1
|
Markert JW, Soffers JH, Farnung L. Structural basis of H3K36 trimethylation by SETD2 during chromatin transcription. Science 2025; 387:528-533. [PMID: 39666822 DOI: 10.1126/science.adn6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
During transcription, RNA polymerase II traverses through chromatin, and posttranslational modifications including histone methylations mark regions of active transcription. Histone protein H3 lysine 36 trimethylation (H3K36me3), which is established by the histone methyltransferase SET domain containing 2 (SETD2), suppresses cryptic transcription, regulates splicing, and serves as a binding site for transcription elongation factors. The mechanism by which the transcription machinery coordinates the deposition of H3K36me3 is not well understood. Here we provide cryo-electron microscopy structures of mammalian RNA polymerase II-DSIF-SPT6-PAF1c-TFIIS-IWS1-SETD2-nucleosome elongation complexes, revealing that the transcription machinery regulates H3K36me3 deposition by SETD2 on downstream and upstream nucleosomes. SPT6 binds the exposed H2A-H2B dimer during transcription, and the SPT6 death-like domain mediates an interaction with SETD2 bound to a nucleosome upstream of RNA polymerase II.
Collapse
|
2
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
An H, Yang H, Lee D. Spt5 orchestrates cryptic transcript suppression and transcriptional directionality. Commun Biol 2024; 7:1370. [PMID: 39438667 PMCID: PMC11496750 DOI: 10.1038/s42003-024-07014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Spt5 is a well-conserved factor that manipulates multiple stages of transcription from promoter-proximal pausing (PPP) to termination. Recent studies have revealed an unexpected increase of antisense transcripts near promoters in cells expressing mutant Spt5. Here, we identify Spt5p-restricted intragenic antisense transcripts and their close relationship with sense transcription in yeast. We confirm that Spt5 CTR phosphorylation is also important to retain Spt5's facility to regulate antisense transcription. The genes whose antisense transcription is strongly suppressed by Spt5p share strong endogenous sense transcription and weak antisense transcription, and this pattern is conserved in humans. Mechanistically, we found that Spt5p depletion increased histone acetylation to initiate intragenic antisense transcription by altering chromatin structure. We additionally identified termination factors that appear to be involved in the ability of Spt5p to restrict antisense transcription. By unveiling a new role of Spt5 in finely balancing the bidirectionality of transcription, we demonstrate that Spt5-mediated suppression of DSIF complex regulated-unstable transcripts (DUTs) is essential to sustain the accurate transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Haejin An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeokjun Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
5
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Lowe BR, Yadav RK, Henry RA, Schreiner P, Matsuda A, Fernandez AG, Finkelstein D, Campbell M, Kallappagoudar S, Jablonowski CM, Andrews AJ, Hiraoka Y, Partridge JF. Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. eLife 2021; 10:e65369. [PMID: 33522486 PMCID: PMC7872514 DOI: 10.7554/elife.65369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sequencing of cancer genomes has identified recurrent somatic mutations in histones, termed oncohistones, which are frequently poorly understood. Previously we showed that fission yeast expressing only the H3.3G34R mutant identified in aggressive pediatric glioma had reduced H3K36 trimethylation and acetylation, increased genomic instability and replicative stress, and defective homology-dependent DNA damage repair. Here we show that surprisingly distinct phenotypes result from G34V (also in glioma) and G34W (giant cell tumors of bone) mutations, differentially affecting H3K36 modifications, subtelomeric silencing, genomic stability; sensitivity to irradiation, alkylating agents, and hydroxyurea; and influencing DNA repair. In cancer, only 1 of 30 alleles encoding H3 is mutated. Whilst co-expression of wild-type H3 rescues most G34 mutant phenotypes, G34R causes dominant hydroxyurea sensitivity, homologous recombination defects, and dominant subtelomeric silencing. Together, these studies demonstrate the complexity associated with different substitutions at even a single residue in H3 and highlight the utility of genetically tractable systems for their analysis.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Rajesh K Yadav
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Patrick Schreiner
- Department of Bioinformatics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Alfonso G Fernandez
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Department of Bioinformatics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Margaret Campbell
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | | | | | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Janet F Partridge
- Department of Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| |
Collapse
|
8
|
Braberg H, Echeverria I, Bohn S, Cimermancic P, Shiver A, Alexander R, Xu J, Shales M, Dronamraju R, Jiang S, Dwivedi G, Bogdanoff D, Chaung KK, Hüttenhain R, Wang S, Mavor D, Pellarin R, Schneidman D, Bader JS, Fraser JS, Morris J, Haber JE, Strahl BD, Gross CA, Dai J, Boeke JD, Sali A, Krogan NJ. Genetic interaction mapping informs integrative structure determination of protein complexes. Science 2020; 370:eaaz4910. [PMID: 33303586 PMCID: PMC7946025 DOI: 10.1126/science.aaz4910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bohn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anthony Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard Alexander
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gajendradhar Dwivedi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Derek Bogdanoff
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin K Chaung
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shuyi Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Mavor
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Fraser
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John Morris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Carol A Gross
- Department of Microbiology and Immunology and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jef D Boeke
- NYU Langone Health, New York, NY 10016, USA.
