1
|
Chen LK, Hsieh CC, Huang YC, Huang YJ, Lung CF, Hsu WE, Yao CL, Tseng TY, Wang CC, Hsu YC. Mechanical Stretch Promotes Invasion of Lung Cancer Cells via Activation of Tumor Necrosis Factor-alpha. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
A Fully Integrated Arduino-Based System for the Application of Stretching Stimuli to Living Cells and Their Time-Lapse Observation: A Do-It-Yourself Biology Approach. Ann Biomed Eng 2021; 49:2243-2259. [PMID: 33728867 DOI: 10.1007/s10439-021-02758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Mechanobiology has nowadays acquired the status of a topic of fundamental importance in a degree in Biological Sciences. It is inherently a multidisciplinary topic where biology, physics and engineering competences are required. A course in mechanobiology should include lab experiences where students can appreciate how mechanical stimuli from outside affect living cell behaviour. Here we describe all the steps to build a cell stretcher inside an on-stage cell incubator. This device allows exposing living cells to a periodic mechanical stimulus similar to what happens in physiological conditions such as, for example, in the vascular system or in the lungs. The reaction of the cells to the periodic mechanical stretching represents a prototype of a mechanobiological signal integrated by living cells. We also provide the theoretical and experimental aspects related to the calibration of the stretcher apparatus at a level accessible to researchers not used to dealing with topics like continuum mechanics and analysis of deformations. We tested our device by stretching cells of two different lines, U87-MG and Balb-3T3 cells, and we analysed and discussed the effect of the periodic stimulus on both cell reorientation and migration. We also discuss the basic aspects related to the quantitative analysis of the reorientation process and of cell migration. We think that the device we propose can be easily reproduced at low-cost within a project-oriented course in the fields of biology, biotechnology and medical engineering.
Collapse
|
3
|
Katzengold R, Orlov A, Gefen A. A novel system for dynamic stretching of cell cultures reveals the mechanobiology for delivering better negative pressure wound therapy. Biomech Model Mechanobiol 2020; 20:193-204. [PMID: 32803464 DOI: 10.1007/s10237-020-01377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Serious wounds, both chronic and acute (e.g., surgical), are among the most common, expensive and difficult-to-treat health problems. Negative pressure wound therapy (NPWT) is considered a mainstream procedure for treating both wound types. Soft tissue deformation stimuli are the crux of NPWT, enhancing cell proliferation and migration from peri-wound tissues which contributes to healing. We developed a dynamic stretching device (DSD) contained in a miniature incubator for applying controlled deformations to fibroblast wound assays. Prior to the stretching experiments, fibroblasts were seeded in 6-well culture plates with elastic substrata and let to reach confluency. Squashing damage was then induced at the culture centers, and the DSD was activated to deliver stretching regimes that represented common clinical NPWT protocols at two peak strain levels, 0.5% and 3%. Analyses of the normalized maximal migration rate (MMR) data for the collective cell movement revealed that for the 3% strain level, the normalized MMR of cultures subjected to a 0.1 Hz stretch frequency regime was ~ 1.4 times and statistically significantly greater (p < 0.05) than that of the cultures subjected to no-stretch (control) or to static stretch (2nd control). Correspondingly, analysis of the time to gap closure data indicated that the closure time of the wound assays subjected to the 0.1 Hz regime was ~ 30% shorter than that of the cultures subjected to the control regimes (p < 0.05). Other simulated NPWT protocols did not emerge as superior to the controls. The present method and system are a powerful platform for further revealing the mechanobiology of NPWT and for improving this technology.
