urine or serum. The AMP pairs, such as T9W + SAAP159 and T9W + RRIKA, coated onto the silicone discs were able to inhibit in vitro bacterial adherence in urine. Most importantly, AMP pairs coated onto the silicone tubing by surfactant SDBS could prevent bacterial adherence to mouse bladder and the silicone tubing implanted within it. These results provide a promising approach towards circumventing urinary catheter-associated infections caused by bacterial adherence.
Collapse
Affiliation(s)
- Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | - Eden Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Dan-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chiu-Feng Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
19
|
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 2020; 41:94-120. [PMID: 33070659 DOI: 10.1080/07388551.2020.1828810] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rosa Chabok
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microsystems Technologies Laboratories, MIT, Cambridge, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, México
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - K Scott Phillips
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Wang SH, Tang TWH, Wu E, Wang DW, Liao YD. Anionic Surfactant-Facilitated Coating of Antimicrobial Peptide and Antibiotic Reduces Biomaterial-Associated Infection. ACS Biomater Sci Eng 2020; 6:4561-4572. [DOI: 10.1021/acsbiomaterials.0c00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | - Eden Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Dan-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
21
|
Rathnayake K, Patel U, Pham C, McAlpin A, Budisalich T, Jayawardena SN. Targeted Delivery of Antibiotic Therapy to Inhibit Pseudomonas aeruginosa Using Lipid-Coated Mesoporous Silica Core–Shell Nanoassembly. ACS APPLIED BIO MATERIALS 2020; 3:6708-6721. [DOI: 10.1021/acsabm.0c00622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Chi Pham
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Anna McAlpin
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Travis Budisalich
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Surangi N. Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
22
|
Kosgey JC, Jia L, Nyamao RM, Zhao Y, Xue T, Yang J, Fang Y, Zhang F. RNase 1, 2, 5 & 8 role in innate immunity: Strain specific antimicrobial activity. Int J Biol Macromol 2020; 160:1042-1049. [PMID: 32504708 DOI: 10.1016/j.ijbiomac.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
The increase in microbial resistance to conventional antimicrobial agents is driving research for the discovery of new antibiotics and antifungal agents. The greatest challenge in this endeavor is to find antimicrobial agents with broad antimicrobial activity and low toxicity. Antimicrobial peptides, for example, RNases, are one of the promising areas. The production of RNases increases during infection, but their role is still being explored. Whereas the enzymatic activity of RNases is well documented, their physiological function is still being investigated. This study aimed to evaluate the antimicrobial activity of RNase 1, 2, 5, and 8 against E. coli strains, S. aureus, Streptococcus thermophilus, P. aeruginosa, Candida albicans, and Candida glabrata. The results demonstrated that RNases have a strain-specific antimicrobial activity. RNase 1 had the highest antimicrobial activity compared to other RNases. All the microorganisms screened had varying levels of susceptibility to RNases, except P. aeruginosa and E. coli DR115. RNase 1 showed dose-dependent activity against C. albicans. The RNase killed Candida albicans by lowering the mitochondrial membrane potential but did not damage the cell membrane. We concluded that strain-specific antimicrobial activity is one of the physiological roles of RNases.
Collapse
Affiliation(s)
- Janet Cheruiyot Kosgey
- School of Biological and Life Sciences, The Technical University of Kenya, 52428-00200, Kenya; Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Lina Jia
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Rose Magoma Nyamao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; School of Medicine, Kenyatta University, 43844, 00100, Kenya
| | - Yi Zhao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Teng Xue
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Jianxun Yang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
23
|
Rademacher F, Dreyer S, Kopfnagel V, Gläser R, Werfel T, Harder J. The Antimicrobial and Immunomodulatory Function of RNase 7 in Skin. Front Immunol 2019; 10:2553. [PMID: 31749808 PMCID: PMC6848066 DOI: 10.3389/fimmu.2019.02553] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The human ribonuclease RNase 7 has been originally isolated from human skin and is a member of the human RNase A superfamily. RNase 7 is constantly released by keratinocytes and accumulates on the skin surface. The expression of RNase 7 in keratinocytes can be induced by diverse stimuli such as cytokines, growth factors, and microbial factors. RNase 7 exhibits a potent broad spectrum of antimicrobial activity against various microorganisms and contributes to control bacterial growth on the skin surface. The ribonuclease and antimicrobial activity of RNase 7 can be blocked by the endogenous ribonuclease inhibitor. There is also increasing evidence that RNase 7 exerts immunomodulatory activities and may participate in antiviral defense. In this review, we discuss how these characteristics of RNase 7 contribute to innate cutaneous defense and highlight its role in skin infection and inflammation. We also speculate how a potential dysregulation of RNase 7 promotes inflammatory skin diseases and if RNase 7 may have therapeutic potential.