- High Throughput Biology Center and Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Reim NI, Chuang J, Jain D, Alver BH, Park PJ, Winston F. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:10241-10258. [PMID: 32941642 PMCID: PMC7544207 DOI: 10.1093/nar/gkaa745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Spn1/Iws1 is a conserved protein involved in transcription and chromatin dynamics, yet its general in vivo requirement for these functions is unknown. Using a Spn1 depletion system in Saccharomyces cerevisiae, we demonstrate that Spn1 broadly influences several aspects of gene expression on a genome-wide scale. We show that Spn1 is globally required for normal mRNA levels and for normal splicing of ribosomal protein transcripts. Furthermore, Spn1 maintains the localization of H3K36 and H3K4 methylation across the genome and is required for normal histone levels at highly expressed genes. Finally, we show that the association of Spn1 with the transcription machinery is strongly dependent on its binding partner, Spt6, while the association of Spt6 and Set2 with transcribed regions is partially dependent on Spn1. Taken together, our results show that Spn1 affects multiple aspects of gene expression and provide additional evidence that it functions as a histone chaperone in vivo.
Collapse
Affiliation(s)
- Natalia I Reim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Hildreth AE, Ellison MA, Francette AM, Seraly JM, Lotka LM, Arndt KM. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife 2020; 9:e57757. [PMID: 32845241 PMCID: PMC7449698 DOI: 10.7554/elife.57757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Compared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. We performed a genetic screen in Saccharomyces cerevisiae to identify histone mutants that exhibit transcriptional readthrough of terminators. Amino acid substitutions identified by the screen map to the nucleosome DNA entry-exit site. The strongest H3 mutants revealed widespread genomic changes, including increased sense-strand transcription upstream and downstream of genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3' ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to transcription and highlight the importance of the DNA entry-exit site in broadly maintaining the integrity of the transcriptome.
Collapse
Affiliation(s)
- A Elizabeth Hildreth
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Mitchell A Ellison
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Alex M Francette
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Julia M Seraly
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Lauren M Lotka
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Karen M Arndt
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
11
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
12
|
DiFiore JV, Ptacek TS, Wang Y, Li B, Simon JM, Strahl BD. Unique and Shared Roles for Histone H3K36 Methylation States in Transcription Regulation Functions. Cell Rep 2020; 31:107751. [PMID: 32521276 PMCID: PMC7334899 DOI: 10.1016/j.celrep.2020.107751] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/21/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Set2 co-transcriptionally methylates lysine 36 of histone H3 (H3K36), producing mono-, di-, and trimethylation (H3K36me1/2/3). These modifications recruit or repel chromatin effector proteins important for transcriptional fidelity, mRNA splicing, and DNA repair. However, it was not known whether the different methylation states of H3K36 have distinct biological functions. Here, we use engineered forms of Set2 that produce different lysine methylation states to identify unique and shared functions for H3K36 modifications. Although H3K36me1/2 and H3K36me3 are functionally redundant in many SET2 deletion phenotypes, we found that H3K36me3 has a unique function related to Bur1 kinase activity and FACT (facilitates chromatin transcription) complex function. Further, during nutrient stress, either H3K36me1/2 or H3K36me3 represses high levels of histone acetylation and cryptic transcription that arises from within genes. Our findings uncover the potential for the regulation of diverse chromatin functions by different H3K36 methylation states.