Collapse
Affiliation(s)
- Rona Katzengold
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alexey Orlov
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Amit Gefen
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
4
|
Marom A, Berkovitch Y, Toume S, Alvarez-Elizondo MB, Weihs D. Non-damaging stretching combined with sodium pyruvate supplement accelerate migration of fibroblasts and myoblasts during gap closure. Clin Biomech (Bristol, Avon) 2019; 62:96-103. [PMID: 30711737 DOI: 10.1016/j.clinbiomech.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sustained, low- and mid-level (3-6%), radial stretching combined with varying concentrations of sodium pyruvate (NaPy) supplement increase the migration rate during microscale gap closure following an in vitro injury; NaPy is a physiological supplement often used in cell-culture media. Recently we showed that low-level tensile strains accelerate in vitro kinematics during en masse cell migration; topically applied mechanical deformations also accelerate in vivo healing in larger wounds. The constituents and nutrients at injury sites change. Thus, we combine a supplement with stretching conditions to effectively accelerate wound healing. METHODS Monolayers of murine fibroblasts (NIH3T3) or myoblasts (C2C12) were cultured in 1 mM NaPy on stretchable, linear-elastic substrates. Monolayers were subjected to 0, 3, or 6% stretching using a custom three-dimensionally printed stretching apparatus, micro-damage was immediately induced, media was replaced with fresh media containing 0, 1, or 5 mM NaPy, and cell migration kinematics during gap-closure were quantitatively evaluated. FINDINGS In myoblasts, the smallest evaluated strain (3%, minimal risk of damage) combined with preinjury (1 mM) and post-injury exogenous NaPy supplements accelerated gap closure in a statistically significant manner; response was NaPy concentration dependent. In both fibroblasts and myoblasts, when cells were pre-exposed to NaPy, yet no supplement was provided post-injury, mid-level stretches (6%) compensated for post-injury deficiency in exogenous NaPy and accelerated gap-closure in a statistically significant manner. INTERPRETATION Small deformations combined with NaPy supplement prior-to and following cell-damage accelerate en masse cell migration and can be applied in wound healing, e.g. to preventatively accelerate closure of microscale gaps.
Collapse
Affiliation(s)
- Anat Marom
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Samer Toume
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
5
|
Felder M, Trueeb B, Stucki AO, Borcard S, Stucki JD, Schnyder B, Geiser T, Guenat OT. Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip. Front Bioeng Biotechnol 2019; 7:3. [PMID: 30746362 PMCID: PMC6360510 DOI: 10.3389/fbioe.2019.00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023] Open
Abstract
The lung alveolar region experiences remodeling during several acute and chronic lung diseases, as for instance idiopathic pulmonary fibrosis (IPF), a fatal disease, whose onset is correlated with repetitive microinjuries to the lung alveolar epithelium and abnormal alveolar wound repair. Although a high degree of mechanical stress (>20% linear strain) is thought to potentially induce IPF, the effect of lower, physiological levels of strain (5–12% linear strain) on IPF pathophysiology remains unknown. In this study, we examined the influence of mechanical strain on alveolar epithelial wound healing. For this purpose, we adopted the “organ-on-a-chip” approach, which provides the possibility of reproducing unique aspects of the in vivo cellular microenvironment, in particular its dynamic nature. Our results provide the first demonstration that a wound healing assay can be performed on a breathing lung-on-a-chip equipped with an ultra-thin elastic membrane. We cultured lung alveolar epithelial cells to confluence, the cells were starved for 24 h, and then wounded by scratching with a standard micropipette tip. Wound healing was assessed after 24 h under different concentrations of recombinant human hepatic growth factor (rhHGF) and the application of cyclic mechanical stretch. Physiological cyclic mechanical stretch (10% linear strain, 0.2 Hz) significantly impaired the alveolar epithelial wound healing process relative to culture in static conditions. This impairment could be partially ameliorated by administration of rhHGF. This proof-of-concept study provides a way to study of more complex interactions, such as a co-culture with fibroblasts, endothelial cells, or immune cells, as well as the study of wound healing at an air–liquid interface.