Collapse
Affiliation(s)
| | - Sylvia Dreyer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Verena Kopfnagel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Regine Gläser
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Jürgen Harder
- Department of Dermatology, University of Kiel, Kiel, Germany
| |
Collapse
|
24
|
Moreno S, Castellanos M, Bedoya-Pérez LP, Canales-Herrerías P, Espín G, Muriel-Millán LF. Outer membrane protein I is associated with poly-β-hydroxybutyrate granules and is necessary for optimal polymer accumulation in Azotobacter vinelandii on solid medium. Microbiology (Reading) 2019; 165:1107-1116. [DOI: 10.1099/mic.0.000837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Mildred Castellanos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Leidy Patricia Bedoya-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pablo Canales-Herrerías
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
- Present address: Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| |
Collapse
|
25
|
Torrens G, Escobar-Salom M, Pol-Pol E, Camps-Munar C, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Front Microbiol 2019; 10:1868. [PMID: 31507543 PMCID: PMC6719521 DOI: 10.3389/fmicb.2019.01868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the first causes of acute nosocomial and chronic infections in patients with underlying respiratory pathologies such as cystic fibrosis (CF). It has been proposed that P. aeruginosa accumulates mutations driving to peptidoglycan modifications throughout the development of the CF-associated infection, as a strategy to lower the immune detection hence ameliorating the chronic persistence. As well, some studies dealing with peptidoglycan modifications driving to a better survival within the host have been published in other gram-negatives. According to these facts, the gram-negative peptidoglycan could be considered as a pathogen-associated molecular pattern with very important implications regarding the host’s detection-response, worthy to dissect in detail. For this reason, in this work we characterized for the first time the peptidoglycans of three large collections [early CF, late CF and acute infection (bloodstream) P. aeruginosa strains] from qualitative (HPLC), quantitative and inflammatory capacity-related perspectives. The final goal was to identify composition trends potentially supporting the cited strategy of evasion/resistance to the immune system and providing information regarding the differential intrinsic adaptation depending on the type of infection. Although we found several punctual strain-specific particularities, our results indicated a high degree of inter-collection uniformity in the peptidoglycan-related features and the absence of trends amongst the strains studied here. These results suggest that the peptidoglycan of P. aeruginosa is a notably conserved structure in natural isolates regardless of transitory changes that some external conditions could force. Finally, the inverse correlation between the relative amount of stem pentapeptides within the murein sacculus and the resistance to immune lytic attacks against the peptidoglycan was also suggested by our results. Altogether, this work is a major step ahead to understand the biology of peptidoglycan from P. aeruginosa natural strains, hopefully useful in future for therapeutic alternatives design.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - María Escobar-Salom
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Elisabet Pol-Pol
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Cristina Camps-Munar
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
26
|
Pagnout C, Sohm B, Razafitianamaharavo A, Caillet C, Offroy M, Leduc M, Gendre H, Jomini S, Beaussart A, Bauda P, Duval JFL. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci Rep 2019; 9:9696. [PMID: 31273247 PMCID: PMC6609704 DOI: 10.1038/s41598-019-46100-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2019] [Indexed: 01/18/2023] Open
Abstract
Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.
