1
|
Verbinnen I, Douzgou Houge S, Hsieh TC, Lesmann H, Kirchhoff A, Geneviève D, Brimble E, Lenaerts L, Haesen D, Levy RJ, Thevenon J, Faivre L, Marco E, Chong JX, Bamshad M, Patterson K, Mirzaa GM, Foss K, Dobyns W, White SM, Pais L, O'Heir E, Itzikowitz R, Donald KA, Van der Merwe C, Mussa A, Cervini R, Giorgio E, Roscioli T, Dias KR, Evans CA, Brown NJ, Ruiz A, Trujillo Quintero JP, Rabin R, Pappas J, Yuan H, Lachlan K, Thomas S, Devlin A, Wright M, Martin R, Karwowska J, Posmyk R, Chatron N, Stark Z, Heath O, Delatycki M, Buchert R, Korenke GC, Ramsey K, Narayanan V, Grange DK, Weisenberg JL, Haack TB, Karch S, Kipkemoi P, Mangi M, Bindels de Heus KGCB, de Wit MCY, Barakat TS, Lim D, Van Winckel G, Spillmann RC, Shashi V, Jacob M, Stehr AM, Krawitz P, Douzgos Houge G, Janssens V. Pathogenic de novo variants in PPP2R5C cause a neurodevelopmental disorder within the Houge-Janssens syndrome spectrum. Am J Hum Genet 2025; 112:554-571. [PMID: 39978342 DOI: 10.1016/j.ajhg.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic variants resulting in protein phosphatase 2A (PP2A) dysfunction result in mild to severe neurodevelopmental delay. PP2A is a trimer of a catalytic (C) subunit, scaffolding (A) subunit, and substrate binding/regulatory (B) subunit, encoded by 19 different genes. De novo missense variants in PPP2R5D (B56δ) or PPP2R1A (Aα) and de novo missense and loss-of-function variants in PPP2CA (Cα) lead to syndromes with overlapping phenotypic features, known as Houge-Janssens syndrome (HJS) types 1, 2, and 3, respectively. Here, we describe an additional condition in the HJS spectrum in 26 individuals with variants in PPP2R5C, encoding the regulatory B56γ subunit. Most changes were de novo and of the missense type. The clinical features were well within the HJS spectrum with strongest resemblance to HJS type 1, caused by B56δ variants. Common features were neurodevelopmental delay and hypotonia, with a high risk of epilepsy, behavioral problems, and mildly dysmorphic facial features. Head circumferences were above average or macrocephalic. The degree of intellectual disability was, on average, milder than in other HJS types. All variants affected either substrate binding (2/19), C-subunit binding (2/19), or both (15/19). Five variants were recurrent. Catalytic activity of the phosphatase was variably affected by the variants. Of note, PPP2R5C total loss-of-function variants could be inherited from a non-symptomatic parent. This implies that a dominant-negative mechanism on substrate dephosphorylation or general PP2A function is the most likely pathogenic mechanism.
Collapse
Affiliation(s)
- Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Aron Kirchhoff
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Geneviève
- Montpellier University, INSERM U1183, Centre de Référence Anomalies du développement et syndromes malformatifs, ERN ITHACA, Génétique clinique, CHU Montpellier, Montpellier, France
| | | | - Lisa Lenaerts
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rebecca J Levy
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes, Service Génomique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Cedex Grenoble, France
| | - Laurence Faivre
- Centre de génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France; UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mike Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Susan M White
- Victorian Clinical Genetics Services (VCGS), Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Raphaela Itzikowitz
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Celia Van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Regina Margherita Children's Hospital, Torino, Italy
| | - Raffaela Cervini
- Child Neuropsychiatry Department, Maria Vittoria Hospital, Torino, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Neurogenetics Research Centre, Pavia, Italy
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anna Ruiz
- Genetics Laboratory, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Juan Pablo Trujillo Quintero
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Richard Martin
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Joanna Karwowska
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université de Lyon, University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Australian Genomics Health Alliance, Melbourne, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Heath
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Georg-Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephanie Karch
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Patricia Kipkemoi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Moses Mangi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Karen G C B Bindels de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology and Pediatric Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Derek Lim
- Department of Clinical Genetics, Lavender House, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Rebecca C Spillmann
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Antonia M Stehr
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium.