Collapse
Affiliation(s)
- Marcel Felder
- ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland
| | - Bettina Trueeb
- ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Sarah Borcard
- ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland.,HES-SO, Institute of Life Technologies, Sion, Switzerland
| | - Janick Daniel Stucki
- ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland.,AlveoliX, Bern, Switzerland
| | - Bruno Schnyder
- HES-SO, Institute of Life Technologies, Sion, Switzerland
| | - Thomas Geiser
- Pulmonary Medicine Department, University Hospital of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- ARTORG Center, Medical Faculty, University of Bern, Bern, Switzerland.,AlveoliX, Bern, Switzerland.,Pulmonary Medicine Department, University Hospital of Bern, Bern, Switzerland.,Thoracic Surgery Department, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Type VI collagen promotes lung epithelial cell spreading and wound-closure. PLoS One 2018; 13:e0209095. [PMID: 30550606 PMCID: PMC6294368 DOI: 10.1371/journal.pone.0209095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Basement membrane (BM) is an essential part of the extracellular matrix (ECM) that plays a crucial role in mechanical support and signaling to epithelial cells during lung development, homeostasis and repair. Abnormal composition and remodeling of the lung ECM have been associated with developmental abnormalities observed in multiple pediatric and adult respiratory diseases. Collagen VI (COL6) is a well-studied muscle BM component, but its role in the lung and its effect on pulmonary epithelium is largely undetermined. We report the presence of COLVI immediately subjacent to human airway and alveolar epithelium in the pediatric lung, in a location where it is likely to interact with epithelial cells. In vitro, both primary human lung epithelial cells and human lung epithelial cell lines displayed an increased rate of “wound healing” in response to a scratch injury when plated on COL6 as compared to other matrices. For the 16HBE cell line, wounds remained >5-fold larger for cells on COL1 (p<0.001) and >6-fold larger on matrigel (p<0.001), a prototypical basement membrane, when compared to COL6 (>96% closure at 10 hr). The effect of COL6 upon lung epithelial cell phenotype was associated with an increase in cell spreading. Three hours after initial plating, 16HBE cells showed >7-fold less spreading on matrigel (p<0.01), and >4-fold less spreading on COL1 (p<0.01) when compared to COL6. Importantly, the addition of COL6 to other matrices also enhanced cell spreading. Similar responses were observed for primary cells. Inhibitor studies indicated both integrin β1 activity and activation of multiple signaling pathways was required for enhanced spreading on all matrices, with the PI3K/AKT pathway (PI3K, CDC42, RAC1) showing both significant and specific effects for spreading on COL6. Genetic gain-of-function experiments demonstrated enhanced PI3K/AKT pathway activity was sufficient to confer equivalent cell spreading on other matrices as compared to COL6. We conclude that COL6 has significant and specific effects upon human lung epithelial cell-autonomous functions.
Collapse
|
7
|
Hervieu A, Kermorgant S. The Role of PI3K in Met Driven Cancer: A Recap. Front Mol Biosci 2018; 5:86. [PMID: 30406111 PMCID: PMC6207648 DOI: 10.3389/fmolb.2018.00086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
The Receptor Tyrosine Kinase (RTK) Met, overexpressed or mutated in cancer, plays a major role in cancer progression and represents an attractive target for cancer therapy. However RTK inhibitors can lead to drug resistance, explaining the necessity to develop therapies that target downstream signaling. Phosphatidylinositide 3-kinase (PI3K) is one of the most deregulated pathways in cancer and implicated in various types of cancer. PI3K signaling is also a major signaling pathway downstream of RTK, including Met. PI3K major effectors include Akt and "mechanistic Target of Rapamycin" (mTOR), which each play key roles in numerous and various cell functions. Advancements made due to the development of molecular and pharmaceutical tools now allow us to delve into the roles of each independently. In this review, we summarize the current understanding we possess of the activation and role of PI3K/Akt/mTOR, downstream of Met, in cancer.