Collapse
Affiliation(s)
- Christophe Pagnout
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France.
| | - Bénédicte Sohm
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | | | - Céline Caillet
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marc Offroy
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marjorie Leduc
- Plateforme protéomique 3P5, Inserm U1016-Institut Cochin, Université Paris Descartes, MICUSPC, Paris, France
| | - Héloïse Gendre
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | | | - Audrey Beaussart
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Pascale Bauda
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | - Jérôme F L Duval
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| |
Collapse
|
27
|
Oligomerization and insertion of antimicrobial peptide TP4 on bacterial membrane and membrane-mimicking surfactant sarkosyl. PLoS One 2019; 14:e0216946. [PMID: 31083701 PMCID: PMC6513090 DOI: 10.1371/journal.pone.0216946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/01/2019] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading microorganisms. Although AMPs are known to act on bacterial membranes and increase membrane permeability, the action mechanism of most AMPs still remains unclear. In this report, we found that the TP4 peptides from Nile tilapia anchored on E. coli cells and enabled them permeable to SYTOX Green in few minutes after TP4 addition. TP4 peptides existed in small dots either on live or glutaraldehyde-fixed cells. TP4 peptides were driven into oligomers either in soluble or insoluble form by a membrane-mimicking anionic surfactant, sarkosyl, depending on the concentrations employed. The binding forces among TP4 components were mediated through hydrophobic interaction. The soluble oligomers were negatively charged on surface, while the insoluble oligomers could be fused with each other or piled on existing particles to form larger particles with diameters 0.1 to 20 μm by hydrophobic interactions. Interestingly, the morphology and solubility of TP4 particles changed with the concentration of exogenous sarkosyl or trifluoroethanol. The TP4 peptides were assembled into oligomers on or in bacterial membrane. This study provides direct evidence and a model for the oligomerization and insertion of AMPs into bacterial membrane before entering into cytosol.
Collapse
|
28
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
29
|
The Immunomodulatory and Antimicrobial Properties of the Vertebrate Ribonuclease A Superfamily. Vaccines (Basel) 2018; 6:vaccines6040076. [PMID: 30463297 PMCID: PMC6313885 DOI: 10.3390/vaccines6040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023] Open
Abstract
The Ribonuclease A Superfamily is composed of cationic peptides that are secreted by immune cells and epithelial tissues. Although their physiological roles are unclear, several members of the vertebrate Ribonuclease A Superfamily demonstrate antimicrobial and immune modulation activities. The objective of this review is to provide an overview of the published literature on the Ribonuclease A Superfamily with an emphasis on each peptide’s regulation, antimicrobial properties, and immunomodulatory functions. As additional insights emerge regarding the mechanisms in which these ribonucleases eradicate invading pathogens and modulate immune function, these ribonucleases may have the potential to be developed as a novel class of therapeutics for some human diseases.
Collapse
|
30
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
31
|
Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore) 2018; 97:e12832. [PMID: 30334982 PMCID: PMC6211872 DOI: 10.1097/md.0000000000012832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) exhibit multiple activities against bacteria and fungi. A bovine myeloid antimicrobial peptide (BMAP-28) belongs to the cathelicidin-derived AMPs and has antimicrobial activity. Due to the rapidly increasing number of infections and outbreaks caused by pan-drug-resistant Acinetobacter baumannii (PDRAB), we sought to determine whether BMAP-28 and its 4 analog peptides (A837, A838, A839, and A840) have antimicrobial activity against PDRAB. Furthermore, we clarified the possible mechanism of inhibition by which of BMAP-28 acts against PDRAB. In the current study, we examined the inhibitory effect of BMAP-28 and its 4 analog peptides on the growth of PDRAB through minimal inhibitory concentration (MIC) analysis and short time killing assays. We also evaluated the effects of BMAP-28 and its analogs on the bacterial cell surface through the use of field emission scanning electron microscopy (FE-SEM). In order to determine the inhibitory mechanism of BMAP-28, we examined the interaction between BMAP-28 and outer membrane proteins (OMPs), especially the interaction between BMAP-28 and A. baumannii OmpA (AbOmpA), which is the main component of OMPs, by using a quartz crystal microbalance (QCM). BMAP-28 and its 4 analogs were effective in inhibiting the growth of PDRAB and had rapid killing ability. BMAP-28 showed exceptionally strong and rapid inhibitory effects on PDRAB when compared to the other peptides and was also shown to cause damage to the cell surface of PDRAB. Moreover, QCM analysis provided evidence of potential interaction between BMAP-28 and AbOmpA. These data indicate that BMAP-28 is a promising candidate for the treatment of PDRAB infections and that its inhibitory effects were related with its binding to AbOmpA.