Collapse
Affiliation(s)
- Julia V DiFiore
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yi Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Gopalakrishnan R, Marr SK, Kingston RE, Winston F. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation. Nucleic Acids Res 2019; 47:3888-3903. [PMID: 30793188 PMCID: PMC6486648 DOI: 10.1093/nar/gkz119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
The transcription elongation factor Spt6 and the H3K36 methyltransferase Set2 are both required for H3K36 methylation and transcriptional fidelity in Saccharomyces cerevisiae. However, the nature of the requirement for Spt6 has remained elusive. By selecting for suppressors of a transcriptional defect in an spt6 mutant, we have isolated several highly clustered, dominant SET2 mutations (SET2sup mutations) in a region encoding a proposed autoinhibitory domain. SET2sup mutations suppress the H3K36 methylation defect in the spt6 mutant, as well as in other mutants that impair H3K36 methylation. We also show that SET2sup mutations overcome the requirement for certain Set2 domains for H3K36 methylation. In vivo, SET2sup mutants have elevated levels of H3K36 methylation and the purified Set2sup mutant protein has greater enzymatic activityin vitro. ChIP-seq studies demonstrate that the H3K36 methylation defect in the spt6 mutant, as well as its suppression by a SET2sup mutation, occurs at a step following the recruitment of Set2 to chromatin. Other experiments show that a similar genetic relationship between Spt6 and Set2 exists in Schizosaccharomyces pombe. Taken together, our results suggest a conserved mechanism by which the Set2 autoinhibitory domain requires multiple Set2 interactions to ensure that H3K36 methylation occurs specifically on actively transcribed chromatin.
Collapse
Affiliation(s)
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert E Kingston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
14
|
Bilokapic S, Halic M. Nucleosome and ubiquitin position Set2 to methylate H3K36. Nat Commun 2019; 10:3795. [PMID: 31439846 PMCID: PMC6706414 DOI: 10.1038/s41467-019-11726-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification deposited by the Set2 methyltransferases. Recent findings show that over-expression or mutation of Set2 enzymes promotes cancer progression, however, mechanisms of H3K36me are poorly understood. Set2 enzymes show spurious activity on histones and histone tails, and it is unknown how they obtain specificity to methylate H3K36 on the nucleosome. In this study, we present 3.8 Å cryo-EM structure of Set2 bound to the mimic of H2B ubiquitinated nucleosome. Our structure shows that Set2 makes extensive interactions with the H3 αN, the H3 tail, the H2A C-terminal tail and stabilizes DNA in the unwrapped conformation, which positions Set2 to specifically methylate H3K36. Moreover, we show that ubiquitin contributes to Set2 positioning on the nucleosome and stimulates the methyltransferase activity. Notably, our structure uncovers interfaces that can be targeted by small molecules for development of future cancer therapies.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
15
|
Uwimana N, Collin P, Jeronimo C, Haibe-Kains B, Robert F. Bidirectional terminators in Saccharomyces cerevisiae prevent cryptic transcription from invading neighboring genes. Nucleic Acids Res 2017; 45:6417-6426. [PMID: 28383698 PMCID: PMC5499651 DOI: 10.1093/nar/gkx242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription can be quite disruptive for chromatin so cells have evolved mechanisms to preserve chromatin integrity during transcription, thereby preventing the emergence of cryptic transcripts from spurious promoter sequences. How these transcripts are regulated and processed remains poorly characterized. Notably, very little is known about the termination of cryptic transcripts. Here, we used RNA-Seq to identify and characterize cryptic transcripts in Spt6 mutant cells (spt6-1004) in Saccharomyces cerevisiae. We found polyadenylated cryptic transcripts running both sense and antisense relative to genes in this mutant. Cryptic promoters were enriched for TATA boxes, suggesting that the underlying DNA sequence defines the location of cryptic promoters. While intragenic sense cryptic transcripts terminate at the terminator of the genes that host them, we found that antisense cryptic transcripts preferentially terminate near the 3΄-end of the upstream gene. This finding led us to demonstrate that most terminators in yeast are bidirectional, leading to termination and polyadenylation of transcripts coming from both directions. We propose that S. cerevisiae has evolved this mechanism in order to prevent/attenuate spurious transcription from invading neighbouring genes, a feature that is particularly critical for organisms with small compact genomes.