Collapse
Affiliation(s)
- Alexia Hervieu
- Signal Transduction and Molecular Pharmacology Team, Cancer Therapeutics Division, Institute of Cancer Research, Sutton, United Kingdom
- Spatial Signalling Team, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stéphanie Kermorgant
- Spatial Signalling Team, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Okimura C, Sakumura Y, Shimabukuro K, Iwadate Y. Sensing of substratum rigidity and directional migration by fast-crawling cells. Phys Rev E 2018; 97:052401. [PMID: 29906928 DOI: 10.1103/physreve.97.052401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/24/2022]
Abstract
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Collapse
Affiliation(s)
- Chika Okimura
- Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Yuichi Sakumura
- School of Information Science and Technology, Aichi Prefectural University, Aichi 480-1198, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube 755-8555, Japan
| | - Yoshiaki Iwadate
- Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
9
|
Cancer invasion into musculature: Mechanics, molecules and implications. Semin Cell Dev Biol 2018; 93:36-45. [PMID: 30009945 DOI: 10.1016/j.semcdb.2018.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
Tumor invasion along structural interphases of surrounding tumor-free tissue represents a key process during tumor progression. Much attention has been devoted to mechanisms of tumor cell migration within extracellular matrix (ECM)-rich connective tissue, however a comprehensive understanding of tumor invasion into tissue of higher structural complexity, such as muscle tissue, is lacking. Muscle invasion in cancer patients is often associated with destructive growth and worsened prognosis. Here, we review biochemical, geometrical and mechanical cues of smooth and skeletal muscle tissues and their relevance for guided invasion of cancer cells. As integrating concept, muscle-organizing ECM-rich surfaces of the epi-, peri- and endomysium provide cleft-like confined spaces along interfaces between dynamic muscle cells, which provide molecular and physical cues that guide migrating cancer cells, forming a possible contribution to cancer progression.
Collapse
|
10
|
Suryadevara V, Fu P, Ebenezer DL, Berdyshev E, Bronova IA, Huang LS, Harijith A, Natarajan V. Sphingolipids in Ventilator Induced Lung Injury: Role of Sphingosine-1-Phosphate Lyase. Int J Mol Sci 2018; 19:E114. [PMID: 29301259 PMCID: PMC5796063 DOI: 10.3390/ijms19010114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation (MV) performed in respiratory failure patients to maintain lung function leads to ventilator-induced lung injury (VILI). This study investigates the role of sphingolipids and sphingolipid metabolizing enzymes in VILI using a rodent model of VILI and alveolar epithelial cells subjected to cyclic stretch (CS). MV (0 PEEP (Positive End Expiratory Pressure), 30 mL/kg, 4 h) in mice enhanced sphingosine-1-phosphate lyase (S1PL) expression, and ceramide levels, and decreased S1P levels in lung tissue, thereby leading to lung inflammation, injury and apoptosis. Accumulation of S1P in cells is a balance between its synthesis catalyzed by sphingosine kinase (SphK) 1 and 2 and catabolism mediated by S1P phosphatases and S1PL. Thus, the role of S1PL and SphK1 in VILI was investigated using Sgpl1+/- and Sphk1-/- mice. Partial genetic deletion of Sgpl1 protected mice against VILI, whereas deletion of SphK1 accentuated VILI in mice. Alveolar epithelial MLE-12 cells subjected to pathophysiological 18% cyclic stretch (CS) exhibited increased S1PL protein expression and dysregulation of sphingoid bases levels as compared to physiological 5% CS. Pre-treatment of MLE-12 cells with S1PL inhibitor, 4-deoxypyridoxine, attenuated 18% CS-induced barrier dysfunction, minimized cell apoptosis and cytokine secretion. These results suggest that inhibition of S1PL that increases S1P levels may offer protection against VILI.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA.
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - David Lenin Ebenezer
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Evgeny Berdyshev
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Irina A Bronova
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Long Shuang Huang
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
- Department of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| |
Collapse
|
11
|
A heteromeric molecular complex regulates the migration of lung alveolar epithelial cells during wound healing. Sci Rep 2017; 7:2155. [PMID: 28526890 PMCID: PMC5438388 DOI: 10.1038/s41598-017-02204-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Alveolar type II epithelial cells (ATII) are instrumental in early wound healing in response to lung injury, restoring epithelial integrity through spreading and migration. We previously reported in separate studies that focal adhesion kinase-1 (FAK) and the chemokine receptor CXCR4 promote epithelial repair mechanisms. However, potential interactions between these two pathways were not previously considered. In the present study, we found that wounding of rat ATII cells promoted increased association between FAK and CXCR4. In addition, protein phosphatase-5 (PP5) increased its association with this heteromeric complex, while apoptosis signal regulating kinase-1 (ASK1) dissociated from the complex. Cell migration following wounding was decreased when PP5 expression was decreased using shRNA, but migration was increased in ATII cells isolated from ASK1 knockout mice. Interactions between FAK and CXCR4 were increased upon depletion of ASK1 using shRNA in MLE-12 cells, but unaffected when PP5 was depleted. Furthermore, we found that wounded rat ATII cells exhibited decreased ASK1 phosphorylation at Serine-966, decreased serine phosphorylation of FAK, and decreased association of phosphorylated ASK1 with FAK. These changes in phosphorylation were dependent upon expression of PP5. These results demonstrate a unique molecular complex comprising CXCR4, FAK, ASK1, and PP5 in ATII cells during wound healing.