| |
Collapse
|
2
|
Comisi F, Soddu C, Lai F, Marica M, Lorrai M, Mancuso G, Giglio S, Savasta S. PPP2R5D-Related Neurodevelopmental Disorder and Multiple Haemangiomas: A Novel Phenotypic Trait? Pediatr Rep 2024; 16:1200-1206. [PMID: 39728742 DOI: 10.3390/pediatric16040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Houge-Janssens syndrome 1 is a condition with onset in early childhood caused by heterozygous pathogenic variants in the PPP2R5D gene, which encodes a B56 regulatory subunit of the serine/threonine protein phosphatase 2A (PP2A). There is evidence that the PP2A-PPP2R5D complex is involved in regulating the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway, which is crucial for several cellular processes, including the pathogenesis and progression of haemangiomas. CASE PRESENTATION We report the first PPP2R5D-related neurodevelopmental disorder case from Sardinia, a child with transient hypoglycaemia, facial dysmorphisms, and multiple haemangiomas. Whole Exome Sequencing analysis confirmed the clinical suspicion, detecting the presence of the de novo missense variant c.592G>A in the PPP2R5D gene. CONCLUSIONS Haemangiomas have never been linked to the syndromic phenotype of the PPP2R5D-associated disorder. The close correlation between the PP2A enzyme and the PI3K/AKT signalling pathway suggests the possible correlation between its dysfunction and activation of haemangiogenesis. Our report highlights a possible link between the PPP2R5D-related disorder and altered angiogenesis, characterizing diffuse haemangiomas as a possible novel phenotypic trait of this condition.
Collapse
Affiliation(s)
- Francesco Comisi
- Pediatrics Department, Microcitemico Hospital "A. Cao", University of Cagliari, 09124 Cagliari, Italy
| | - Consolata Soddu
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", ASL 8 Cagliari, 09121 Cagliari, Italy
| | - Francesco Lai
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", ASL 8 Cagliari, 09121 Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Monica Marica
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", ASL 8 Cagliari, 09121 Cagliari, Italy
| | - Michela Lorrai
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Giancarlo Mancuso
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
- Centre for Research University Services, University of Cagliari, 09124 Cagliari, Italy
- Medical Genetics, "R. Binaghi" Hospital, ASL 8 Cagliari, 09126 Cagliari, Italy
| | - Salvatore Savasta
- Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Dabo AJ, Raghavan S, Ezegbunam W, Thankachen J, Evgrafov O, Majka S, Geraghty P, Foronjy RF. Cigarette smoke alters calcium flux to induce PP2A membrane trafficking and endothelial cell permeability. Sci Rep 2024; 14:28012. [PMID: 39543165 PMCID: PMC11564810 DOI: 10.1038/s41598-024-77776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Alveolar capillary barrier disruption induces local edema and inflammation that impairs pulmonary function and promotes alveolar destruction in COPD. This study aimed to determine how cigarette smoke modulated the serine-threonine phosphatase protein phosphatase 2 A (PP2A) to alter the barrier function of human lung microvascular endothelial cells (HLMVECs). Cigarette smoke exposure lowered overall PP2A activity and enhanced endothelial permeability in HLMVECs. However, directly decreasing PP2A activity with Fostriecin significantly reduced endothelial cell permeability. Protein fractionation studies determined that cigarette smoke diminished cytosolic PP2A activity but increased membrane and cytoskeletal activity. These changes coincided with the translocation of PP2A to the membrane, which reduced occludin phosphorylation in the membrane. Cigarette smoke decreased protein tyrosine phosphatase 1B (PTP1B) activity, a PP2A activator which also counters calcium intracellular influx. The decrease in PTP1B activity correlated with reduced calcium efflux in endothelial cells and these changes in calcium flux regulated PP2A activity. Indeed, culturing endothelial cells in low calcium medium prevented the decrease in cytosolic PP2A activity mediated by cigarette smoke. Together, these findings outline a mechanism whereby cigarette smoke acts via calcium to traffic PP2A from the cytosol to the membrane where it dephosphorylates occludin to increase endothelial cell permeability.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sonya Raghavan
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wendy Ezegbunam
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jincy Thankachen
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oleg Evgrafov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sue Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Division of Pulmonary & Critical Care Medicine, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Hsiao KC, Ruan SY, Chen SM, Lai TY, Chan RH, Zhang YM, Chu CA, Cheng HC, Tsai HW, Tu YF, Law BK, Chang TT, Chow NH, Chiang CW. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer. Cell Commun Signal 2023; 21:172. [PMID: 37430297 DOI: 10.1186/s12964-023-01182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Collapse
Affiliation(s)