Collapse
Affiliation(s)
- Nicole Uwimana
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Pierre Collin
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario M5G 1L7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
16
|
Robert F. Bidirectional terminators: an underestimated aspect of gene regulation. Curr Genet 2017; 64:389-391. [PMID: 29018946 DOI: 10.1007/s00294-017-0763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
Recent experimental and computational work revealed that transcriptional terminators in Saccharomyces cerevisiae can terminate transcription coming from both directions. This mechanism helps budding yeast cope with the pervasive nature of transcription by limiting aberrant transcription from invading neighboring genes.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
17
|
Yadav RK, Jablonowski CM, Fernandez AG, Lowe BR, Henry RA, Finkelstein D, Barnum KJ, Pidoux AL, Kuo YM, Huang J, O’Connell MJ, Andrews AJ, Onar-Thomas A, Allshire RC, Partridge JF. Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. eLife 2017; 6:e27406. [PMID: 28718400 PMCID: PMC5515577 DOI: 10.7554/elife.27406] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma.
Collapse
Affiliation(s)
- Rajesh K Yadav
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, United States
| | - Carolyn M Jablonowski
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, United States
| | - Alfonso G Fernandez
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, United States
| | - Brandon R Lowe
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, United States
| | - Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - David Finkelstein
- Department of Bioinformatics, St. Jude Children’s Research Hospital, Memphis, United States
| | - Kevin J Barnum
- Department of Oncological Sciences and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Alison L Pidoux
- Wellcome Trust School for Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, United States
| | - Matthew J O’Connell
- Department of Oncological Sciences and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, United States
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, United States
| | - Robin C Allshire
- Wellcome Trust School for Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Janet F Partridge
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, United States
| |
Collapse
|
18
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
19
|
Wang Y, Niu Y, Li B. Balancing acts of SRI and an auto-inhibitory domain specify Set2 function at transcribed chromatin. Nucleic Acids Res 2015; 43:4881-92. [PMID: 25925577 PMCID: PMC4446442 DOI: 10.1093/nar/gkv393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Set2-mediated H3K36 methylation ubiquitously functions in coding regions in all eukaryotes. It has been linked to the regulation of acetylation states, histone exchange, alternative splicing, DNA repair and recombination. Set2 is recruited to transcribed chromatin through its SRI domain's direct association with phosphorylated Pol II. However, regulatory mechanisms for histone modifying enzymes like Set2 that travel with elongating Pol II remain largely unknown beyond their initial recruitment events. Here, by fusing Set2 to RNA Pol II, we found that the SRI domain can also recognize linker DNA of chromatin, thereby controlling Set2 substrate specificity. We also discovered that an auto-inhibitory domain (AID) of Set2 primarily restricts Set2 activity to transcribed chromatin and fine-tunes several functions of SRI. Finally, we demonstrated that AID mutations caused hyperactive Set2 in vivo and displayed a synthetic interaction with the histone chaperone FACT. Our data suggest that Set2 is intrinsically regulated through multiple mechanisms and emphasize the importance of a precise temporal control of H3K36 methylation during the dynamic transcription elongation process.