Collapse
|
12
|
Roan E, Wilhelm KR, Waters CM. Kymographic Imaging of the Elastic Modulus of Epithelial Cells during the Onset of Migration. Biophys J 2016; 109:2051-7. [PMID: 26588564 DOI: 10.1016/j.bpj.2015.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/11/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Epithelial cell migration during wound repair involves a complex interplay of intracellular processes that enable motility while preserving contact among the cells. Recent evidence suggests that fluctuations of the intracellular biophysical state of cells generate traction forces at the basal side of the cells that are necessary for the cells to migrate. However, less is known about the biophysical and structural changes throughout the cells that accompany these fluctuations. Here, we utilized, to our knowledge, a novel kymographic nanoindentation method to obtain spatiotemporal measurements of the elastic moduli of living cells during migration after wounding. At the onset of migration, the elastic modulus increased near the migration front. In addition, the intensity of fluctuations in the elastic modulus changed at the migration front, and these changes were dependent upon f-actin, one of the major components of the cytoskeleton. These results demonstrate the unique biophysical changes that occur at the onset of migration as cells transition from a stationary to a migratory state.
Collapse
Affiliation(s)
- Esra Roan
- Biomedical Engineering Department, University of Memphis, Memphis, Tennessee.
| | - Kristina R Wilhelm
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Okimura C, Iwadate Y. Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes. Cell Adh Migr 2016; 10:406-18. [PMID: 27124267 DOI: 10.1080/19336918.2016.1170268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration.
Collapse
Affiliation(s)
- Chika Okimura
- a Faculty of Science , Yamaguchi University , Yamaguchi , Japan
| | | |
Collapse
|
14
|
Okimura C, Ueda K, Sakumura Y, Iwadate Y. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching. Cell Adh Migr 2016; 10:331-41. [PMID: 26980079 DOI: 10.1080/19336918.2015.1129482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go.
Collapse
Affiliation(s)
- Chika Okimura
- a Faculty of Science , Yamaguchi University , Yamaguchi , Japan
| | - Kazuki Ueda
- a Faculty of Science , Yamaguchi University , Yamaguchi , Japan
| | - Yuichi Sakumura
- b School of Information Science and Technology , Aichi Prefectural University , Aichi , Japan.,c Graduate School of Biological Sciences , Nara Institute of Science and Technology , Nara , Japan
| | | |
Collapse
|
15
|
Ito Y, Correll K, Schiel JA, Finigan JH, Prekeris R, Mason RJ. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L94-105. [PMID: 24748602 DOI: 10.1152/ajplung.00233.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado;
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - John A Schiel
- Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado
| | - Jay H Finigan
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
16
|
Jiao ZY, Wu J, Wen B, Zhao WZ, Du XL. M3 muscarinic acetylcholine receptor dysfunction inhibits Rac1 activity and disrupts VE-cadherin/β-catenin and actin cytoskeleton interaction. Biochem Cell Biol 2014; 92:137-44. [PMID: 24697698 DOI: 10.1139/bcb-2013-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The objective was to investigate whether M3 muscarinic acetylcholine receptor (mAChR) dysfunction disrupts the linkage between the vascular endothelial (VE)-cadherin in the adherens junctional complex and the actin-based cytoskeleton, increasing vascular permeability in atherosclerosis. Western blotting revealed that a selective M3 receptor antagonist, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), and M3 receptor siRNA decrease VE-cadherin and β-catenin in Triton X-100-insoluble fractions, indicating that M3 receptor inhibition weakens the linkage between the VE-cadherin/β-catenin complex and the actin cytoskeleton. Co-immunoprecipitation assays showed that M3 receptor inhibition reduces Rac1 activity and the association