Collapse
Affiliation(s)
- Yijie Guo
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China
- Department of Pathogenic Biology and Immunology
| | - Meng Xun
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China
- Department of Pathogenic Biology and Immunology
| | - Jing Han
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China
- School of Public Health, Xi’an Jiaotong University, Health Science Center, Xi’an, China
| |
Collapse
|
32
|
Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018; 7:antibiotics7020029. [PMID: 29565804 PMCID: PMC6023083 DOI: 10.3390/antibiotics7020029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Lytic enzymes encoded by bacteriophages have been intensively explored as alternative agents for combating bacterial pathogens in different contexts. The antibacterial character of these enzymes (enzybiotics) results from their degrading activity towards peptidoglycan, an essential component of the bacterial cell wall. In fact, phage lytic products have the capacity to kill target bacteria when added exogenously in the form of recombinant proteins. However, there is also growing recognition that the natural bactericidal activity of these agents can, and sometimes needs to be, substantially improved through manipulation of their functional domains or by equipping them with new functions. In addition, often, native lytic proteins exhibit features that restrict their applicability as effective antibacterials, such as poor solubility or reduced stability. Here, I present an overview of the engineering approaches that can be followed not only to overcome these and other restrictions, but also to generate completely new antibacterial agents with significantly enhanced characteristics. As conventional antibiotics are running short, the remarkable progress in this field opens up the possibility of tailoring efficient enzybiotics to tackle the most menacing bacterial infections.
Collapse
|
33
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Chang TW, Wei SY, Wang SH, Wei HM, Wang YJ, Wang CF, Chen C, Liao YD. Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4. PLoS One 2017; 12:e0186442. [PMID: 29040295 PMCID: PMC5645128 DOI: 10.1371/journal.pone.0186442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the innate immune system in mice. In this report, TP4 hyperpolarized and depolarized the membrane potential of Pseudomonas aeruginosa at sub-lethal and lethal concentrations. It also inhibited and eradicated biofilm formation. The in vitro binding of TP4 to bacterial outer membrane target protein, OprI, was markedly enhanced by a membrane-like surfactant sarkosyl and lipopolysaccharide, which converted TP4 into an α-helix. The solution structure of TP4 in dodecylphosphocholine was solved by NMR analyses. It contained a typical α-helix at residues Phe10-Arg22 and a distorted helical segment at Ile6-Phe10, as well as a hydrophobic core at the N-terminus and a cationic patch at the C-terminus. Residues Ile16, Leu19 and Ile20 in the hydrophobic face of the main helix were critical for the integrity of amphipathic structure, other hydrophobic residues played important roles in hemolytic and bactericidal activities. A model for the assembly of helical TP4 embedded in sarkosyl vesicle is proposed. This study may provide valuable insight for engineering AMPs to have potent bactericidal activity but low hemolytic activity.
Collapse
Affiliation(s)
- Ting-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Yi Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Mu Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-June Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Feng Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Chanda W, Joseph TP, Padhiar AA, Guo X, Min L, Wang W, Lolokote S, Ning A, Cao J, Huang M, Zhong M. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp Ther Med 2017; 14:4328-4338. [PMID: 29104645 PMCID: PMC5658730 DOI: 10.3892/etm.2017.5110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects.