Collapse
Affiliation(s)
- Yi Wang
- Biological Chemistry Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanling Niu
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bing Li
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Sein H, Värv S, Kristjuhan A. Distribution and maintenance of histone H3 lysine 36 trimethylation in transcribed locus. PLoS One 2015; 10:e0120200. [PMID: 25774516 PMCID: PMC4361658 DOI: 10.1371/journal.pone.0120200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/26/2015] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications of core histones play an important role in the epigenetic regulation of chromatin dynamics and gene expression. In Saccharomyces cerevisiae methylation marks at K4, K36, and K79 of histone H3 are associated with gene transcription. Although Set2-mediated H3K36 methylation is enriched throughout the coding region of active genes and prevents aberrant transcriptional initiation within coding sequences, it is not known if transcription of one locus impacts the methylation pattern of neighbouring areas and for how long H3K36 methylation is maintained after transcription termination. Our results demonstrate that H3K36 methylation is restricted to the transcribed sequence only and the modification does not spread to adjacent loci downstream from transcription termination site. We also show that H3K36 trimethylation mark persists in the locus for at least 60 minutes after transcription inhibition, suggesting a short epigenetic memory for recently occurred transcriptional activity. Our results indicate that both replication-dependent exchange of nucleosomes and the activity of histone demethylases Rph1, Jhd1 and Gis1 contribute to the turnover of H3K36 methylation upon shut-down of transcription.
Collapse
Affiliation(s)
- Henel Sein
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia
| | - Signe Värv
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia
- * E-mail:
| |
Collapse
|
21
|
Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16:178-89. [DOI: 10.1038/nrm3941] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription. Genes Dev 2014; 28:1647-52. [PMID: 25085417 PMCID: PMC4117940 DOI: 10.1101/gad.243121.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monoubiquitylation of histone H2B on Lys123 (H2BK123ub1) plays a multifaceted role in diverse DNA-templated processes, yet the mechanistic details by which this modification is regulated are not fully elucidated. Here we show in yeast that H2BK123ub1 is regulated in part through the protein stability of the E3 ubiquitin ligase Bre1. We found that Bre1 stability is controlled by the Rtf1 subunit of the polymerase-associated factor (PAF) complex and through the ability of Bre1 to catalyze H2BK123ub1. Using a domain in Rtf1 that stabilizes Bre1, we show that inappropriate Bre1 levels lead to defects in gene regulation. Collectively, these data uncover a novel quality control mechanism used by the cell to maintain proper Bre1 and H2BK123ub1 levels, thereby ensuring proper control of gene expression.
Collapse
|
23
|
Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol 2013; 33:4779-92. [PMID: 24100010 DOI: 10.1128/mcb.01068-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spt6 is a highly conserved histone chaperone that interacts directly with both RNA polymerase II and histones to regulate gene expression. To gain a comprehensive understanding of the roles of Spt6, we performed genome-wide analyses of transcription, chromatin structure, and histone modifications in a Schizosaccharomyces pombe spt6 mutant. Our results demonstrate dramatic changes to transcription and chromatin structure in the mutant, including elevated antisense transcripts at >70% of all genes and general loss of the +1 nucleosome. Furthermore, Spt6 is required for marks associated with active transcription, including trimethylation of histone H3 on lysine 4, previously observed in humans but not Saccharomyces cerevisiae, and lysine 36. Taken together, our results indicate that Spt6 is critical for the accuracy of transcription and the integrity of chromatin, likely via its direct interactions with RNA polymerase II and histones.
Collapse
|
24
|
Sarai N, Nimura K, Tamura T, Kanno T, Patel MC, Heightman TD, Ura K, Ozato K. WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition. EMBO J 2013; 32:2392-406. [PMID: 23921552 DOI: 10.1038/emboj.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/10/2013] [Indexed: 01/22/2023] Open
Abstract
Actively transcribed genes are enriched with the histone variant H3.3. Although H3.3 deposition has been linked to transcription, mechanisms controlling this process remain elusive. We investigated the role of the histone methyltransferase Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (NSD2/MMSET) in H3.3 deposition into interferon (IFN) response genes. IFN treatment triggered robust H3.3 incorporation into activated genes, which continued even after cessation of transcription. Likewise, UV radiation caused H3.3 deposition in UV-activated genes. However, in Whsc1(-/-) cells IFN- or UV-triggered H3.3 deposition was absent, along with a marked reduction in IFN- or UV-induced transcription. We found that WHSC1 interacted with the bromodomain protein 4 (BRD4) and the positive transcription elongation factor b (P-TEFb) and facilitated transcriptional elongation. WHSC1 also associated with HIRA, the H3.3-specific histone chaperone, independent of BRD4 and P-TEFb. WHSC1 and HIRA co-occupied IFN-stimulated genes and supported prolonged H3.3 incorporation, leaving a lasting transcriptional mark. Our results reveal a previously unrecognized role of WHSC1, which links transcriptional elongation and H3.3 deposition into activated genes through two molecularly distinct pathways.
