1
|
Lin W, Chen H, Chen X, Guo C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants (Basel) 2024; 13:132. [PMID: 38275657 PMCID: PMC10812636 DOI: 10.3390/antiox13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Wei Lin
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Huili Chen
- Center of System Pharmacology and Pharmacometrics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Saed GM, Nawaz A, Alvero AA, Harper AK, Morris RT. Monomeric myeloperoxidase is a specific biomarker for early-stage ovarian cancer. Biomarkers 2023; 28:663-671. [PMID: 37982229 DOI: 10.1080/1354750x.2023.2284106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Background: Ovarian cancer cells are known to express myeloperoxidase (MPO), an oxidant-producing enzyme with a 150 kDa homodimer, consisting of two identical monomers connected by a disulfide bond. Here, we aim to validate monomeric MPO (mMPO) as a biomarker for the early detection of ovarian cancer.Methods: Human ovarian cancer cells, sera from patients at various stages, sera from non-cancer inflammatory gynecological diseases, and healthy volunteers were used. Monomeric and dimeric MPO were measured by ELISA. Receiver operating curves were used to compare the predictive powers of serum dimeric and monomeric MPO to discriminate between samples.Results: The expression of MPO was unique to ovarian cancer cells. Specifically, mMPO was found to be the only form of MPO in all ovarian cancer cell lines. Intriguingly, mMPO was detected in the sera from all patients with ovarian cancer at various stages, but not from healthy individuals. Serum mMPO discriminated between early-stage ovarian cancer, healthy controls, and benign inflammatory gynecologic disorders. In addition, mMPO discriminated between the early and late stages of the disease.Conclusion: This work highlights mMPO as a potential biomarker for early detection of ovarian cancer, which is critically needed.
Collapse
Affiliation(s)
- Ghassan M Saed
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Asad Nawaz
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ayesha A Alvero
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Amy K Harper
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Robert T Morris
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
3
|
Pfanzagl V, Gruber-Grünwald C, Leitgeb U, Furtmüller PG, Obinger C. Posttranslational modification and heme cavity architecture of human eosinophil peroxidase-insights from first crystal structure and biochemical characterization. J Biol Chem 2023; 299:105402. [PMID: 38229400 PMCID: PMC10679500 DOI: 10.1016/j.jbc.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024] Open
Abstract
Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Clemens Gruber-Grünwald
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Urban Leitgeb
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Leitgeb U, Furtmüller PG, Hofbauer S, Brito JA, Obinger C, Pfanzagl V. The staphylococcal inhibitory protein SPIN binds to human myeloperoxidase with picomolar affinity but only dampens halide oxidation. J Biol Chem 2022; 298:102514. [PMID: 36150500 DOI: 10.1016/j.jbc.2022.102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022] Open
Abstract
The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus however is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence-dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.
Collapse
Affiliation(s)
- Urban Leitgeb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Paul G Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Jose A Brito
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, 2780-157 Oeiras, Portugal
| | - Christian Obinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Vera Pfanzagl
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Krawczyk L, Semwal S, Soubhye J, Lemri Ouadriri S, Prévost M, Van Antwerpen P, Roos G, Bouckaert J. Native glycosylation and binding of the antidepressant paroxetine in a low-resolution crystal structure of human myeloperoxidase. Acta Crystallogr D Struct Biol 2022; 78:1099-1109. [PMID: 36048150 PMCID: PMC9435594 DOI: 10.1107/s2059798322007082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Human myeloperoxidase (MPO) utilizes hydrogen peroxide to oxidize organic compounds and as such plays an essential role in cell-component synthesis, in metabolic and elimination pathways, and in the front-line defence against pathogens. Moreover, MPO is increasingly being reported to play a role in inflammation. The enzymatic activity of MPO has also been shown to depend on its glycosylation. Mammalian MPO crystal structures deposited in the Protein Data Bank (PDB) present only a partial identification of their glycosylation. Here, a newly obtained crystal structure of MPO containing four disulfide-linked dimers and showing an elaborate collection of glycans is reported. These are compared with the glycans identified in proteomics studies and from 18 human MPO structures available in the PDB. The crystal structure also contains bound paroxetine, a blocker of serotonin reuptake that has previously been identified as an irreversible inhibitor of MPO, in the presence of thiocyanate, a physiological substrate of MPO.
Collapse
Affiliation(s)
- Lucas Krawczyk
- UGSF, CNRS, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Shubham Semwal
- UGSF, CNRS, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, Brussels, Belgium
| | | | - Martin Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Goedele Roos
- UGSF, CNRS, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Julie Bouckaert
- UGSF, CNRS, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| |
Collapse
|
6
|
Prediction of the Effects of Missense Mutations on Human Myeloperoxidase Protein Stability Using In Silico Saturation Mutagenesis. Genes (Basel) 2022; 13:genes13081412. [PMID: 36011324 PMCID: PMC9407467 DOI: 10.3390/genes13081412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloperoxidase (MPO) is a heme peroxidase with microbicidal properties. MPO plays a role in the host's innate immunity by producing reactive oxygen species inside the cell against foreign organisms. However, there is little functional evidence linking missense mutations to human diseases. We utilized in silico saturation mutagenesis to generate and analyze the effects of 10,811 potential missense mutations on MPO stability. Our results showed that ~71% of the potential missense mutations destabilize MPO, and ~8% stabilize the MPO protein. We showed that G402W, G402Y, G361W, G402F, and G655Y would have the highest destabilizing effect on MPO. Meanwhile, D264L, G501M, D264H, D264M, and G501L have the highest stabilization effect on the MPO protein. Our computational tool prediction showed the destabilizing effects in 13 out of 14 MPO missense mutations that cause diseases in humans. We also analyzed putative post-translational modification (PTM) sites on the MPO protein and mapped the PTM sites to disease-associated missense mutations for further analysis. Our analysis showed that R327H associated with frontotemporal dementia and R548W causing generalized pustular psoriasis are near these PTM sites. Our results will aid further research into MPO as a biomarker for human complex diseases and a candidate for drug target discovery.
