1
|
Denha SA, DeLaet NR, Abukamil AW, Alexopoulos AN, Keller AR, Atang AE, Avery AW. Molecular consequences of SCA5 mutations in the spectrin-repeat domains of β-III-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613313. [PMID: 39345584 PMCID: PMC11429872 DOI: 10.1101/2024.09.17.613313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Spinocerebellar ataxia type 5 (SCA5) mutations in the protein β-III-spectrin cluster to the N-terminal actin-binding domain (ABD) and the central spectrin-repeat domains (SRDs). We previously reported that a common molecular consequence of ABD-localized SCA5 mutations is increased actin binding. However, little is known about the molecular consequences of the SRD-localized mutations. It is known that the SRDs of β-spectrin proteins interact with α-spectrin to form an α/β-spectrin dimer. In addition, it is known that SRDs neighbouring the β-spectrin ABD enhance actin binding. Here, we tested the impact of the SRD-localized R480W and the E532_M544del mutations on the binding of β-III-spectrin to α-II-spectrin and actin. Using multiple experimental approaches, we show that both the R480W and E532_M544del mutants can bind α-II-spectrin. However, E532_M544del causes partial uncoupling of complementary SRDs in the α/β-spectrin dimer. Further, the R480W mutant forms large intracellular inclusions when co-expressed with α-II-spectrin in cells, supporting that R480W mutation grossly disrupts the α-II/β-III-spectrin physical complex. Moreover, actin-binding assays show that E532_M544del, but not R480W, increases β-III-spectrin actin binding. Altogether, these data support that SRD-localized mutations alter key interactions of β-III-spectrin with α-II-spectrin and actin.
Collapse
Affiliation(s)
- Sarah A. Denha
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Naomi R. DeLaet
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Abeer W. Abukamil
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | | | - Amanda R. Keller
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Alexandra E. Atang
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Adam W. Avery
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| |
Collapse
|
2
|
Kumar G, Fang S, Golosova D, Lu KT, Brozoski DT, Vazirabad I, Sigmund CD. Structure and Function of RhoBTB1 Required for Substrate Specificity and Cullin-3 Ubiquitination. FUNCTION 2023; 4:zqad034. [PMID: 37575477 PMCID: PMC10413933 DOI: 10.1093/function/zqad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
We identified Rho-related BTB domain containing 1 (RhoBTB1) as a key regulator of phosphodiesterase 5 (PDE5) activity, and through PDE5, a regulator of vascular tone. We identified the binding interface for PDE5 on RhoBTB1 by truncating full-length RhoBTB1 into its component domains. Co-immunoprecipitation analyses revealed that the C-terminal half of RhoBTB1 containing its two BTB domains and the C-terminal domain (B1B2C) is the minimal region required for PDE5 recruitment and subsequent proteasomal degradation via Cullin-3 (CUL3). The C-terminal domain was essential in recruiting PDE5 as constructs lacking this region could not participate in PDE5 binding or proteasomal degradation. We also identified Pro353 and Ser363 as key amino acid residues in the B1B2C region involved in CUL3 binding to RhoBTB1. Mutation of either of these residues exhibited impaired CUL3 binding and PDE5 degradation, although the binding to PDE5 was preserved. Finally, we employed ascorbate peroxidase 2 (APEX2) proximity labeling using a B1B2C-APEX2 fusion protein as bait to capture unknown RhoBTB1 binding partners. Among several B1B2C-binding proteins identified and validated, we focused on SET domain containing 2 (SETD2). SETD2 and RhoBTB1 directly interacted, and the level of SETD2 increased in response to pharmacological inhibition of the proteasome or Cullin complex, CUL3 deletion, and RhoBTB1-inhibition with siRNA. This suggests that SETD2 is regulated by the RhoBTB1-CUL3 axis. Future studies will determine whether SETD2 plays a role in cardiovascular function.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria Golosova
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Morsy H, Benkirane M, Cali E, Rocca C, Zhelcheska K, Cipriani V, Galanaki E, Maroofian R, Efthymiou S, Murphy D, O'Driscoll M, Suri M, Banka S, Clayton-Smith J, Wright T, Redman M, Bassetti JA, Nizon M, Cogne B, Jamra RA, Bartolomaeus T, Heruth M, Krey I, Gburek-Augustat J, Wieczorek D, Gattermann F, Mcentagart M, Goldenberg A, Guyant-Marechal L, Garcia-Moreno H, Giunti P, Chabrol B, Bacrot S, Buissonnière R, Magry V, Gowda VK, Srinivasan VM, Melegh B, Szabó A, Sümegi K, Cossée M, Ziff M, Butterfield R, Hunt D, Bird-Lieberman G, Hanna M, Koenig M, Stankewich M, Vandrovcova J, Houlden H. Expanding SPTAN1 monoallelic variant associated disorders: From epileptic encephalopathy to pure spastic paraplegia and ataxia. Genet Med 2023; 25:76-89. [PMID: 36331550 PMCID: PMC10620943 DOI: 10.1016/j.gim.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.