Collapse
Affiliation(s)
- Warren Chanda
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Arshad Ahmed Padhiar
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Xuefang Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Liu Min
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Wendong Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Sainyugu Lolokote
- Department of Epidemiology and Biostatistics, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Anhong Ning
- Laboratory of Pathogen Biology, Experimental Teaching Center for Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Jing Cao
- Laboratory of Pathogen Biology, Experimental Teaching Center for Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| |
Collapse
|
36
|
Rademacher F, Simanski M, Schröder L, Mildner M, Harder J. The role of RNase 7 in innate cutaneous defense againstPseudomonas aeruginosa. Exp Dermatol 2017; 26:227-233. [DOI: 10.1111/exd.13166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Maren Simanski
- Department of Dermatology; University of Kiel; Kiel Germany
| | - Lena Schröder
- Department of Dermatology; University of Kiel; Kiel Germany
| | - Michael Mildner
- Department of Dermatology; Medical University of Vienna; Vienna Austria
| | - Jürgen Harder
- Department of Dermatology; University of Kiel; Kiel Germany
| |
Collapse
|
37
|
Molecular Mechanism of Drug Resistance. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017. [PMCID: PMC7122190 DOI: 10.1007/978-3-319-48683-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The treatment of microbial infections has suffered greatly in this present century of pathogen dominance. Inspite of extensive research efforts and scientific advancements, the worldwide emergence of microbial tolerance continues to plague survivability. The innate property of microbe to resist any antibiotic due to evolution is the virtue of intrinsic resistance. However, the classical genetic mutations and extrachromosomal segments causing gene exchange attribute to acquired tolerance development. Rampant use of antimicrobials causes certain selection pressure which increases the resistance frequency. Genomic duplication, enzymatic site modification, target alteration, modulation in membrane permeability, and the efflux pump mechanism are the major contributors of multidrug resistance (MDR), specifically antibiotic tolerance development. MDRs will lead to clinical failures for treatment and pose health crisis. The molecular mechanisms of antimicrobial resistance are diverse as well as complex and still are exploited for new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial chemotherapy has diminished the threat of infectious diseases to some extent. To avoid the indiscriminate use of antibiotics, the new ones licensed for use have decreased with time. Additionally, in vitro assays and genomics for anti-infectives are novel approaches used in resolving the issues of microbial resistance. Proper use of drugs can keep it under check and minimize the risk of MDR spread.
Collapse
|
38
|
Mularski A, Separovic F. Atomic Force Microscopy Studies of the Interaction of Antimicrobial Peptides with Bacterial Cells. Aust J Chem 2017. [DOI: 10.1071/ch16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic alternatives to conventional antibiotics. Many AMPs are membrane-active but their mode of action in killing bacteria or in inhibiting their growth remains elusive. Recent studies indicate the mechanism of action depends on peptide structure and lipid components of the bacterial cell membrane. Owing to the complexity of working with living cells, most of these studies have been conducted with synthetic membrane systems, which neglect the possible role of bacterial surface structures in these interactions. In recent years, atomic force microscopy has been utilized to study a diverse range of biological systems under non-destructive, physiologically relevant conditions that yield in situ biophysical measurements of living cells. This approach has been applied to the study of AMP interaction with bacterial cells, generating data that describe how the peptides modulate various biophysical behaviours of individual bacteria, including the turgor pressure, cell wall elasticity, bacterial capsule thickness, and organization of bacterial adhesins.
Collapse
|
39
|
Lee JTY, Wang G, Tam YT, Tam C. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure. Front Microbiol 2016; 7:1799. [PMID: 27891122 PMCID: PMC5105358 DOI: 10.3389/fmicb.2016.01799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.