Collapse
|
7
|
D-Mannose Slows Glioma Growth by Modulating Myeloperoxidase Activity. Cancers (Basel) 2021; 13:cancers13246360. [PMID: 34944979 PMCID: PMC8699108 DOI: 10.3390/cancers13246360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Inflammation and oxidative stress are important host defense responses. However, while the host response can be cytotoxic and kill tumor cells, tumor cells can also alter and exploit the host immune environment to further their survival. Thus, the host response can impact both tumor suppression and progression. Modulating the tumor–host response interaction to favor tumor suppression would be highly desirable. D-mannose has been found to have anti-inflammatory properties and can block signaling related to myeloperoxidase (MPO), a highly oxidizing pro-inflammatory enzyme secreted in host defense. However, the effect of D-mannose on host immune response in the glioma microenvironment has not been explored. We found that D-mannose slowed glioma growth by increasing MPO activity and oxidative stress in the glioma microenvironment. Our findings revealed that D-mannose may be able to shift the host immune response toward tumor suppression and could be a potential new therapeutic direction for these difficult-to-treat tumors. Abstract Host immune response in the tumor microenvironment plays key roles in tumorigenesis. We hypothesized that D-mannose, a simple sugar with anti-inflammatory properties, could decrease oxidative stress and slow glioma progression. Using a glioma stem cell model in immunocompetent mice, we induced gliomas in the brain and tracked MPO activity in vivo with and without D-mannose treatment. As expected, we found that D-mannose treatment decreased the number of MPO+ cells and slowed glioma progression compared to PBS-treated control animals with gliomas. Unexpectedly, instead of decreasing MPO activity, D-mannose increased MPO activity in vivo, revealing that D-mannose boosted the MPO activity per MPO+ cell. On the other hand, D-glucose had no effect on MPO activity. To better understand this effect, we examined the effect of D-mannose on bone marrow-derived myeloid cells. We found that D-mannose modulated MPO activity via two mechanisms: directly via N-glycosylation of MPO, which boosted the MPO activity of each molecule, and indirectly by increasing H2O2 production, the main substrate for MPO. This increased host immune response acted to reduce tumor size, suggesting that increasing MPO activity such as through D-mannose administration may be a potential new therapeutic direction for glioma treatment.
Collapse
|
8
|
Siraki AG. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol 2021; 46:102109. [PMID: 34455146 PMCID: PMC8403760 DOI: 10.1016/j.redox.2021.102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
This review provides a practical guide to myeloperoxidase (MPO) and presents to the reader the diversity of its presence in biology. The review provides a historical background, from peroxidase activity to the discovery of MPO, to its role in disease and drug development. MPO is discussed in terms of its necessity, as specific individuals lack MPO expression. An underlying theme presented throughout brings up the question of the benefit and burden of MPO activity. Enzyme structure is discussed, including accurate masses and glycosylation sites. The catalytic cycle of MPO and its corresponding pathways are presented, with a discussion of the importance of the redox couples of the different states of MPO. Cell lines expressing MPO are discussed and practically summarized for the reader, and locations of MPO (primary and secondary) are provided. Useful methods of MPO detection are discussed, and how these can be used for studying disease processes are implied through the presentation of MPO as a biomarker. The presence of MPO in neutrophil extracellular traps is presented, and the activators of the former are provided. Lastly, the transition from drug metabolism to a target for drug development is where the review concludes.
Collapse
Affiliation(s)
- Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
10
|
Noia M, Fontenla-Iglesias F, Valle A, Blanco-Abad V, Leiro JM, Lamas J. Characterization of the turbot Scophthalmus maximus (L.) myeloperoxidase. An insight into the evolution of vertebrate peroxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103993. [PMID: 33412231 DOI: 10.1016/j.dci.2021.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
We have completed the characterization of the turbot (Scophthalmus maximus) myeloperoxidase (mpx) gene and protein, which we partially described in a previous study. The turbot mpx gene has 15 exons that encode a protein of 767 aa, with a signal peptide, propeptide and light and heavy chains, and also with haem cavities, a Ca+2-binding motif and several N- and O-glycosylation sites. The mature protein forms homodimers of about 150 kDa and is very abundant in turbot neutrophils. In addition to the mpx (epx2a) gene, another three peroxidase genes, named epx1, epx2b1 and epx2b2, were identified in the turbot genome. Epx1, Epx2b1 and Epx2b2 proteins also have signal peptides and many structural characteristics of mammalian MPO and eosinophil peroxidase (EPX). Mpx was strongly expressed in head kidney, while epx2b1 and epx2b2 were strongly expressed in the gills, and epx1 was not expressed in any of the tissues or organs analysed. In vitro stimulation of head kidney leucocytes with the parasite Philasterides dicentrarchi caused a decrease in mpx expression and an increase in epx2b1 expression over time. In turbot infected experimentally with P. dicentrarchi a significant increase in mpx expression in the head kidney was observed on day 7 postinfection, while the other genes were not regulated. However, mpx, epx2b1 and epx2b2 were downregulated in the gills of infected fish, and epx1 expression was not affected. These results suggest that the four genes responded differently to the same stimuli. Interestingly, BLAST analysis revealed that Epx1 and Mpx showed greater similarity to mammalian EPX than to MPO. Considering the phylogenetic and synteny data obtained, we concluded that the epx/mpx genes of Gnathostomes can be divided into three main clades: EPX1, which contains turbot epx1, EPX2, which contains turbot mpx (epx2a) and epx2b1 and epx2b2 genes, and a clade containing mammalian EPX and MPO (EPX/MPO). EPX/MPO and EPX2 clades share a common ancestor with the chondrichthyan elephant shark (Callorhinchus milii) and the coelacanth (Latimeria chalumnae) peroxidases. EPX2 was only found in fish and includes two sister groups. One of the groups includes turbot mpx and was only found in teleosts. Finally, the other group contains epx2b1 and epx2b2 genes, and epx2b1-2b2 loci share orthologous genes with other teleosts and also with holosteans, suggesting that these genes appeared earlier on than the mpx gene.