Collapse
Affiliation(s)
- Heba Morsy
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom; Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mehdi Benkirane
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Valentina Cipriani
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Evangelia Galanaki
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service, Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jill Clayton-Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Melody Redman
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Mathilde Nizon
- Thorax Institute, Nantes University, CNRS, INSERM, Nantes, France
| | - Benjamin Cogne
- Thorax Institute, Nantes University, CNRS, INSERM, Nantes, France; Department of Medical Genetics, Nantes University Hospital, Nantes, France
| | - Rami Abu Jamra
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Tobias Bartolomaeus
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Marion Heruth
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Gattermann
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Meriel Mcentagart
- Medical Genetics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alice Goldenberg
- Department of Medical Genetics, Rouen University Hospital, Rouen, France
| | | | - Hector Garcia-Moreno
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paola Giunti
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Brigitte Chabrol
- Reference Center for Inherited Metabolic Diseases, Marseille University Hospital, Marseille, France
| | - Severine Bacrot
- Department of Molecular Genetics, Versailles Hospital, Versailles, France
| | | | - Virginie Magry
- Department of Molecular Genetics, Amiens-Picardie University Hospital, Amiens, France
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Béla Melegh
- Department of Medical Genetics, Clinical Centre, School of Medicine, University of Pécs, Pécs, Hungary
| | - András Szabó
- Department of Medical Genetics, Clinical Centre, School of Medicine, University of Pécs, Pécs, Hungary
| | - Katalin Sümegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mireille Cossée
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | - Monica Ziff
- Clinical Genetics Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Russell Butterfield
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, University of Utah Health, Salt Lake City, UT
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kigngdom
| | - Georgina Bird-Lieberman
- Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Michel Koenig
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | | | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
4
|
Unravelling the genetic and phenotypic heterogeneity of SPTA1 gene variants in Hereditary Elliptocytosis and Hereditary Pyropoikilocytosis patients using next-generation sequencing. Gene 2022; 843:146796. [PMID: 35961434 DOI: 10.1016/j.gene.2022.146796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Hereditary Elliptocytosis (HE) and Hereditary Pyropoikilocytosis (HPP) are clinically and genetically heterogeneous red cell membranopathies that result from the defects in the horizontal linkage between RBC (red blood cell) membrane and cytoskeletal proteins affecting its mechanical stability and deformability thereby reducing its lifespan. The principal defect in HE and HPP is due to dysfunction or deficiency of RBC cytoskeletal proteins namely, α-spectrin (SPTA1), β-spectrin (SPTB) and protein 4.1R (EPB41R). This study reports the genetic and phenotypic heterogeneity of 10 Indian patients (5 with HE and 5 with HPP)harboringSPTA1 gene variants. We used targeted next-generation sequencing (t-NGS) to characterize the causative genetic variants in 10 HE/HPP suspected patients and studied the correlation between the identified variants with their corresponding phenotypic features.t-NGS detected 12 SPTA1 variants, out of which 8 are novel. Nearly all of the detected variants have a damaging effect on the protein stability and function, as shown by the insilico analysis. The possible effect of the detected variants on the protein structure was studied using the HOPE software and DynaMut tools wherever possible. To the best of our knowledge, this is the first report on HE/HPP cases confirmed by a genetic study from India. To conclude, HE is caused by monoallelic mutations while HPP, the more severe form, is typically caused by biallelic (homozygous or compound heterozygous) mutations justifying the phenotypic heterogeneity associated with patients. Moreover, analysis at the molecular level by NGS permits diagnosis in these disorders with highly variable heterogeneity requiring regular transfusions and may facilitate prognostic contemplations.