Collapse
Affiliation(s)
- Naoyuki Sarai
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Endo H, Nakabayashi Y, Kawashima S, Enomoto T, Seki M, Horikoshi M. Nucleosome surface containing nucleosomal DNA entry/exit site regulates H3-K36me3 via association with RNA polymerase II and Set2. Genes Cells 2013; 17:65-81. [PMID: 22212475 DOI: 10.1111/j.1365-2443.2011.01573.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A nucleosome is composed of intrinsically disordered histone tails and a structured nucleosome core surrounded by DNA. A variety of modifiable residues on the intrinsically disordered histone tails have been identified in the last decade. Mapping of the functional residues on the structured nucleosome core surface was recently initiated by global analysis of a comprehensive histone point mutant library (histone-GLibrary). It stands to reason that a functional relationship exists between modifiable residues on the intrinsically disordered histone tails and functional residues on the structured nucleosome core; however, this matter has been poorly explored. During transcription elongation, trimethylation of histone H3 at lysine 36 (H3-K36me3) is mediated by histone methyltransferase Set2, which binds to RNA polymerase II. Here, we used a histone-GLibrary that encompasses the nucleosomal DNA entry/exit site to show that six residues (H2A-G107, H2A-I112, H2A-L117, H3-T45, H3-R49 and H3-R52) form a surface on the structured nucleosome core and regulate H3-K36me3. Trimethylation at H3-K4 introduced by histone methyltransferase Set1 was not affected by the mutation of any of the six residues. Chromatin immunoprecipitation analysis showed that most of these residues are critical for the chromatin association of RNA polymerase II and Set2, suggesting that these components regulate H3-K36me3 through functional interactions with the structured nucleosome core surface.
Collapse
Affiliation(s)
- Hirohito Endo
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Venkatesh S, Workman JL. Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:685-700. [PMID: 24014454 DOI: 10.1002/wdev.109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Set2 is a RNA polymerase II (RNAPII) associated histone methyltransferase involved in the cotranscriptional methylation of the H3 K36 residue (H3K36me). It is responsible for multiple degrees of methylation (mono-, di-, and trimethylation), each of which has a distinct functional consequence. The extent of methylation and its genomic distribution is determined by different factors that coordinate to achieve a functional outcome. In yeast, the Set2-mediated H3K36me is involved in suppressing histone exchange, preventing hyperacetylation and promoting maintenance of well-spaced chromatin structure over the coding regions. In metazoans, separation of this enzymatic activity affords greater functional diversity extending beyond the control of transcription elongation to developmental gene regulation. This review focuses on the molecular aspects of the Set2 distribution and function, and discusses the role played by H3 K36 methyl mark in organismal development.
Collapse
|
27
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
28
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
29
|
Cloutier SC, Ma WK, Nguyen LT, Tran EJ. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 2012; 287:26155-66. [PMID: 22679025 DOI: 10.1074/jbc.m112.383075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3' end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.