Collapse
Affiliation(s)
- Manuel Noia
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Francisco Fontenla-Iglesias
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Verónica Blanco-Abad
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021; 296:100144. [PMID: 33273015 PMCID: PMC7857493 DOI: 10.1074/jbc.ra120.016342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Ian Loke
- Cordlife Group Limited, Singapore, Singapore
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Fabian Soltermann
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Abstract
Myeloperoxidase participates in innate immune defense mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. This has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, based on the profound knowledge of structure and function of MPO and its biochemical and biophysical differences with the other homologous human peroxidases, various rational and high-throughput screening attempts were performed in developing specific irreversible and reversible inhibitors. The most prominent candidates as well as MPO inhibitors already studied in clinical trials are introduced and discussed.
Collapse
|
13
|
Jeong HK, Hwang H, Kang YM, Lee HK, Park GW, Lee JY, Kim DG, Lee JW, Lee SY, An HJ, Kim JY, Yoo JS. Computational classification of core and outer fucosylation of N-glycoproteins in human plasma using collision-induced dissociation in mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8917. [PMID: 32754952 DOI: 10.1002/rcm.8917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycoprotein fucosylation, one of the major posttranslational modifications, is known to be highly involved in proteins related to various cancers. Fucosylation occurs in the core and/or outer sites of N-glycopeptides. Elucidation of the fucosylation type of N-glycoproteins is therefore important. However, it has remained a challenge to classify the fucosylation types of N-glycopeptides using collision-induced dissociation (CID) tandem mass (MS/MS) spectra. METHODS The relative intensities of the Y1 F, Y2 F, Y3 F, and Y4 F product ions in the CID-MS/MS spectra of the IgG N-glycopeptides were measured for core fucosylation. The Core Fucose Index (CFI) was then calculated by multiplication of the relative intensities with a weight factor from logistic regression to differentiate between the core and none fucosylation. From the relative intensities of the B2 F and B3 SF ions of the MS/MS spectra of the AGP N-glycopeptides for outer fucosylation, the Outer Fucose Index (OFI) was calculated to differentiate between the outer and none fucosylation. RESULTS In order to classify core and/or outer fucosylation of N-glycoproteins, we defined the fucosylation score (F-score) by a sigmoidal equation using a combination of the CFI and the OFI. For application, we classified the fucosylation types of N-glycoproteins in human plasma with 99.7% accuracy from the F-score. Human plasma samples showed 54.4%, 33.3%, 10.3%, and 1.6% for none, core, outer, and dual fucosylated N-glycopeptides, respectively. Core fucosylation was abundant at mono- and bi-antennary N-glycopeptides. Outer fucosylation was abundant at tri- and tetra-antennary N-glycopeptides. In total, 113 N-glycopeptides of 29 glycoproteins from 3365 glycopeptide spectral matches (GPSMs) were classified for different types of fucosylation. CONCLUSIONS We established an F-score to classify three different fucosylation types: core, outer, and dual types of N-glycopeptides. The fucosylation types of 20 new N-glycopeptides from 11 glycoproteins in human plasma were classified using the F-score. Therefore, the F-score can be useful for the automatic classification of different types of fucosylation in N-glycoproteins of biological fluids including plasma, serum, and urine.
Collapse
Affiliation(s)
- Hoi Keun Jeong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Young-Mook Kang
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun Kyoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gun Wook Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Ju Yeon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Dong Geun Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Won Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Yoon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
14
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
15
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
16
|
Soubhye J, Van Antwerpen P, Dufrasne F. A patent review of myeloperoxidase inhibitors for treating chronic inflammatory syndromes (focus on cardiovascular diseases, 2013-2019). Expert Opin Ther Pat 2020; 30:595-608. [DOI: 10.1080/13543776.2020.1780210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Universite Libre De Bruxelles, Bruxelles, Belgium
| |
Collapse
|
17
|
Hinneburg H, Pedersen JL, Bokil NJ, Pralow A, Schirmeister F, Kawahara R, Rapp E, Saunders BM, Thaysen-Andersen M. High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology 2020; 30:679-694. [DOI: 10.1093/glycob/cwaa020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon–liquid chromatography–tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0–1, 22.1–30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8–35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6–39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.