- Kai-Ching Hsiao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Siou-Ying Ruan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Min Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ren-Hao Chan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yan-Ming Zhang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-An Chu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Brian K Law
- Department of Pharmacology and Therapeutics and the UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
5
|
Salter EA, Wierzbicki A, Honkanen RE, Swingle MR. Quantum-based modeling implies that bidentate Arg 89-substrate binding enhances serine/threonine protein phosphatase-2A(PPP2R5D/PPP2R1A/PPP2CA)-mediated dephosphorylation. Front Cell Dev Biol 2023; 11:1141804. [PMID: 37377738 PMCID: PMC10291244 DOI: 10.3389/fcell.2023.1141804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
PP2A-serine/threonine protein phosphatases function as heterotrimeric holoenzymes, composed of a common scaffold (A-subunit encoded by PPP2R1A/PPP2R1B), a common catalytic (C-subunit encoded by PPP2CA/PPP2CB), and one of many variable regulatory (B) subunits. The site of phosphoprotein phosphatase (PPP) hydrolysis features a bimetal system (M1/M2), an associated bridge hydroxide [W1(OH-)], and a highly-conserved core sequence. In the presumptive common mechanism, the phosphoprotein's seryl/threonyl phosphate coordinates the M1/M2 system, W1(OH-) attacks the central P atom, rupturing the antipodal bond, and simultaneously, a histidine/aspartate tandem protonates the exiting seryl/threonyl alkoxide. Based on studies of PPP5C, a conserved arginine proximal to M1 is also expected to bind the substrate's phosphate group in a bidentate fashion. However, in PP2A isozymes, the role of the arginine (Arg89) in hydrolysis is not clear because two independent structures for PP2A(PPP2R5C) and PP2A(PPP2R5D) show that Arg89 engages in a weak salt bridge at the B:C interface. These observations raise the question of whether hydrolysis proceeds with or without direct involvement of Arg89. The interaction of Arg89 with B:Glu198 in PP2A(PPP2R5D) is significant because the pathogenic E198K variant of B56δ is associated with irregular protein phosphorylation levels and consequent developmental disorders (Jordan's Syndrome; OMIM #616355). In this study, we perform quantum-based hybrid [ONIOM(UB3LYP/6-31G(d):UPM7)] calculations on 39-residue models of the PP2A(PPP2R5D)/pSer (phosphoserine) system to estimate activation barriers for hydrolysis in the presence of bidentate Arg89-substrate binding and when Arg89 is otherwise engaged in the salt-bridge interaction. Our solvation-corrected results yield ΔH‡ ≈ ΔE‡ = +15.5 kcal/mol for the former case, versus +18.8 kcal/mol for the latter, indicating that bidentate Arg89-substrate binding is critical for optimal catalytic function of the enzyme. We speculate that PP2A(PPP2R5D) activity is suppressed by B:Glu198 sequestration of C:Arg89 under native conditions, whereas the PP2A(PPP2R5D)-holoenzyme containing the E198K variant has a positively-charged lysine in this position that alters normal function.
Collapse
Affiliation(s)
- E. Alan Salter
- Department of Chemistry, University of South Alabama, Mobile, AL, United States
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, Mobile, AL, United States
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
6
|
Cheng C, Cai Y, Liu X, Wu Y, Cheng Q, Wu Y, Wu Z. KHSRP modulated cell proliferation and cell cycle via regulating PPP2CA and p27 expression in Wilms tumor. Cell Signal 2022; 100:110447. [PMID: 36029941 DOI: 10.1016/j.cellsig.2022.110447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
Wilms tumor (WT) is the most common renal malignancy in children, and the survival rate of high-risk WT patients was still low despite multimodality therapy. KHSRP, an RNA-binding protein, has been proved to be relative to tumor progression in different kinds of malignancies, but the function of KHSRP in WT remained unclear. Here, our study aimed to explore and clarify the function of KHSRP in WT cells and its molecular mechanism. Thus, our results showed that KHSRP was highly expressed in WT tumor tissues compared to normal kidney tissues and correlated with poor prognosis in WT patients. Downregulation of KHSRP using siRNAs in WT cell line SK-NEP-1 and Wit49 resulted in inhibition of cell proliferation and cell cycle arrest via stabilizing and upregulating p27 protein. Furthermore, mechanistic analyses revealed that KHSRP bound to 3'UTR of PPP2CA mRNA and modulating its mRNA stability, resulting in regulation of the phosphorylation level and protein stability of p27 in WT cell lines. In conclusion, our results demonstrated that KHSRP played an important role in WT and modulated cell proliferation and cell cycle via regulating the expression of PPP2CA and p27.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Xiaowei Liu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yangkun Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Qianqian Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China; Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, Hangzhou 310010, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, 215003 Suzhou, China.