Collapse
Affiliation(s)
- Judy T Y Lee
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Yu Tong Tam
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison Madison, WI, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
40
|
Tseng TS, Wang SH, Chang TW, Wei HM, Wang YJ, Tsai KC, Liao YD, Chen C. Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa. PLoS One 2016; 11:e0164597. [PMID: 27727309 PMCID: PMC5058510 DOI: 10.1371/journal.pone.0164597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
The emergence of antibiotic-resistant microbial strains has become a public health issue and there is an urgent need to develop new anti-infective molecules. Although natural antimicrobial peptides (AMPs) can exert bactericidal activities, they have not shown clinical efficacy. The limitations of native peptides may be overcome with rational design and synthesis. Here, we provide evidence that the bactericidal activity of a synthetic peptide, GW-Q6, against Pseudomonas aeruginosa is mediated through outer membrane protein OprI. Hyperpolarization/depolarization of membrane potential and increase of membrane permeability were observed after GW-Q6 treatment. Helical structure as well as hydrophobicity was induced by an amphipathic surfactant, sarkosyl, for binding to OprI and possible to membrane. NMR studies demonstrated GW-Q6 is an amphipathic α-helical structure in DPC micelles. The paramagnetic relaxation enhancement (PRE) approach revealed that GW-Q6 orients its α-helix segment (K7-K17) into DPC micelles. Additionally, this α-helix segment is critical for membrane permeabilization and antimicrobial activity. Moreover, residues K3, K7, and K14 could be critical for helical formation and membrane binding while residues Y19 and W20 for directing the C-terminus of the peptide to the surface of micelle. Taken together, our study provides mechanistic insights into the mode of action of the GW-Q6 peptide and suggests its applicability in modifying and developing potent AMPs as therapeutic agents.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Mu Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-June Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail: (YDL); (CC)
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail: (YDL); (CC)
| |
Collapse
|
41
|
Koczera P, Martin L, Marx G, Schuerholz T. The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int J Mol Sci 2016; 17:ijms17081278. [PMID: 27527162 PMCID: PMC5000675 DOI: 10.3390/ijms17081278] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins’ physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.
Collapse
Affiliation(s)
- Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
- Department for Experimental Molecular Imaging, University Hospital RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| |
Collapse
|
42
|
Eichler TE, Becknell B, Easterling RS, Ingraham SE, Cohen DM, Schwaderer AL, Hains DS, Li B, Cohen A, Metheny J, Tridandapani S, Spencer JD. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract. Kidney Int 2016; 90:568-79. [PMID: 27401534 DOI: 10.1016/j.kint.2016.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations.
Collapse
Affiliation(s)
- Tad E Eichler
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Brian Becknell
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Robert S Easterling
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Susan E Ingraham
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Daniel M Cohen
- Division of Emergency Medicine, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Andrew L Schwaderer
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - David S Hains
- Innate Immunity Translational Research Center, Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Birong Li
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Ariel Cohen
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Jackie Metheny
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA
| | - John David Spencer
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA.
| |
Collapse
|
43
|
Salazar VA, Arranz-Trullén J, Navarro S, Blanco JA, Sánchez D, Moussaoui M, Boix E. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. Microbiologyopen 2016; 5:830-845. [PMID: 27277554 PMCID: PMC5061719 DOI: 10.1002/mbo3.373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Human antimicrobial RNases, which belong to the vertebrate RNase A superfamily and are secreted upon infection, display a wide spectrum of antipathogen activities. In this work, we examined the antifungal activity of the eosinophil RNase 3 and the skin-derived RNase 7, two proteins expressed by innate cell types that are directly involved in the host defense against fungal infection. Candida albicans has been selected as a suitable working model for testing RNase activities toward a eukaryotic pathogen. We explored the distinct levels of action of both RNases on yeast by combining cell viability and membrane model assays together with protein labeling and confocal microscopy. Site-directed mutagenesis was applied to ablate either the protein active site or the key anchoring region for cell binding. This is the first integrated study that highlights the RNases' dual mechanism of action. Along with an overall membrane-destabilization process, the RNases could internalize and target cellular RNA. The data support the contribution of the enzymatic activity for the antipathogen action of both antimicrobial proteins, which can be envisaged as suitable templates for the development of novel antifungal drugs. We suggest that both human RNases work as multitasking antimicrobial proteins that provide a first line immune barrier.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Susanna Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Jose A Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Daniel Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain.
| |
Collapse
|
44
|
Rademacher F, Simanski M, Harder J. RNase 7 in Cutaneous Defense. Int J Mol Sci 2016; 17:560. [PMID: 27089327 PMCID: PMC4849016 DOI: 10.3390/ijms17040560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
RNase 7 belongs to the RNase A superfamily and exhibits a broad spectrum of antimicrobial activity against various microorganisms. RNase 7 is expressed in human skin, and expression in keratinocytes can be induced by cytokines and microbes. These properties suggest that RNase 7 participates in innate cutaneous defense. In this review, we provide an overview about the role of RNase 7 in cutaneous defense with focus on the molecular mechanism of the antimicrobial activity of RNase 7, the regulation of RNase 7 expression, and the role of RNase 7 in skin diseases.