Collapse
Affiliation(s)
- Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, NSW 2109 Sydney, Australia
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109 Sydney, Australia
| | - Jessica L Pedersen
- School of Life Sciences, Faculty of Science, University of Technology, NSW 2007 Sydney, Australia
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science, University of Technology, NSW 2007 Sydney, Australia
| | - Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems (Bioprocess Engineering), 39106 Magdeburg, Germany
| | | | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, NSW 2109 Sydney, Australia
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109 Sydney, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems (Bioprocess Engineering), 39106 Magdeburg, Germany
- GlyXera GmbH, 39120 Magdeburg, Germany
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology, NSW 2007 Sydney, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, NSW 2109 Sydney, Australia
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109 Sydney, Australia
| |
Collapse
|
18
|
Reiding KR, Franc V, Huitema MG, Brouwer E, Heeringa P, Heck AJR. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. J Biol Chem 2019; 294:20233-20245. [PMID: 31719144 PMCID: PMC6937560 DOI: 10.1074/jbc.ra119.011098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCAs) are directed against lysosomal components of neutrophils. ANCAs directed to proteinase 3 and myeloperoxidase (MPO) in particular are associated with distinct forms of small vessel vasculitides. MPO is an abundant neutrophil-derived heme protein that is part of the antimicrobial defense system. The protein is typically present in the azurophilic granules of neutrophils, but a large portion may also enter the extracellular space. It remains unclear why MPO is frequently the target of antibody-mediated autoimmune responses. MPO is a homodimeric glycoprotein, posttranslationally modified with complex sugars at specific sites. Glycosylation can strongly influence protein function, affecting its folding, receptor interaction, and backbone accessibility. MPO potentially can be heavily modified as it harbors 5 putative N-glycosylation sites (10 in the mature dimer). Although considered important for MPO structure and function, the full scope and relative abundance of the glycans attached to MPO is unknown. Here, combining bottom-up glycoproteomics and native MS approaches, we structurally characterized MPO from neutrophils of healthy human donors. We quantified the relative occupancy levels of the glycans at each of the five sites and observed complex heterogeneity and site-specific glycosylation. In particular, we detected glycosylation phenotypes uncommon for glycoproteins in the extracellular space, such as a high abundance of phosphorylated high-mannose species and severely truncated small glycans having the size of paucimannose or smaller. We hypothesize that the atypical glycosylation pattern found on MPO might contribute to its specific processing and presentation as a self-antigen by antigen-presenting cells.
Collapse
Affiliation(s)
- Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands .,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Minke G Huitema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
20
|
Vieira ML, Teixeira AF, Pidde G, Ching ATC, Tambourgi DV, Nascimento ALTO, Herwald H. Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence 2018; 9:414-425. [PMID: 29235397 PMCID: PMC5955187 DOI: 10.1080/21505594.2017.1407484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Leptospirosis is a widespread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. After entrance in the host, pathogenic leptospires evade the host natural defense mechanisms in order to propagate and disseminate to multiple organs. Myeloperoxidase is an enzyme stored in neutrophils azurophilic granules, and is released upon neutrophil activation to produce mainly hypochlorous acid, a strong oxidant and potent antimicrobial agent. In the present investigation, we studied the modulation of myeloperoxidase activity by L. interrogans serovar Copenhageni. We show that leptospires and their culture supernatants are able to inhibit both peroxidase and chlorination activities of myeloperoxidase, without interfering with neutrophil degranulation. By leptospiral outer membrane protein extraction and fractionation, we identified the proteins LipL21 and LipL45 as myeloperoxidase inhibitors, constituting new Leptospira virulence factors. Accordingly, we propose a function for the protein LipL21, one of the most expressed leptospiral outer membrane proteins. Our results show a novel innate immune evasion mechanism by which leptospires interfere with the host response in order to cope with the host oxidative stress and efficiently achieve dissemination and colonization.
Collapse
Affiliation(s)
- Monica L Vieira
- a Department of Clinical Sciences, Lund, Division of Infection Medicine , Lund University , Lund , Sweden.,b Centro de Biotecnologia, Instituto Butantan , Avenida Vital Brazil, São Paulo , SP , Brazil
| | - Aline F Teixeira
- b Centro de Biotecnologia, Instituto Butantan , Avenida Vital Brazil, São Paulo , SP , Brazil
| | - Giselle Pidde
- c Laboratório de Imunoquímica, Instituto Butantan , Avenida Vital Brazil, São Paulo , SP , Brazil
| | - Ana T C Ching
- c Laboratório de Imunoquímica, Instituto Butantan , Avenida Vital Brazil, São Paulo , SP , Brazil
| | - Denise V Tambourgi
- c Laboratório de Imunoquímica, Instituto Butantan , Avenida Vital Brazil, São Paulo , SP , Brazil
| | | | - Heiko Herwald
- a Department of Clinical Sciences, Lund, Division of Infection Medicine , Lund University , Lund , Sweden
| |
Collapse
|
21
|
Khandagale A, Lazzaretto B, Carlsson G, Sundin M, Shafeeq S, Römling U, Fadeel B. JAGN1 is required for fungal killing in neutrophil extracellular traps: Implications for severe congenital neutropenia. J Leukoc Biol 2018; 104:1199-1213. [DOI: 10.1002/jlb.4a0118-030rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Avinash Khandagale
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Beatrice Lazzaretto
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| | - Göran Carlsson
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Mikael Sundin
- Department of Women's and Children's HealthKarolinska InstitutetKarolinska University Hospital Stockholm Sweden
| | - Sulman Shafeeq
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Ute Römling
- Department of MicrobiologyTumor and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular ToxicologyInstitute of Environmental MedicineKarolinska Institutet Stockholm Sweden