Collapse
|
5
|
Van de Vondel L, De Winter J, Beijer D, Coarelli G, Wayand M, Palvadeau R, Pauly MG, Klein K, Rautenberg M, Guillot-Noël L, Deconinck T, Vural A, Ertan S, Dogu O, Uysal H, Brankovic V, Herzog R, Brice A, Durr A, Klebe S, Stock F, Bischoff AT, Rattay TW, Sobrido MJ, De Michele G, De Jonghe P, Klopstock T, Lohmann K, Zanni G, Santorelli FM, Timmerman V, Haack TB, Züchner S, Schüle R, Stevanin G, Synofzik M, Basak AN, Baets J. De Novo and Dominantly Inherited SPTAN1 Mutations Cause Spastic Paraplegia and Cerebellar Ataxia. Mov Disord 2022; 37:1175-1186. [PMID: 35150594 DOI: 10.1002/mds.28959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giulia Coarelli
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Melanie Wayand
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Robin Palvadeau
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katrin Klein
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Maren Rautenberg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Léna Guillot-Noël
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Tine Deconinck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Atay Vural
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Okan Dogu
- Department of Neurology, School of Medicine, Mersin University, Mersin, Turkey
| | - Hilmi Uysal
- Department of Neurology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Rebecca Herzog
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Alexis Brice
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Friedrich Stock
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | | | - Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - María-Jesús Sobrido
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Peter De Jonghe
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Giovanni Stevanin
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France.,Paris Sciences Lettres Research University, Ecole Pratique des Hautes Etudes, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - A Nazli Basak
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Bose D, Chakrabarti A. Multiple Functions of Spectrin: Convergent Effects. J Membr Biol 2020; 253:499-508. [PMID: 32990795 DOI: 10.1007/s00232-020-00142-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Spectrin is a multifunctional, multi-domain protein most well known in the membrane skeleton of mature human erythrocytes. Here we review the literature on the crosstalk of the chaperone activity of spectrin with its other functionalities. We hypothesize that the chaperone activity is derived from the surface exposed hydrophobic patches present in individual "spectrin-repeat" domains and show a competition between the membrane phospholipid binding functionality and chaperone activity of spectrin. Moreover, we show that post-translational modifications such as glycation which shield these surface exposed hydrophobic patches, reduce the chaperone function. On the other hand, oligomerization which is linked to increase of hydrophobicity is seen to increase it. We note that spectrin seems to prefer haemoglobin as its chaperone client, binding with it preferentially over other denatured proteins. Spectrin is also known to interact with unstable haemoglobin variants with a higher affinity than in the case of normal haemoglobin. We propose that chaperone activity of spectrin could be important in the cellular biochemistry of haemoglobin, particularly in the context of diseases.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
7
|
Cheng C, Hu Z, Cao L, Peng C, He Y. The scavenger receptor SCARA1 (CD204) recognizes dead cells through spectrin. J Biol Chem 2019; 294:18881-18897. [PMID: 31653705 DOI: 10.1074/jbc.ra119.010110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