of IQ motif-containing GTPase-activating protein 1 (IQGAP1) with Ras-related C3 botulinum toxin substrate 1 (Rac1), while increasing the interaction between IQGAP1 and β-catenin. Using IQGAP1 siRNA, we found that IQGAP1 is required for stable interaction between VE-cadherin/β-catenin and the actin cytoskeleton in quiescent endothelial cells; IQGAP1 siRNA augments the M3 receptor inhibition-induced dissociation between them. Moreover, S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, attenuates this disassociation and Rac1 activity inhibition. The M3 receptor facilitates interaction of the VE-cadherin-based adherens junctional complex and the actin-based cytoskeleton by maintaining Rac1 activity, which regulates the interaction between IQGAP1/Rac1 and IQGAP1/β-catenin, and may contribute to endothelial barrier function under physiological conditions.
Collapse
Affiliation(s)
- Zhou-Yang Jiao
- a Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
17
|
Iwadate Y, Okimura C, Sato K, Nakashima Y, Tsujioka M, Minami K. Myosin-II-mediated directional migration of Dictyostelium cells in response to cyclic stretching of substratum. Biophys J 2013; 104:748-58. [PMID: 23442953 DOI: 10.1016/j.bpj.2013.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/29/2022] Open
Abstract
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin.
Collapse
Affiliation(s)
- Yoshiaki Iwadate
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, Alcaraz A, Cenis JL, Nicolás FJ. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One 2012; 7:e42271. [PMID: 22860103 PMCID: PMC3409175 DOI: 10.1371/journal.pone.0042271] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.
Collapse
Affiliation(s)
- Celia Martínez-Mora
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Anna Mrowiec
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Eva María García-Vizcaíno
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Antonia Alcaraz
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José Luis Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| |
Collapse
|
19
|
Schmitt S, Hendricks P, Weir J, Somasundaram R, Sittampalam GS, Nirmalanandhan VS. Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol 2012; 10:137-47. [PMID: 22352900 DOI: 10.1089/adt.2011.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have shown a great deal of interest and research into the understanding of the biological and physiological roles of mechanical forces on cellular behavior. Despite these reports, in vitro screening of new molecular entities for lung ailments is still performed in static cell culture models. Failure to incorporate the effects of mechanical forces during early stages of screening could significantly reduce the success rate of drug candidates in the highly expensive clinical phases of the drug discovery pipeline. The objective of this review is to expand our current understanding of lung mechanotransduction and extend its applicability to cellular physiology and new drug screening paradigms. This review covers early in vivo studies and the importance of mechanical forces in normal lung development, use of different types of bioreactors that simulate in vivo movements in a controlled in vitro cell culture environment, and recent research using dynamic cell culture models. The cells in lungs are subjected to constant stretching (mechanical forces) in regular cycles due to involuntary expansion and contraction during respiration. The effects of stretch on normal and abnormal (disease) lung cells under pathological conditions are discussed. The potential benefits of extending dynamic cell culture models (screening in the presence of forces) and the associated challenges are also discussed in this review. Based on this review, the authors advocate the development of dynamic high throughput screening models that could facilitate the rapid translation of in vitro biology to animal models and clinical efficacy. These concepts are translatable to cardiovascular, digestive, and musculoskeletal tissues and in vitro cell systems employed routinely in drug-screening applications.