| |
Collapse
|
22
|
Roumeguère T, Van Antwerpen P, Vanhamme L, Delporte C, Rousseau A, Wespes E, Vanhaeverbeek M, Boudjeltia KZ. Myeloperoxidase and Prostate volume: A preliminary study. Prog Urol 2018; 28:482-487. [PMID: 30042072 DOI: 10.1016/j.purol.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/13/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Oxidative stress is associated with the development of BPH and might be modulated by several factors. Myeloperoxidase (MPO) has recently been observed in prostate tissue. Our goal was to investigate the correlation between MPO and the prostate volume. MATERIAL AND METHODS Hundred and twenty-one patients (48-70 years) with a filled IPSS were prospectively included. Blood sampling (PSA, testosterone, Angiotensin II (AngII), MPO, Mox-LDL) and transrectal ultrasound of the prostate were performed with total volume (TV) and transitional zone volume (TZ) measurements. For correlation, univariate analyses were depicted by Pearson's coefficient. Multilinear regression analysis used a stepwise backward selection of the explicative variables. RESULTS In multivariate analysis, the TV was positively correlated to the combination of age and Ang II but negatively to MPO specific activity (Std Coef=-0.272, P=0.004). Significant correlations were confirmed between TZ, age and MPO specific activity but not with Ang II. A negative correlation between TZ and MPO specific activity was also observed (Std Coef=-0.21, P=0.016). No correlation was found with Mox-LDL. CONCLUSIONS Negative correlation between MPO and prostate volume was observed but careful interpretations may be endorsed and longitudinal study is necessary. It seems relevant to focus on the potential contribution of MPO in the development of prostatic diseases as this enzyme can also promote DNA oxidation. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- T Roumeguère
- Laboratory of Experimental Medicine, Unit 222, ULB, CHU Charleroi, Charleroi, Belgium; Department of Urology, University Clinics of Brussels, ULB, Erasme Hospital, Brussels, Belgium.
| | - P Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, ULB, Brussels, Belgium
| | - L Vanhamme
- Institute for Molecular Biology and Medicine (IBMM), ULB, Gosselies, Belgium
| | - C Delporte
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, ULB, Brussels, Belgium
| | - A Rousseau
- Laboratory of Experimental Medicine, Unit 222, ULB, CHU Charleroi, Charleroi, Belgium
| | - E Wespes
- Department of Urology, ULB, CHU Charleroi, Charleroi, Belgium
| | - M Vanhaeverbeek
- Laboratory of Experimental Medicine, Unit 222, ULB, CHU Charleroi, Charleroi, Belgium
| | - K Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Unit 222, ULB, CHU Charleroi, Charleroi, Belgium
| |
Collapse
|
23
|
Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells. Atherosclerosis 2018; 272:108-117. [DOI: 10.1016/j.atherosclerosis.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 12/31/2022]
|
24
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
25
|
A myeloperoxidase precursor, pro-myeloperoxidase, is present in human plasma and elevated in cardiovascular disease patients. PLoS One 2018; 13:e0192952. [PMID: 29590135 PMCID: PMC5873943 DOI: 10.1371/journal.pone.0192952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 01/31/2023] Open
Abstract
Myeloperoxidase (MPO)-derived oxidants have emerged as a key contributor to tissue damage in inflammatory conditions such as cardiovascular disease. Pro-myeloperoxidase (pro-MPO), an enzymatically active precursor of myeloperoxidase (MPO), is known to be secreted from cultured bone marrow and promyelocytic leukemia cells, but evidence for the presence of pro-MPO in circulation is lacking. In the present study, we used a LC-MS/MS in addition to immunoblot analyses to show that pro-MPO is present in human blood plasma. Furthermore, we found that pro-MPO was more frequently detected in plasma from patients with myocardial infarction compared to plasma from control donors. Our study suggests that in addition to mature MPO, circulating pro-MPO may cause oxidative modifications of proteins thereby contributing to cardiovascular disease.
Collapse
|
26
|
Biosynthesis of human myeloperoxidase. Arch Biochem Biophys 2018; 642:1-9. [PMID: 29408362 DOI: 10.1016/j.abb.2018.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/30/2023]
Abstract
Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted.
Collapse
|
27
|
Wang J, Li JN, Cui Z, Zhao MH. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology (Carlton) 2017; 23:46-52. [DOI: 10.1111/nep.12926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jia Wang
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Jian-nan Li
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Zhao Cui
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Beijing China
| |
Collapse
|
28
|
Grishkovskaya I, Paumann-Page M, Tscheliessnig R, Stampler J, Hofbauer S, Soudi M, Sevcnikar B, Oostenbrink C, Furtmüller PG, Djinović-Carugo K, Nauseef WM, Obinger C. Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. J Biol Chem 2017; 292:8244-8261. [PMID: 28348079 PMCID: PMC5437232 DOI: 10.1074/jbc.m117.775031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/09/2017] [Indexed: 11/06/2022] Open
Abstract
Myeloperoxidase (MPO) is synthesized by neutrophil and monocyte precursor cells and contributes to host defense by mediating microbial killing. Although several steps in MPO biosynthesis and processing have been elucidated, many questions remained, such as the structure-function relationship of monomeric unprocessed proMPO versus the mature dimeric MPO and the functional role of the propeptide. Here we have presented the first and high resolution (at 1.25 Å) crystal structure of proMPO and its solution structure obtained by small-angle X-ray scattering. Promyeloperoxidase hosts five occupied glycosylation sites and six intrachain cystine bridges with Cys-158 of the very flexible N-terminal propeptide being covalently linked to Cys-319 and thereby hindering homodimerization. Furthermore, the structure revealed (i) the binding site of proMPO-processing proconvertase, (ii) the structural motif for subsequent cleavage to the heavy and light chains of mature MPO protomers, and (iii) three covalent bonds between heme and the protein. Studies of the mutants C158A, C319A, and C158A/C319A demonstrated significant differences from the wild-type protein, including diminished enzymatic activity and prevention of export to the Golgi due to prolonged association with the chaperone calnexin. These structural and functional findings provide novel insights into MPO biosynthesis and processing.