Scavenger receptor class A member 1 (SCARA1 or CD204) is an immune receptor highly expressed on macrophages. It forms homotrimers on the cell surface and plays important roles in regulating immune responses via its involvement in multiple pathways. However, both the structure and the functional roles of SCARA1 are not fully understood. Here, we determined the crystal structure of the C-terminal SRCR domain of SCARA1 at 1.8 Å resolution, revealing its Ca2+-binding site. Results from cell-based assays revealed that SCARA1 can recognize dead cells, rather than live cells, specifically through its SRCR domain and in a Ca2+-dependent manner. Furthermore, by combining MS and biochemical assays, we found that cellular spectrin is the binding target of SCARA1 on dead cells and that the SRCR domain of SCARA1 recognizes the SPEC repeats of spectrin in the presence of Ca2+ We also found that macrophages can internalize dead cells or debris from both erythrocytes and other cells through the interaction between SCARA1 and spectrin, suggesting that SCARA1 could function as a scavenging receptor that recognizes dead cells. These results suggest that spectrin, which is one of the major components of the cytoskeleton, acts as a cellular marker that enables the recognition of dead cells by the immune system.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Peng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
8
|
Bose D, Patra M, Chakrabarti A. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:694-702. [PMID: 28373029 DOI: 10.1016/j.bbapap.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022]
Abstract
Spectrin, a major component of the eukaryotic membrane skeleton, has been shown to have chaperone like activity. Here we investigate the pH induced changes in the structure and stability of erythroid and brain spectrin by spectroscopic methods. We also correlate these changes with modulations of chaperone potential at different pH. We have followed the pH induced structural changes by circular dichroism spectroscopy and intrinsic tryptophan fluorescence. It is seen that lowering the pH from 9 has little effect on structure of the proteins till about pH6. At pH4, there is significant change of the secondary structure of the proteins, along with a 5nm hypsochromic shift of the emission maxima. Below pH4 the proteins undergo acid denaturation. Probing exposed hydrophobic patches on the proteins using protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates that there is higher solvent accessibility of hydrophobic surfaces in both forms of spectrin at around pH4. Dynamic light scattering and 90° light scattering studies show that the both forms of spectrin forms oligomers at pH~4. Chemical unfolding data shows that these oligomers are less stable than the tetrameric form. Aggregation studies with BSA show that at pH4, both spectrins exhibit better chaperone activity. This enhancement of chaperone like activity appears to result from an increase in regions of solvent-exposed hydrophobicity and oligomeric state of the spectrins which in turn are induced by moderately acid pH. This may have in-vivo implications in cells facing stress conditions where cytoplasmic pH is lowered.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Malay Patra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India.
| |
Collapse
|
9
|
Delalande O, Czogalla A, Hubert JF, Sikorski A, Le Rumeur E. Dystrophin and Spectrin, Two Highly Dissimilar Sisters of the Same Family. Subcell Biochem 2017; 82:373-403. [PMID: 28101868 DOI: 10.1007/978-3-319-49674-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dystrophin and Spectrin are two proteins essential for the organization of the cytoskeleton and for the stabilization of membrane cells. The comparison of these two sister proteins, and with the dystrophin homologue utrophin, enables us to emphasise that, despite a similar topology with common subdomains and a common structural basis of a three-helix coiled-coil, they show a large range of dissimilarities in terms of genetics, cell expression and higher level structural organisation. Interactions with cellular partners, including proteins and membrane phospholipids, also show both strikingly similar and very different behaviours. The differences between dystrophin and spectrin are also illustrated by the large variety of pathological anomalies emerging from the dysfunction or the absence of these proteins, showing that they are keystones in their function of providing a scaffold that sustains cell structure.
Collapse
Affiliation(s)
- Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France.
| | - Aleksander Czogalla
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jean-François Hubert
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| | - Aleksander Sikorski
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| |
Collapse
|
10
|
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. CURRENT TOPICS IN MEMBRANES 2015; 77:143-84. [PMID: 26781832 DOI: 10.1016/bs.ctm.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection.