| |
Collapse
|
7
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
8
|
Glaser D, Heinick A, Herting JR, Massing F, Müller FU, Pauls P, Rozhdestvensky TS, Schulte JS, Seidl MD, Skryabin BV, Stümpel F, Kirchhefer U. Impaired myocellular Ca 2+ cycling in protein phosphatase PP2A-B56α knockout mice is normalized by β-adrenergic stimulation. J Biol Chem 2022; 298:102362. [PMID: 35963431 PMCID: PMC9478386 DOI: 10.1016/j.jbc.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B′-family in the heart. Its role in regulating the cardiac response to β-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B′ subunits (β and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show β-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to β-adrenergic stimulation in the myocardium.
Collapse
Affiliation(s)
- Dennis Glaser
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Julius R Herting
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Fabian Massing
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Paul Pauls
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Timofey S Rozhdestvensky
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Jan S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Matthias D Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Frank Stümpel
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Qiu H, Weng Q. Screening of Crucial Differentially-Methylated/Expressed Genes for Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221116220. [PMID: 35848539 PMCID: PMC10624077 DOI: 10.1177/15333175221116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: We aimed to make an integrated analysis of published transcriptome and DNA methylation dataset to ascertain the key differentially methylated and differentially expressed genes for Alzherimer's disease (AD). Methods: Two gene expression microarrays and 1 gene methylation microarray were downloaded for identification of differentially expressed genes and differentially methylated genes. Then, we used various biological information databases to annotate the functions of the differentially-methylated/expressed genes, and screen out key genes and important signaling pathways. Finally, we validate the differentially-methylated/expressed genes in the additional online datasets and in blood from AD patients.Results: A total of 8 hub hypomethylated-high expression genes were obtained, including Rac family small GTPase 2, FGR proto-oncogene, Src family tyrosine kinase, LYN proto-oncogene, Src family tyrosine kinase, protein kinase C delta, myosin IF, integrin subunit alpha 5, semaphorin 4D, and growth arrest specific protein 7. Some enriched signaling pathways of hypomethylated-high expression genes were identified, including regulation of actin cytoskeleton, chemokine signaling pathway, Fc gamma R-mediated phagocytosis, and axon guidance. Conclusion: Differentially-methylated/expressed genes are likely to be associated with AD.
Collapse
Affiliation(s)
- Haiyuan Qiu
- Internal Medicine Department, Ningbo Psychiatric Hospital, Ningbo, China
| | - Qiuyan Weng
- Neurolog Department, Affiliated Hospital of Medical School Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Cheng YC, Wu PH, Chen YJ, Yang CH, Huang JL, Chou YC, Chang PK, Wen CC, Jao SW, Huang HH, Tsai YH, Pai TW. Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test. Genes (Basel) 2021; 12:1539. [PMID: 34680934 PMCID: PMC8535797 DOI: 10.3390/genes12101539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide in 2020. Colonoscopy and the fecal immunochemical test (FIT) are commonly used as CRC screening tests, but both types of tests possess different limitations. Recently, liquid biopsy-based DNA methylation test has become a powerful tool for cancer screening, and the detection of abnormal DNA methylation in stool specimens is considered as an effective approach for CRC screening. The aim of this study was to develop a novel approach in biomarker selection based on integrating primary biomarkers from genome-wide methylation profiles and secondary biomarkers from CRC comorbidity analytics. A total of 125 differential methylated probes (DMPs) were identified as primary biomarkers from 352 genome-wide methylation profiles. Among them, 51 biomarkers, including 48 hypermethylated DMPs and 3 hypomethylated DMPs, were considered as suitable DMP candidates for CRC screening tests. After comparing with commercial kits, three genes (ADHFE1, SDC2, and PPP2R5C) were selected as candidate epigenetic biomarkers for CRC screening tests. Methylation levels of these three biomarkers were significantly higher for patients with CRC than normal subjects. The sensitivity and specificity of integrating methylated ADHFE1, SDC2, and PPP2R5C for CRC detection achieved 84.6% and 92.3%, respectively. Through an integrated approach using genome-wide DNA methylation profiles and electronic medical records, we could design a biomarker panel that allows for early and accurate noninvasive detection of CRC using stool samples.