Collapse
Affiliation(s)
- Sarah Schmitt
- School of Engineering, The University of Kansas, Lawrence, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
21
|
Mihai C, Bao S, Lai JP, Ghadiali SN, Knoell DL. PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol 2011; 302:L287-99. [PMID: 22037358 DOI: 10.1152/ajplung.00037.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The phosphoinositide-3 kinase/Akt pathway is a vital survival axis in lung epithelia. We previously reported that inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major suppressor of this pathway, results in enhanced wound repair following injury. However, the precise cellular and biomechanical mechanisms responsible for increased wound repair during PTEN inhibition are not yet well established. Using primary human lung epithelia and a related lung epithelial cell line, we first determined whether changes in migration or proliferation account for wound closure. Strikingly, we observed that cell migration accounts for the majority of wound recovery following PTEN inhibition in conjunction with activation of the Akt and ERK signaling pathways. We then used fluorescence and atomic force microscopy to investigate how PTEN inhibition alters the cytoskeletal and mechanical properties of the epithelial cell. PTEN inhibition did not significantly alter cytoskeletal structure but did result in large spatial variations in cell stiffness and in particular a decrease in cell stiffness near the wound edge. Biomechanical changes, as well as migration rates, were mediated by both the Akt and ERK pathways. Our results indicate that PTEN inhibition rapidly alters biochemical signaling events that in turn provoke alterations in biomechanical properties that enhance cell migration. Specifically, the reduced stiffness of PTEN-inhibited cells promotes larger deformations, resulting in a more migratory phenotype. We therefore conclude that increased wound closure consequent to PTEN inhibition occurs through enhancement of cell migration that is due to specific changes in the biomechanical properties of the cell.
Collapse
Affiliation(s)
- Cosmin Mihai
- Department of Biomedical Engineering, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Chaturvedi LS, Marsh HM, Basson MD. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1224-38. [PMID: 21849669 DOI: 10.1152/ajpcell.00518.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.
Collapse
|
23
|
Crosby LM, Luellen C, Zhang Z, Tague LL, Sinclair SE, Waters CM. Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing. Am J Physiol Lung Cell Mol Physiol 2011; 301:L536-46. [PMID: 21724858 DOI: 10.1152/ajplung.00371.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.
Collapse
Affiliation(s)
- Lynn M Crosby
- Department of Physiology, University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wang S, Basson MD. Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol 2011; 300:C657-70. [PMID: 21209368 DOI: 10.1152/ajpcell.00377.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although focal adhesion kinase (FAK) is typically considered upstream of Akt, extracellular pressure stimulates cancer cell adhesion via Akt-dependent FAK activation. How Akt regulates FAK is unknown. We studied Akt-FAK interaction in colon cancer cells under 15 mmHg increased extracellular pressure. Pressure enhanced Akt-FAK association, blocked by inhibiting FAK or silencing Akt1 but not Akt2, and stimulated FAK serine phosphorylation in Caco-2 and human colon cancer cells from surgical specimens Akt1-dependently. FAK includes three serine (S517/601/695) and one threonine (T600)-containing consensus sequences for Akt phosphorylation. Studying S->A nonphosphorylatable point mutants suggests that these sites coordinately upregulate FAK Y397 tyrosine phosphorylation, which conventionally initiates FAK activation, and mediate pressure-induced cancer cell adhesion. FAK(T600A) mutation did not prevent pressure-induced FAK(Y397) phosphorylation or adhesion. Akt1 appeared to directly bind FAK, and this binding did not depend on the FAK autophosphorylation site (Y397). In addition, our results demonstrated that Akt phosphorylated FAK at three novel serine phosphorylation sites, which were also not required for FAK-Akt binding. This novel interaction suggests that FAK and Akt may be dual kinase targets to prevent cancer cell adhesion and metastasis.
Collapse
Affiliation(s)
- Shouye Wang
- Dept. of Surgery, Michigan State Univ., 1200 East Michigan Ave., Suite No. 655, Lansing, MI 48912, USA
| | | |
Collapse
|
25
|
Goli-Malekabadi Z, Tafazzoli-Shadpour M, Rabbani M, Janmaleki M. Effect of uniaxial stretch on morphology and cytoskeleton of human mesenchymal stem cells: static vs. dynamic loading. ACTA ACUST UNITED AC 2011; 56:259-65. [DOI: 10.1515/bmt.2011.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|