Collapse
Affiliation(s)
- Irina Grishkovskaya
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Martina Paumann-Page
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Rupert Tscheliessnig
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, A-1190 Vienna, Austria
| | - Johanna Stampler
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Benjamin Sevcnikar
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Veĉna pot 113, 1000 Ljubljana, Slovenia
| | - William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
29
|
Yu JT, Li JN, Wang J, Jia XY, Cui Z, Zhao MH. Deglycosylation of myeloperoxidase uncovers its novel antigenicity. Kidney Int 2017; 91:1410-1419. [PMID: 28187981 DOI: 10.1016/j.kint.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 02/03/2023]
Abstract
Myeloperoxidase (MPO) is a common target antigen of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and is recognized in one-third of patients with anti-glomerular basement membrane (GBM) disease. Our previous study identified over 60% of patients with anti-GBM disease recognizing linear peptides of MPO heavy chain. Here we tested whether aberrant glycosylation alters MPO antigenicity through exposure of neo-epitopes on MPO molecules. Atypical glycosylated MPO molecules, including all possible glycosylation types, were prepared by exoglycosidase and endoglycosidase treatments. Antibodies were detected from the sera of 40 patients with anti-GBM disease without the coexistence of MPO-ANCA. Circulating antibodies against aberrant glycosylated MPO existed in 21 of these patients. Non-glycan MPO and MPO with only N-acetylglucosamine had high frequencies of recognition (16 and 15 patients, respectively). Antibodies binding to aberrant glycosylated MPO could not be inhibited by intact MPO or GBM antigen. When applied to ethanol-fixed neutrophils from normal individuals, these antibodies yielded a typical cytoplasmic staining pattern (c-ANCA). Antigen specificity was detected in 90% of the antibodies using five peptides containing one of the five N-glycosylation sites each, mostly on N323, N355, and N391. The antibodies were restricted to IgG1 subclass, could activate complement, and induce neutrophil degranulation in vitro. Thus, aberrant glycosylated MPO exposed neo-epitopes and was recognized by half of the patients with anti-GBM disease. Their antibodies possessed pathogenic characteristics and may be associated with kidney injury.
Collapse
Affiliation(s)
- Jun-Tao Yu
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jian-Nan Li
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Jia Wang
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
30
|
Yogalingam G, Lee AR, Mackenzie DS, Maures TJ, Rafalko A, Prill H, Berguig GY, Hague C, Christianson T, Bell SM, LeBowitz JH. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells. J Biol Chem 2017; 292:4255-4265. [PMID: 28115520 DOI: 10.1074/jbc.m116.739441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death.
Collapse
Affiliation(s)
- Gouri Yogalingam
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Amanda R Lee
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Donald S Mackenzie
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Travis J Maures
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Agnes Rafalko
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Heather Prill
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Geoffrey Y Berguig
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Chuck Hague
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Terri Christianson
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Sean M Bell
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Jonathan H LeBowitz
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| |
Collapse
|
31
|
Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2016; 22:51-73. [PMID: 27884085 PMCID: PMC6837458 DOI: 10.1080/13510002.2016.1256119] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is the main pathophysiological process underlying coronary artery disease (CAD). Acute complications of atherosclerosis, such as myocardial infarction, are caused by the rupture of vulnerable atherosclerotic plaques, which are characterized by thin, highly inflamed, and collagen-poor fibrous caps. Several lines of evidence mechanistically link the heme peroxidase myeloperoxidase (MPO), inflammation as well as acute and chronic manifestations of atherosclerosis. MPO and MPO-derived oxidants have been shown to contribute to the formation of foam cells, endothelial dysfunction and apoptosis, the activation of latent matrix metalloproteinases, and the expression of tissue factor that can promote the development of vulnerable plaque. As such, detection, quantification and imaging of MPO mass and activity have become useful in cardiac risk stratification, both for disease assessment and in the identification of patients at risk of plaque rupture. This review summarizes the current knowledge about the role of MPO in CAD with a focus on its possible roles in plaque rupture and recent advances to quantify and image MPO in plasma and atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathaniel Teng
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Ghassan J Maghzal
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Jihan Talib
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Imran Rashid
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Antony K Lau
- b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia.,c Faculty of Medicine , University of New South Wales , Sydney , New South Wales , Australia
| | - Roland Stocker
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,d School of Medical Sciences , University of New South Wales , Sydney , New South Wales , Australia
| |
Collapse
|
32
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
33
|
T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS One 2016; 11:e0149391. [PMID: 26890638 PMCID: PMC4758715 DOI: 10.1371/journal.pone.0149391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/01/2016] [Indexed: 01/10/2023] Open
Abstract
Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.