Collapse
Affiliation(s)
- Yi-Chiao Cheng
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.C.); (P.-H.W.); (P.-K.C.); (C.-C.W.); (S.-W.J.)
| | - Po-Hsien Wu
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.C.); (P.-H.W.); (P.-K.C.); (C.-C.W.); (S.-W.J.)
| | - Yen-Ju Chen
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (Y.-J.C.); (Y.-H.T.)
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Jhen-Li Huang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Pi-Kai Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.C.); (P.-H.W.); (P.-K.C.); (C.-C.W.); (S.-W.J.)
| | - Chia-Cheng Wen
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.C.); (P.-H.W.); (P.-K.C.); (C.-C.W.); (S.-W.J.)
| | - Shu-Wen Jao
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.C.); (P.-H.W.); (P.-K.C.); (C.-C.W.); (S.-W.J.)
| | - Hsin-Hui Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11042, Taiwan;
| | - Yi-Hsuan Tsai
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (Y.-J.C.); (Y.-H.T.)
| | - Tun-Wen Pai
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (Y.-J.C.); (Y.-H.T.)
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.Y.); (J.-L.H.)
| |
Collapse
|
11
|
Papke CM, Smolen KA, Swingle MR, Cressey L, Heng RA, Toporsian M, Deng L, Hagen J, Shen Y, Chung WK, Kettenbach AN, Honkanen RE. A disorder-related variant (E420K) of a PP2A-regulatory subunit (PPP2R5D) causes constitutively active AKT-mTOR signaling and uncoordinated cell growth. J Biol Chem 2021; 296:100313. [PMID: 33482199 PMCID: PMC7952134 DOI: 10.1016/j.jbc.2021.100313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Functional genomic approaches have facilitated the discovery of rare genetic disorders and improved efforts to decipher their underlying etiology. PPP2R5D-related disorder is an early childhood onset condition characterized by intellectual disability, hypotonia, autism-spectrum disorder, macrocephaly, and dysmorphic features. The disorder is caused by de novo single nucleotide changes in PPP2R5D, which generate heterozygous dominant missense variants. PPP2R5D is known to encode a B'-type (B'56δ) regulatory subunit of a PP2A-serine/threonine phosphatase. To help elucidate the molecular mechanisms altered in PPP2R5D-related disorder, we used a CRISPR-single-base editor to generate HEK-293 cells in which a single transition (c.1258G>A) was introduced into one allele, precisely recapitulating a clinically relevant E420K variant. Unbiased quantitative proteomic and phosphoproteomic analyses of endogenously expressed proteins revealed heterozygous-dominant changes in kinase/phosphatase signaling. These data combined with orthogonal validation studies revealed a previously unrecognized interaction of PPP2R5D with AKT in human cells, leading to constitutively active AKT-mTOR signaling, increased cell size, and uncoordinated cellular growth in E420K-variant cells. Rapamycin reduced cell size and dose-dependently reduced RPS6 phosphorylation in E420K-variant cells, suggesting that inhibition of mTOR1 can suppress both the observed RPS6 hyperphosphorylation and increased cell size. Together, our findings provide a deeper understanding of PPP2R5D and insight into how the E420K-variant alters signaling networks influenced by PPP2R5D. Our comprehensive approach, which combines precise genome editing, isobaric tandem mass tag labeling of peptides generated from endogenously expressed proteins, and concurrent liquid chromatography-mass spectrometry (LC-MS3), also provides a roadmap that can be used to rapidly explore the etiologies of additional genetic disorders.