Collapse
|
11
|
Fluorescence study of the effect of cholesterol on spectrin–aminophospholipid interactions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:635-45. [DOI: 10.1007/s00249-015-1057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/26/2022]
|
12
|
Brown JW, Bullitt E, Sriswasdi S, Harper S, Speicher DW, McKnight CJ. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap. PLoS Comput Biol 2015; 11:e1004302. [PMID: 26067675 PMCID: PMC4466138 DOI: 10.1371/journal.pcbi.1004302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin’s physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin’s quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use. Spectrins are cytoskeletal and scaffolding proteins ubiquitously expressed in essentially all cell-types. Despite unequivocal evidence for a short physiological length of ~55–65 nm at rest, spectrin is typically represented as an extended ~200 nm molecule that is implied based on crystallographic structures of a number of tandem repeats. Here, we incorporate previously reported biochemical and crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the physiological compact form of spectrin. In addition to explaining spectrin’s physiological resting length (~55–65 nm), our model provides a mechanism by which spectrin can undergo a seamless three-fold extension, which is an experimentally observed property that is responsible for restoration of cell shape after mechanical deformation.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, UPMC Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sira Sriswasdi
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra Harper
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mitra M, Chaudhuri A, Patra M, Mukhopadhyay C, Chakrabarti A, Chattopadhyay A. Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility. J Fluoresc 2015; 25:707-17. [DOI: 10.1007/s10895-015-1556-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
14
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Patra M, Mukhopadhyay C, Chakrabarti A. Malachite green interacts with the membrane skeletal protein, spectrin. RSC Adv 2015. [DOI: 10.1039/c5ra15488j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energy minimized complex of MG with the self association domain of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department
- University of Calcutta
- Kolkata 700009
- India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
16
|
Hill SA, Kwa LG, Shammas SL, Lee JC, Clarke J. Mechanism of Assembly of the Non-Covalent Spectrin Tetramerization Domain from Intrinsically Disordered Partners. J Mol Biol 2014; 426:21-35. [PMID: 24055379 PMCID: PMC9082959 DOI: 10.1016/j.jmb.2013.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 01/29/2023]
Abstract
Interdomain interactions of spectrin are critical for maintenance of the erythrocyte cytoskeleton. In particular, “head-to-head” dimerization occurs when the intrinsically disordered C-terminal tail of β-spectrin binds the N-terminal tail of α-spectrin, folding to form the “spectrin tetramer domain”. This non-covalent three-helix bundle domain is homologous in structure and sequence to previously studied spectrin domains. We find that this tetramer domain is surprisingly kinetically stable. Using a protein engineering Φ-value analysis to probe the mechanism of formation of this tetramer domain, we infer that the domain folds by the docking of the intrinsically disordered β-spectrin tail onto the more structured α-spectrin tail.
Collapse
Affiliation(s)
- Stephanie A Hill
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK; Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Gyan Kwa
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah L Shammas
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jennifer C Lee
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jane Clarke
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
17
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|
18
|
Patra M, Mitra M, Chakrabarti A, Mukhopadhyay C. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies. J Biomol Struct Dyn 2013; 32:852-65. [PMID: 24404769 DOI: 10.1080/07391102.2013.793212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17 μM, for prodan, and .04 and .02 μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain > SH3 domain > Self-association domain > N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- a Chemistry Department , University of Calcutta , Kolkata , 700009 , India
| | | | | | | |
Collapse
|
19
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
20
|
Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One 2013; 8:e64402. [PMID: 23675535 PMCID: PMC3651237 DOI: 10.1371/journal.pone.0064402] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/14/2013] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms responsible for tube formation by endothelial cells (ECs) is of major interest and importance in medicine and tissue engineering. Endothelial cells of the human cell line EA.hy926 behave ambivalently when cultured on a random positioning machine (RPM) simulating microgravity. Some cells form tube-like three-dimensional (3D) aggregates, while other cells (AD) continue to grow adherently. Between the fifth and seventh day of culturing, the two types of cell growth achieve the greatest balance. We harvested ECs that grew either adherently or as 3D aggregates separately after five and seven days of incubation on the RPM, and applied gene array analysis and PCR techniques to investigate their gene expression profiles in comparison to ECs growing adherently under normal static 1 g laboratory conditions for equal periods of time. Using gene arrays, 1,625 differentially expressed genes were identified. A strong overrepresentation of transient expression differences was found in the five-day, RPM-treated samples, where the number of genes being differentially expressed in comparison to 1 g cells was highest as well as the degree of alteration regarding distinct genes. We found 27 genes whose levels of expression were changed at least 4-fold in RPM-treated cells as compared to 1 g controls. These genes code for signal transduction and angiogenic factors, cell adhesion, membrane transport proteins or enzymes involved in serine biosynthesis. Fifteen of them, with IL8 (interleukin 8) and VWF (von Willebrand factor) the most prominently affected, showed linkages to genes of another 20 proteins that are important in cell structure maintenance and angiogenesis and extended their network of interaction. Thus, the study reveals numerous genes, which mutually influence each other during initiation of 3D growth of endothelial cells.