Collapse
Affiliation(s)
| | - Maren Simanski
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany.
| | - Jürgen Harder
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
45
|
Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides. Antimicrob Agents Chemother 2016; 60:2222-31. [PMID: 26810659 PMCID: PMC4808223 DOI: 10.1128/aac.02699-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are an essential part of the innate immune system. Some Gram-negative enteric pathogens, such as Salmonella enterica, show intrinsic resistance to CAMPs. However, the molecular basis of intrinsic resistance is poorly understood, largely due to a lack of information about the genes involved. In this study, using a microarray-based genomic technique, we screened the Keio collection of 3,985 Escherichia coli mutants for altered susceptibility to human neutrophil peptide 1 (HNP-1) and identified envC and zapB as novel genetic determinants of intrinsic CAMP resistance. In CAMP killing assays, an E. coli ΔenvCEc or ΔzapBEc mutant displayed a distinct profile of increased susceptibility to both LL-37 and HNP-1. Both mutants, however, displayed wild-type resistance to polymyxin B and human β-defensin 3 (HBD3), suggesting that the intrinsic resistance mediated by EnvC or ZapB is specific to certain CAMPs. A corresponding Salmonella ΔenvCSe mutant showed similarly increased CAMP susceptibility. The envC mutants of both E. coli and S. enterica displayed increased surface negativity and hydrophobicity, which partly explained the increased CAMP susceptibility. However, the ΔenvCEc mutant, but not the ΔenvCSe mutant, was defective in outer membrane permeability, excluding this defect as a common factor contributing to the increased CAMP susceptibility. Animal experiments showed that the Salmonella ΔenvCSe mutant had attenuated virulence. Taken together, our results indicate that the role of envC in intrinsic CAMP resistance is likely conserved among Gram-negative enteric bacteria, demonstrate the importance of intrinsic CAMP resistance for full virulence of S. enterica, and provide insight into distinct mechanisms of action of CAMPs.
Collapse
|
46
|
Becknell B, Spencer JD. A Review of Ribonuclease 7's Structure, Regulation, and Contributions to Host Defense. Int J Mol Sci 2016; 17:423. [PMID: 27011175 PMCID: PMC4813274 DOI: 10.3390/ijms17030423] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/24/2023] Open
Abstract
The Ribonuclease A Superfamily is composed of a group of structurally similar peptides that are secreted by immune cells and epithelial tissues. Several members of the Ribonuclease A Superfamily demonstrate antimicrobial activity, and it has been suggested that some of these ribonucleases play an essential role in host defense. Ribonuclease 7 (RNase 7) is an epithelial-derived secreted peptide with potent broad-spectrum antimicrobial activity. This review summarizes the published literature on RNase 7’s antimicrobial properties, structure, regulation, and contributions to host defense. In doing so, we conclude by highlighting key knowledge gaps that must be investigated to completely understand the potential of developing RNase 7 as a novel therapeutic for human infectious diseases.
Collapse
Affiliation(s)
- Brian Becknell
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's, Columbus, OH 43205, USA.
- Division of Pediatric Nephrology, Nationwide Children's, Columbus, OH 43205, USA.
| | - John David Spencer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's, Columbus, OH 43205, USA.
- Division of Pediatric Nephrology, Nationwide Children's, Columbus, OH 43205, USA.