Collapse
|
34
|
Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2015; 139:2944-67. [PMID: 24779027 DOI: 10.1039/c3an02245e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
Collapse
Affiliation(s)
- S Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
36
|
Van Antwerpen P, Zouaoui Boudjeltia K. Rational drug design applied to myeloperoxidase inhibition. Free Radic Res 2015; 49:711-20. [DOI: 10.3109/10715762.2015.1027201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Soudi M, Paumann-Page M, Delporte C, Pirker KF, Bellei M, Edenhofer E, Stadlmayr G, Battistuzzi G, Boudjeltia KZ, Furtmüller PG, Van Antwerpen P, Obinger C. Multidomain human peroxidasin 1 is a highly glycosylated and stable homotrimeric high spin ferric peroxidase. J Biol Chem 2015; 290:10876-90. [PMID: 25713063 PMCID: PMC4409251 DOI: 10.1074/jbc.m114.632273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/18/2015] [Indexed: 12/31/2022] Open
Abstract
Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of -233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KM(app)) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking.
Collapse
Affiliation(s)
- Monika Soudi
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Martina Paumann-Page
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Cedric Delporte
- the Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Katharina F Pirker
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Eva Edenhofer
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Gerhard Stadlmayr
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Karim Zouaoui Boudjeltia
- the Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Paul G Furtmüller
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Pierre Van Antwerpen
- the Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Christian Obinger
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria,
| |
Collapse
|
38
|
Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 2015; 290:8789-802. [PMID: 25645918 DOI: 10.1074/jbc.m114.631622] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose(1-3)fucose(0-1)N-acetylglucosamine(2)Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia,
| | - Vignesh Venkatakrishnan
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Ian Loke
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Christine Laurini
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Simone Diestel
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Benjamin L Parker
- the Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales-2010, Australia
| | - Nicolle H Packer
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| |
Collapse
|
39
|
Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat Genet 2014; 46:1028-33. [PMID: 25129145 DOI: 10.1038/ng.3070] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/25/2014] [Indexed: 01/10/2023]
Abstract
Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.
Collapse
|
40
|
Nzeusseu Toukap A, Delporte C, Noyon C, Franck T, Rousseau A, Serteyn D, Raes M, Vanhaeverbeek M, Moguilevsky N, Nève J, Vanhamme L, Durez P, Van Antwerpen P, Zouaoui Boudjeltia K. Myeloperoxidase and its products in synovial fluid of patients with treated or untreated rheumatoid arthritis. Free Radic Res 2014; 48:461-5. [PMID: 24460011 DOI: 10.3109/10715762.2014.886327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Plasma and synovial myeloperoxidase (MPO) and its products were strongly associated with osteoarthritis (OA) and rheumatoid arthritis (RA). In addition, it is well known that there is a link between oxidative stress and cytokines. The present study aims at investigating the link between synovial MPO (and its products), interleukin (IL)-18, which is involved in the degradation of articular cartilage in RA, and IL-8, which is involved in recruitment and activation of neutrophils during inflammation. Effects of the treatment of RA on the biological parameters were also investigated. METHODS Patients (n = 105) were studied including 39 patients with OA, 33 with RA and 33 with RA receiving a specific treatment. Disease activity score (DAS-28) was calculated whereas MPO antigen/activity, neutrophils, chloro-tyrosine (Cl-Tyr), homocitrulline (Hcit), IL-8, and IL-18 were measured in synovial fluid (SF) and CRP was measured in serum. RESULTS DAS-28 and CRP levels were not significantly different between groups. MPO activity, and MPO, Cl-Tyr, and Hcit levels were significantly higher in SF of RA patients than OA patients. MPO specific activity (MPO activity/antigen ratio) was significantly lower in treated than in untreated RA patients as was IL-8. MPO activity and concentration were correlated with IL-8 and IL-18 in untreated but not in treated RA patients. CONCLUSIONS MPO level is related to IL-8 and IL-18 levels in untreated RA patients. A link has been shown between treatment and decrease of IL-8, MPO specific activity and Hcit in SF. The causal role of MPO in SF inflammation and how treatment can affect MPO specific activity need further investigations.
Collapse
Affiliation(s)
- A Nzeusseu Toukap
- Institut de Recherche Expérimentale et Clinique and Service de Rhumatologie, Cliniques Universitaires St-Luc, Université Catholique de Louvain , Brussels , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm 2013; 2013:971579. [PMID: 23983406 PMCID: PMC3742028 DOI: 10.1155/2013/971579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.
Collapse
|
42
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
43
|
Aldib I, Soubhye J, Zouaoui Boudjeltia K, Vanhaeverbeek M, Rousseau A, Furtmüller PG, Obinger C, Dufrasne F, Nève J, Van Antwerpen P, Prévost M. Evaluation of New Scaffolds of Myeloperoxidase Inhibitors by Rational Design Combined with High-Throughput Virtual Screening. J Med Chem 2012; 55:7208-18. [DOI: 10.1021/jm3007245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iyas Aldib
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Michel Vanhaeverbeek
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Francois Dufrasne
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Nève
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Prévost
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
44
|
Roumeguère T, Delree P, Van Antwerpen P, Rorive S, Vanhamme L, de Ryhove LDLK, Serteyn D, Wespes E, Vanhaerverbeek M, Boudjeltia KZ. Intriguing location of myeloperoxidase in the prostate: a preliminary immunohistochemical study. Prostate 2012; 72:507-13. [PMID: 21739466 DOI: 10.1002/pros.21452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 06/10/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myeloperoxidase (MPO) is a member of the peroxidase-cyclooxygenase superfamily, which is secreted from stimulated leucocytes at inflammatory sites. It is well known that MPO catalyses oxidation reactions via the release of reactive halogenating and nitrating species and thus induces tissue damage. Several studies have already implicated MPO in the development of neoplasia. Chronic or recurrent prostatic inflammation has long been recognized as having the potential to initiate and promote the development of prostate cancer. The objective was to investigate whether MPO is present in the prostate. METHODS Human prostate material was obtained from biopsies, transurethral resections of the prostate (TURP), prostatic adenomectomies, and retropubic radical prostatectomies. Twenty-nine slides of normal prostate tissue, benign prostatic hyperplasia (BPH), and prostate cancer were reviewed by a pathologist. Immunohistochemical analysis using MPO-specific human antibody was performed to detect MPO in the prostate tissue. RESULTS Immunocytohistochemistry showed cellular colocalization of MPO in the secretory epithelial cells of the prostate with staining varying from light to strong intensity. Staining in the glandular apical snouts was often reinforced although staining of basal as well as of luminal glandular cells was also present. CONCLUSIONS We identified, for the first time, the presence of MPO at the surface of prostatic epithelial cells. In view of the pro-oxidant properties of this enzyme, further research is needed to define whether MPO contributes to the development of prostatic lesions.