Collapse
|
21
|
Bennett V, Lorenzo DN. Spectrin- and Ankyrin-Based Membrane Domains and the Evolution of Vertebrates. CURRENT TOPICS IN MEMBRANES 2013; 72:1-37. [DOI: 10.1016/b978-0-12-417027-8.00001-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Shammas S, Rogers J, Hill S, Clarke J. Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. Biophys J 2012; 103:2203-14. [PMID: 23200054 PMCID: PMC3512043 DOI: 10.1016/j.bpj.2012.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) are significantly unstructured under physiological conditions. A number of these IDPs have been shown to undergo coupled folding and binding reactions whereby they can gain structure upon association with an appropriate partner protein. In general, these systems display weaker binding affinities than do systems with association between completely structured domains, with micromolar K(d) values appearing typical. One such system is the association between α- and β-spectrin, where two partially structured, incomplete domains associate to form a fully structured, three-helix bundle, the spectrin tetramerization domain. Here, we use this model system to demonstrate a method for fitting association and dissociation kinetic traces where, using typical biophysical concentrations, the association reactions are expected to be highly reversible. We elucidate the unusually slow, two-state kinetics of spectrin assembly in solution. The advantages of studying kinetics in this regime include the potential for gaining equilibrium constants as well as rate constants, and for performing experiments with low protein concentrations. We suggest that this approach would be particularly appropriate for high-throughput mutational analysis of two-state reversible binding processes.
Collapse
Affiliation(s)
| | | | | | - J. Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Cell Mol Biol Lett 2011; 16:595-609. [PMID: 21866423 PMCID: PMC3675649 DOI: 10.2478/s11658-011-0025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/18/2011] [Indexed: 11/20/2022] Open
Abstract
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.
Collapse
|
24
|
Yeast two-hybrid and itc studies of alpha and beta spectrin interaction at the tetramerization site. Cell Mol Biol Lett 2011; 16:452-61. [PMID: 21786033 PMCID: PMC3169182 DOI: 10.2478/s11658-011-0017-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/12/2011] [Indexed: 11/20/2022] Open
Abstract
Yeast two-hybrid (Y2H) and isothermal titration calorimetry (ITC) methods were used to further study the mutational effect of non-erythroid alpha spectrin (αII) at position 22 in tetramer formation with beta spectrin (βII). Four mutants, αII-V22D, V22F, V22M and V22W, were studied. For the Y2H system, we used plasmids pGBKT7, consisting of the cDNA of the first 359 residues at the N-terminal region of αII, and pGADT7, consisting of the cDNA of residues 1697–2145 at the C-terminal region of βII. Strain AH109 yeast cells were used for colony growth assays and strain Y187 was used for β-galactosidase activity assays. Y2H results showed that the C-terminal region of βII interacts with the N-terminal region of αII, either the wild type, or those with V22F, V22M or V22W mutations. The V22D mutant did not interact with βII. For ITC studies, we used recombinant proteins of the αII N-terminal fragment and of the erythroid beta spectrin (βI) C-terminal fragment; results showed that the Kd values for V22F were similar to those for the wild-type (about 7 nM), whereas the Kd values were about 35 nM for V22M and about 90 nM for V22W. We were not able to detect any binding for V22D with ITC methods. This study clearly demonstrates that the single mutation at position 22 of αII, a region critical to the function of nonerythroid α spectrin, may lead to a reduced level of spectrin tetramers and abnormal spectrin-based membrane skeleton. These abnormalities could cause abnormal neural activities in cells.