| |
Collapse
|
47
|
Martin L, Koczera P, Simons N, Zechendorf E, Hoeger J, Marx G, Schuerholz T. The Human Host Defense Ribonucleases 1, 3 and 7 Are Elevated in Patients with Sepsis after Major Surgery--A Pilot Study. Int J Mol Sci 2016; 17:294. [PMID: 26927088 PMCID: PMC4813158 DOI: 10.3390/ijms17030294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Sepsis is the most common cause of death in intensive care units and associated with widespread activation of host innate immunity responses. Ribonucleases (RNases) are important components of the innate immune system, however the role of RNases in sepsis has not been investigated. We evaluated serum levels of RNase 1, 3 and 7 in 20 surgical sepsis patients (Sepsis), nine surgical patients (Surgery) and 10 healthy controls (Healthy). RNase 1 and 3 were elevated in Sepsis compared to Surgery (2.2- and 3.1-fold, respectively; both p < 0.0001) or compared to Healthy (3.0- and 15.5-fold, respectively; both p < 0.0001). RNase 1 showed a high predictive value for the development of more than two organ failures (AUC 0.82, p = 0.01). Patients with renal dysfunction revealed higher RNase 1 levels than without renal dysfunction (p = 0.03). RNase 1 and 3 were higher in respiratory failure than without respiratory failure (p < 0.0001 and p = 0.02, respectively). RNase 7 was not detected in Healthy patients and only in two patients of Surgery, however RNase 7 was detected in 10 of 20 Sepsis patients. RNase 7 was higher in renal or metabolic failure than without failure (p = 0.04 and p = 0.02, respectively). In conclusion, RNase 1, 3 and 7 are secreted into serum under conditions with tissue injury, such as major surgery or sepsis. Thus, RNases might serve as laboratory parameters to diagnose and monitor organ failure in sepsis.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Nadine Simons
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Janine Hoeger
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| |
Collapse
|
48
|
Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS One 2016; 11:e0147811. [PMID: 26821182 PMCID: PMC4731081 DOI: 10.1371/journal.pone.0147811] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600 = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Michael T. Wolfinger
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Nicole Roschanski
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7–13, 14163 Berlin, Germany
| | - Andreas Dötsch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Molecular Bacteriology, Twincore, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Lin MF, Tsai PW, Chen JY, Lin YY, Lan CY. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii. PLoS One 2015; 10:e0141107. [PMID: 26484669 PMCID: PMC4618850 DOI: 10.1371/journal.pone.0141107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding.
Collapse
Affiliation(s)
- Ming-Feng Lin
- Department of Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu County, Taiwan
| | - Pei-Wen Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Jeng-Yi Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Yun-You Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan
- Department of Life Science, National Tsing Hua University, Hsin-Chu City, Taiwan
- * E-mail:
| |
Collapse
|
50
|
Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides. Antimicrob Agents Chemother 2015; 59:6210-22. [PMID: 26248382 DOI: 10.1128/aac.01406-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/17/2015] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading pathogens. Our previous studies have shown that the outer membrane protein, OprI from Pseudomonas aeruginosa or its homologue, plays a vital role in the susceptibility of Gram-negative bacteria to cationic α-helical AMPs (Y. M. Lin, S. J. Wu, T. W. Chang, C. F. Wang, C. S. Suen, M. J. Hwang, M. D. Chang, Y. T. Chen, Y. D. Liao, J Biol Chem 285:8985-8994, 2010, http://dx.doi.org/10.1074/jbc.M109.078725; T. W. Chang, Y. M. Lin, C. F. Wang, Y. D. Liao, J Biol Chem 287:418-428, 2012, http://dx.doi.org/10.1074/jbc.M111.290361). Here, we obtained two forms of recombinant OprI: rOprI-F, a hexamer composed of three disulfide-bridged dimers, was active in AMP binding, while rOprI-R, a trimer, was not. All the subunits predominantly consisted of α-helices and exhibited rigid structures with a melting point centered around 76°C. Interestingly, OprI tagged with Escherichia coli signal peptide was expressed in a hexamer, which was anchored on the surface of E. coli, possibly through lipid acids added at the N terminus of OprI and involved in the binding and susceptibility to AMP as native P. aeruginosa OprI. Deletion and mutation studies showed that Cys1 and Asp27 played a key role in hexamer formation and AMP binding, respectively. The increase of OprI hydrophobicity upon AMP binding revealed that it undergoes conformational changes for membrane fusion. Our results showed that OprI on bacterial surfaces is responsible for the recruitment and susceptibility to amphipathic α-helical AMPs and may be used to screen antimicrobials.
Collapse
|