Collapse
Affiliation(s)
- Th Roumeguère
- Laboratory of Experimental Medicine, Unit 222, ULB, CHU Charleroi, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zouaoui Boudjeltia K, Faraut B, Esposito MJ, Stenuit P, Dyzma M, Van Antwerpen P, Brohée D, Vanhamme L, Moguilevsky N, Vanhaeverbeek M, Kerkhofs M. Temporal dissociation between myeloperoxidase (MPO)-modified LDL and MPO elevations during chronic sleep restriction and recovery in healthy young men. PLoS One 2011; 6:e28230. [PMID: 22140557 PMCID: PMC3227655 DOI: 10.1371/journal.pone.0028230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/04/2011] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Many studies have evaluated the ways in which sleep disturbances may influence inflammation and the possible links of this effect to cardiovascular risk. Our objective was to investigate the effects of chronic sleep restriction and recovery on several blood cardiovascular biomarkers. METHODS AND RESULTS Nine healthy male non-smokers, aged 22-29 years, were admitted to the Sleep Laboratory for 11 days and nights under continuous electroencephalogram polysomnography. The study consisted of three baseline nights of 8 hours sleep (from 11 pm to 7 am), five sleep-restricted nights, during which sleep was allowed only between 1 am and 6 am, and three recovery nights of 8 hours sleep (11 pm to 7 am). Myeloperoxidase-modified low-density lipoprotein levels increased during the sleep-restricted period indicating an oxidative stress. A significant increase in the quantity of slow-wave sleep was measured during the first recovery night. After this first recovery night, insulin-like growth factor-1 levels increased and myeloperoxidase concentration peaked. CONCLUSIONS We observed for the first time that sleep restriction and the recovery process are associated with differential changes in blood biomarkers of cardiovascular disease.
Collapse
Affiliation(s)
- Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Brice Faraut
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
- Sleep Laboratory, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Maria José Esposito
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
- Sleep Laboratory, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Patricia Stenuit
- Sleep Laboratory, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Michal Dyzma
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
- Sleep Laboratory, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Dany Brohée
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Luc Vanhamme
- Laboratory of Molecular Parasitology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Michel Vanhaeverbeek
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Myriam Kerkhofs
- Laboratory of Experimental Medicine, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
- Sleep Laboratory, Centre Hospitalo-Universitaire de Charleroi, André Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| |
Collapse
|
46
|
Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, Obinger C. Influence of the Covalent Heme–Protein Bonds on the Redox Thermodynamics of Human Myeloperoxidase. Biochemistry 2011; 50:7987-94. [DOI: 10.1021/bi2008432] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johanna Stampler
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Marzia Bellei
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Jutta Vlasits
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Monika Soudi
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Christian Obinger
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| |
Collapse
|
47
|
Banerjee S, Stampler J, Furtmüller PG, Obinger C. Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:375-87. [PMID: 20933108 DOI: 10.1016/j.bbapap.2010.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
Myeloperoxidase (MPO) is a lysosomal heme enzyme present in the azurophilic granules of human neutrophils and monocytes. It is a critical element of the human innate immune system by exerting antimicrobial effects. It is a disulfide bridged dimer with each monomer containing a light and a heavy polypeptide and its biosynthesis and intracellular transport includes several posttranslational processing steps. By contrast, MPO recombinantly produced in Chinese hamster ovary cell lines is monomeric, partially unprocessed and contains a N-terminal propeptide (proMPO). It mirrors a second form of MPO constitutively secreted from normal bone marrow myeloid precursors. In order to clarify the impact of posttranslational modifications on the structural integrity and enzymology of these two forms of human myeloperoxidase, we have undertaken an investigation on the conformational and thermal stability of leukocyte MPO and recombinant proMPO by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Mature leucocyte MPO exhibits a peculiar high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of dithiothreitol. Unfolding of secondary and tertiary structure occurs concomitantly with denaturation of the heme cavity, reflecting the role of three MPO-typical heme to protein linkages and of six intra-chain disulfides for structural integrity by bridging N- and C-terminal regions of the protein. Recombinant monomeric proMPO follows a similar unfolding pattern but has a lower conformational and thermal stability. Spectroscopic and thermodynamic data of unfolding are discussed with respect to the known three-dimensional structure of leukocyte MPO as well as to known physiological roles.
Collapse
Affiliation(s)
- Srijib Banerjee
- Division of Biochemistry, Department of Chemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|