Collapse
Affiliation(s)
- Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Richard A Heng
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mourad Toporsian
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Jacob Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA; Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
12
|
Perl AL, O'Connor CM, Fa P, Mayca Pozo F, Zhang J, Zhang Y, Narla G. Protein phosphatase 2A controls ongoing DNA replication by binding to and regulating cell division cycle 45 (CDC45). J Biol Chem 2019; 294:17043-17059. [PMID: 31562245 DOI: 10.1074/jbc.ra119.010432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Indexed: 11/06/2022] Open
Abstract
Genomic replication is a highly regulated process and represents both a potential benefit and liability to rapidly dividing cells; however, the precise post-translational mechanisms regulating genomic replication are incompletely understood. Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that regulates a diverse array of cellular processes. Here, utilizing both a gain-of-function chemical biology approach and loss-of-function genetic approaches to modulate PP2A activity, we found that PP2A regulates DNA replication. We demonstrate that increased PP2A activity can interrupt ongoing DNA replication, resulting in a prolonged S phase. The impaired replication resulted in a collapse of replication forks, inducing dsDNA breaks, homologous recombination, and a PP2A-dependent replication stress response. Additionally, we show that during replication, PP2A exists in complex with cell division cycle 45 (CDC45) and that increased PP2A activity caused dissociation of CDC45 and polymerase α from the replisome. Furthermore, we found that individuals harboring mutations in the PP2A Aα gene have a higher fraction of genomic alterations, suggesting that PP2A regulates ongoing replication as a mechanism for maintaining genomic integrity. These results reveal a new function for PP2A in regulating ongoing DNA replication and a potential role for PP2A in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Abbey L Perl
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Pengyan Fa
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio 43210
| | - Franklin Mayca Pozo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Junran Zhang
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio 43210
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Goutham Narla
- Department of Internal Medicine, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 .,Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
13
|
El Taweel M, Gawdat RM, Abdelfattah R. Prognostic Impact of PPP2R5C Gene Expression in Adult Acute Myeloid Leukemia Patients with Normal Cytogenetics. Indian J Hematol Blood Transfus 2019; 36:37-46. [PMID: 32158086 DOI: 10.1007/s12288-019-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a crucial regulator of the cellular signalling pathways, proliferation, cell cycle checkpoints and apoptosis. The PPP2R5C gene encodes PP2A regulatory B56γ subunit. Malignant transformation may occur, if mRNA of PPP2R5C is functionally deregulated, structurally altered, decreased or overexpressed. Therefore, the purpose of the study was to examine PPP2R5C mRNA expression, evaluate its association with the different clinical and haematological parameters and determine its prognostic impact in Egyptian adult acute myeloid leukaemia patients with normal cytogenetics (CN-AML). Peripheral blood samples of 50 de novo CN-AML patients and 20 age- and gender-matched healthy controls were examined for PPP2R5C expression by Quantitative Real Time-Polymerase Chain Reaction. The expression levels of PPP2R5C mRNA were significantly higher in the CN-AML samples than in the control samples (P ≤ 0.001). There was a statistical significant difference between the low and high expression levels of PPP2R5C with regard to age (P = 0.005, r = - 0.447, P = 0.001). The patients with an unfavourable response to induction chemotherapy had significant higher PPP2R5C expression levels than those with a favourable response (P = 0.002). There was a significant influence of high PPP2R5C expression levels on the overall survival and progression free survival (P = 0.03, 0.026), respectively. PPP2R5C overexpression is an adverse prognostic factor which affects leukaemogenesis in the CN-AML, it may predict the disease progression and overall survival during the follow-up of the patients.
Collapse
Affiliation(s)
- Maha El Taweel
- 1Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rania M Gawdat
- 2Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef Teaching Hospital, Beni-Suef University, Beni- Suef, Egypt
| | - Rafaat Abdelfattah
- 3Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Umesalma S, Kaemmer CA, Kohlmeyer JL, Letney B, Schab AM, Reilly JA, Sheehy RM, Hagen J, Tiwari N, Zhan F, Leidinger MR, O'Dorisio TM, Dillon J, Merrill RA, Meyerholz DK, Perl AL, Brown BJ, Braun TA, Scott AT, Ginader T, Taghiyev AF, Zamba GK, Howe JR, Strack S, Bellizzi AM, Narla G, Darbro BW, Quelle FW, Quelle DE. RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. J Clin Invest 2019; 129:1641-1653. [PMID: 30721156 DOI: 10.1172/jci123049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan M Sheehy
- Department of Pharmacology.,Free Radical & Radiation Biology Training Program
| | | | | | | | - Mariah R Leidinger
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - David K Meyerholz
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Abbey L Perl
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | - Agshin F Taghiyev
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Andrew M Bellizzi
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin W Darbro
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | - Dawn E Quelle
- Department of Pharmacology.,Molecular Medicine Graduate Program.,Free Radical & Radiation Biology Training Program.,Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst) 2018; 69:63-72. [PMID: 30075372 DOI: 10.1016/j.dnarep.2018.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kheyrollah
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
16
|
Lai TY, Yen CJ, Tsai HW, Yang YS, Hong WF, Chiang CW. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1. Oncotarget 2016; 7:4542-58. [PMID: 26684356 PMCID: PMC4826225 DOI: 10.18632/oncotarget.6609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023] Open
Abstract
The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role.