Collapse
Affiliation(s)
- Sara C Cloutier
- Department of Biochemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | |
Collapse
|
30
|
Wyrick JJ, Kyriss MNM, Davis WB. Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:892-901. [PMID: 22521324 DOI: 10.1016/j.bbagrm.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/23/2022]
Abstract
Research over the past decade has greatly expanded our understanding of the nucleosome's role as a dynamic hub that is specifically recognized by many regulatory proteins involved in transcription, silencing, replication, repair, and chromosome segregation. While many of these nucleosome interactions are mediated by post-translational modifications in the disordered histone tails, it is becoming increasingly apparent that structured regions of the nucleosome, including the histone fold domains, are also recognized by numerous regulatory proteins. This review will focus on the recognition of structured domains in the histone H2A-H2B dimer, including the acidic patch, the H2A docking domain, the H2B α3-αC helices, and the HAR/HBR domains, and will survey the known biological functions of histone residues within these domains. Novel post-translational modifications and trans-histone regulatory pathways involving structured regions of the H2A-H2B dimer will be highlighted, along with the role of intrinsic disorder in the recognition of structured nucleosome regions.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
31
|
Chen J, Miller A, Kirchmaier AL, Irudayaraj JMK. Single-molecule tools elucidate H2A.Z nucleosome composition. J Cell Sci 2012; 125:2954-64. [PMID: 22393239 DOI: 10.1242/jcs.101592] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although distinct epigenetic marks correlate with different chromatin states, how they are integrated within single nucleosomes to generate combinatorial signals remains largely unknown. We report the successful implementation of single molecule tools constituting fluorescence correlation spectroscopy (FCS), pulse interleave excitation-based Förster resonance energy transfer (PIE-FRET) and fluorescence lifetime imaging-based FRET (FLIM-FRET) to elucidate the composition of single nucleosomes containing histone variant H2A.Z (Htz1p in yeast) in vitro and in vivo. We demonstrate that yeast nucleosomes containing Htz1p are primarily composed of H4 K12ac and H3 K4me3 but not H3 K36me3 and that these patterns are conserved in mammalian cells. Quantification of epigenetic modifications in nucleosomes will provide a new dimension to epigenetics research and lead to a better understanding of how these patterns contribute to the targeting of chromatin-binding proteins and chromatin structure during gene regulation.
Collapse
Affiliation(s)
- Jiji Chen
- Department of Agricultural and Biological Engineering, Purdue University Center for Cancer Research, 225 South University Street, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
32
|
Iwasaki W, Tachiwana H, Kawaguchi K, Shibata T, Kagawa W, Kurumizaka H. Comprehensive Structural Analysis of Mutant Nucleosomes Containing Lysine to Glutamine (KQ) Substitutions in the H3 and H4 Histone-Fold Domains. Biochemistry 2011; 50:7822-32. [DOI: 10.1021/bi201021h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wakana Iwasaki
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Koichiro Kawaguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Takehiko Shibata
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Wataru Kagawa
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| |
Collapse
|
33
|
Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol Cell Biol 2011; 31:3557-68. [PMID: 21730290 DOI: 10.1128/mcb.05195-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies of Saccharomyces cerevisiae described a gene repression mechanism where the transcription of intergenic noncoding DNA (ncDNA) (SRG1) assembles nucleosomes across the promoter of the adjacent SER3 gene that interfere with the binding of transcription factors. To investigate the role of histones in this mechanism, we screened a comprehensive library of histone H3 and H4 mutants for those that derepress SER3. We identified mutations altering eight histone residues (H3 residues V46, R49, V117, Q120, and K122 and H4 residues R36, I46, and S47) that strongly increase SER3 expression without reducing the transcription of the intergenic SRG1 ncDNA. We detected reduced nucleosome occupancy across SRG1 in these mutants to degrees that correlate well with the level of SER3 derepression. The histone chromatin immunoprecipitation experiments on several other genes suggest that the loss of nucleosomes in these mutants is specific to highly transcribed regions. Interestingly, two of these histone mutants, H3 R49A and H3 V46A, reduce Set2-dependent methylation of lysine 36 of histone H3 and allow transcription initiation from cryptic intragenic promoters. Taken together, our data identify a new class of histone mutants that is defective for transcription-dependent nucleosome occupancy.
Collapse
|
34
|
Interaction of SET domains with histones and nucleic acid structures in active chromatin. Clin Epigenetics 2011; 2:17-25. [PMID: 22704267 PMCID: PMC3365373 DOI: 10.1007/s13148-010-0015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022] Open
Abstract
Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modifications—the inheritable “histone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the “SET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions.
Collapse
|