Collapse
|
25
|
Song Y, Antoniou C, Memic A, Kay BK, Fung LWM. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci 2011; 20:867-79. [PMID: 21412925 DOI: 10.1002/pro.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/25/2011] [Accepted: 02/28/2011] [Indexed: 01/26/2023]
Abstract
We have screened a human immunoglobulin single-chain variable fragment (scFv) phage library against the C-terminal tetramerization regions of erythroid and nonerythroid beta spectrin (βI-C1 and βII-C1, respectively) to explore the structural uniqueness of erythroid and nonerythroid β-spectrin isoforms. We have identified interacting scFvs, with clones "G5" and "A2" binding only to βI-C1, and clone "F11" binding only to βII-C1. The K(d) values, estimated by competitive enzyme-linked immunosorbent assay, of these scFvs with their target spectrin proteins were 0.1-0.3 μM. A more quantitative K(d) value from isothermal titration calorimetry experiments with the recombinant G5 and βI-C1 was 0.15 μM. The α-spectrin fragments (model proteins), αI-N1 and αII-N1, competed with the βI-C1, or βII-C1, binding scFvs, with inhibitory concentration (IC(50) ) values of ∼50 μM for αI-N1, and ∼0.5 μM for αII-N1. Our predicted structures of βI-C1 and βII-C1 suggest that the Helix B' of the C-terminal partial domain of βI differs from that of βII. Consequently, an unstructured region downstream of Helix B' in βI may interact specifically with the unstructured, complementarity determining region H1 of G5 or A2 scFv. The corresponding region in βII was helical, and βII did not bind G5 scFv. Our results suggest that it is possible for cellular proteins to differentially associate with the C-termini of different β-spectrin isoforms to regulate α- and β-spectrin association to form functional spectrin tetramers, and may sort β-spectrin isoforms to their specific cellular localizations.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
26
|
Inhibition of calpain but not caspase activity by spectrin fragments. Cell Mol Biol Lett 2010; 15:395-405. [PMID: 20467904 PMCID: PMC3074365 DOI: 10.2478/s11658-010-0015-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/25/2010] [Indexed: 11/29/2022] Open
Abstract
Calpains and caspases are ubiquitous cysteine proteases that are associated with a variety of cellular pathways. Calpains are involved in processes such as long term potentiation, cell motility and apoptosis, and have been shown to cleave non-erythroid (brain) α- and β-spectrin and erythroid β-spectrin. The cleavage of erythroid α-spectrin by calpain has not been reported. Caspases play an important role in the initiation and execution of apoptosis, and have been shown to cleave non-erythroid but not erythroid spectrin. We have studied the effect of spectrin fragments on calpain and caspase activities. The erythroid and non-erythroid spectrin fragments used were from the N-terminal region of α-spectrin, and C-terminal region of β-spectrin, both consisting of regions involved in spectrin tetramer formation. We observed that the all spectrin fragments exhibited a concentration-dependent inhibitory effect on calpain, but not caspase activity. It is clear that additional studies are warranted to determine the physiological significance of calpain inhibition by spectrin fragments. Our findings suggest that calpain activity is modulated by the presence of spectrin partial domains at the tetramerization site. It is not clear whether the inhibitory effect is substrate specific or is a general effect. Further studies of this inhibitory effect may lead to the identification and development of new therapeutic agents specifically for calpains, but not for caspases. Proteins/peptides with a coiled coil helical conformation should be studied for potential inhibitory effects on calpain activity.
Collapse
|
27
|
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 2010; 115:4843-52. [PMID: 20197550 DOI: 10.1182/blood-2010-01-261396] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in alpha-spectrin that occur upon binding to beta-spectrin, and it reports the first structure of the beta-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.
Collapse
|