Collapse
Affiliation(s)
- Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-San Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fu Hong
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Cip2a promotes cell cycle progression in triple-negative breast cancer cells by regulating the expression and nuclear export of p27Kip1. Oncogene 2016; 36:1952-1964. [DOI: 10.1038/onc.2016.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023]
|
18
|
Ito T, Ozaki S, Chanasong R, Mizutani Y, Oyama T, Sakurai H, Matsumoto I, Takemura H, Kawahara E. Activation of ERK/IER3/PP2A-B56γ-positive feedback loop in lung adenocarcinoma by allelic deletion of B56γ gene. Oncol Rep 2016; 35:2635-42. [PMID: 26986830 DOI: 10.3892/or.2016.4677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/27/2015] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the involvement of the IER3/PP2A-B56γ/ERK-positive feedback loop, which leads to sustained phosphorylation/activation of ERK in carcinogenesis, we immunohistochemically examined the expression of IER3 and phosphorylated ERK in lung tumor tissues. IER3 was overexpressed in all cases of adenocarcinomas examined, but was not overexpressed in squamous cell carcinomas. Phosphorylated ERK (pERK) was also overexpressed in almost all adenocarcinomas. EGFR and RAS, whose gene product is located upstream of ERK, were sequenced. Activating mutation of EGFR, which is a possible cause of overexpression of IER3 and pERK, was found only in 5 adenocarcinomas (42%). No mutation of RAS was found. We further examined the sequences of all exons of B56γ gene (PPP2R5C) and IER3, but no mutation was found. Using a single nucleotide insertion in intron 1 of PPP2R5C, which was found in the process of sequencing, allelic deletion of PPP2R5C was examined. Eight cases were informative (67%), and the deletion was found in 4 of them (50%). Three cases having deletion of PPP2R5C did not have EGFR mutation. Finally, PPP2R5C deletion or EGFR mutation that could be responsible for IER3/pERK overexpression was found in at least 8 cases (67% or more). This is the first report of a high incidence of deletion of PPP2R5C in human carcinomas.
Collapse
Affiliation(s)
- Tomoko Ito
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Satoru Ozaki
- Department of Clinical Laboratory Medicine, Graduate School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Yuki Mizutani
- Department of Clinical Laboratory Medicine, Graduate School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Takeru Oyama
- Department of Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Sakurai
- Department of Clinical Laboratory Medicine, Graduate School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Isao Matsumoto
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Ei Kawahara
- Department of Clinical Laboratory Medicine, Graduate School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| |
Collapse
|
19
|
Maertens GN. B'-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase. Nucleic Acids Res 2015; 44:364-76. [PMID: 26657642 PMCID: PMC4705670 DOI: 10.1093/nar/gkv1347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B' family of the regulatory subunits. B'-PP2A and HTLV-1 IN display nuclear co-localization, and the B' subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein-protein interaction interface maps to a patch of highly conserved residues on B', which when mutated render B' incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity.
Collapse
Affiliation(s)
- Goedele N Maertens
- Division of Infectious Diseases, St. Mary's campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
20
|
Mo ST, Chiang SJ, Lai TY, Cheng YL, Chung CE, Kuo SCH, Reece KM, Chen YC, Chang NS, Wadzinski BE, Chiang CW. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells. PLoS One 2014; 9:e116074. [PMID: 25536081 PMCID: PMC4275284 DOI: 10.1371/journal.pone.0116074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC) analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET). Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells.
Collapse
Affiliation(s)
- Shu-Ting Mo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Ju Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Cheng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-En Chung
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Spencer C. H. Kuo
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kelie M. Reece
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Yung-Cheng Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail: (CWC); (BEW)
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CWC); (BEW)
| |
Collapse
|
21
|
PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014; 15:2431-53. [PMID: 24521882 PMCID: PMC3958860 DOI: 10.3390/ijms15022431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.
Collapse
|
22
|
Shen Q, Liu S, Chen Y, Yang L, Chen S, Wu X, Li B, Lu Y, Zhu K, Li Y. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation. J Hematol Oncol 2013; 6:64. [PMID: 24004697 PMCID: PMC3847136 DOI: 10.1186/1756-8722-6-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 08/31/2013] [Indexed: 11/15/2022] Open
Abstract
Despite the success of imatinib and other tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable, and a number of CML patients die due to Abl mutation-related drug resistance and blast crisis. The aim of this study was to evaluate proliferation inhibition and apoptosis induction by down-regulating PPP2R5C gene expression in the imatinib-sensitive and imatinib-resistant CML cell lines K562, K562R (imatinib resistant without an Abl gene mutation), 32D-Bcr-Abl WT (imatinib-sensitive murine CML cell line with a wild type Abl gene) and 32D-Bcr-Abl T315I (imatinib resistant with a T315I Abl gene mutation) and primary cells from CML patients by RNA interference. PPP2R5C siRNAs numbered 799 and 991 were obtained by chemosynthesis. Non-silencing siRNA scrambled control (SC)-treated, mock-transfected, and untreated cells were used as controls. The PPP2R5C mRNA and protein expression levels in treated CML cells were analyzed by quantitative real-time PCR and Western blotting, and in vitro cell proliferation was assayed with the cell counting kit-8 method. The morphology and percentage of apoptosis were revealed by Hoechst 33258 staining and flow cytometry (FCM). The results demonstrated that both siRNAs had the best silencing results after nucleofection in all four cell lines and primary cells. A reduction in PPP2R5C mRNA and protein levels was observed in the treated cells. The proliferation rate of the PPP2R5C-siRNA-treated CML cell lines was significantly decreased at 72 h, and apoptosis was significantly increased. Significantly higher proliferation inhibition and apoptosis induction were found in K562R cells treated with PPP2R5C-siRNA799 than K562 cells. In conclusion, the suppression of PPP2R5C by RNA interference could inhibit proliferation and effectively induce apoptosis in CML cells that were either imatinib sensitive or resistant. Down-regulating PPP2R5C gene expression might be considered as a new therapeutic target strategy for CML, particularly for imatinib-resistant CML.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Hematology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Liu S, Shen Q, Zha X, Zheng H, Yang L, Chen S, Wu X, Li B, Li Y. Differential gene expression profiles of PPP2R5C-siRNA-treated malignant T cells. DNA Cell Biol 2013; 32:573-81. [PMID: 23941244 DOI: 10.1089/dna.2013.2138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, alterations in the expression pattern of PPP2R5C associated with malignant transformation have been characterized, and PPP2R5C overexpression was demonstrated in leukemias. To confirm the role of PPP2R5C in proliferation and its molecular mechanism, three PPP2R5C-siRNAs and a scrambled nonsilencing siRNA control were used to treat Molt-4 and Jurkat T cells. After nucleofection, PPP2R5C expression and biological consequences based on a highly efficient and specific PPP2R5C-siRNA were demonstrated by qRT-PCR, CCK-8 assay, Annexin V/PI, and flow cytometry. The global gene expression profile of PPP2R5C-siRNA-treated Jurkat T cells was established. A significant reduction in the PPP2R5C mRNA level was observed at 24 to 72 h in Molt-4 and Jurkat T cells with all of the PPP2R5C-siRNAs. The proliferation rate of Molt-4 and Jurkat T cells transfected with different PPP2R5C-siRNAs was significantly decreased at 72 h compared with the control (p<0.05). However, the transfected cells did not show a significant increase in Annexin V/PI-positive cells (apoptosis). The highly efficient PPP2R5C-siRNA2 was used to treat Jurkat T cells for gene expression profile analysis. In total, 439 genes were upregulated, and 524 genes were downregulated at least twofold in PPP2R5C-siRNA-treated Jurkat T cells. Changes in signaling pathway genes closely related to the TCR, Wnt, calcium, MAPK, and p53 signaling pathways were observed. In conclusion, the suppression of PPP2R5C by RNA interference could effectively inhibit the proliferation of leukemic T cells, the PPP2R5C-siRNA treatment altered gene expression profiles, and the differential expression of the glycogen synthase kinase 3 beta (GSK-3β), ataxia telangiectasia mutated (ATM), and Mdm2 p53 binding protein homolog (MDM2) genes may play an important role in the effects of PPP2R5C knockdown in Jurkat T cells.
Collapse
Affiliation(s)
- Yu Chen
- 1 Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Apostolidis SA, Rauen T, Hedrich CM, Tsokos GC, Crispín JC. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J Biol Chem 2013; 288:26775-84. [PMID: 23918926 DOI: 10.1074/jbc.m113.483743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase involved in essential cellular functions. T cells from patients with systemic lupus erythematosus (SLE) express high levels of the catalytic subunit of PP2A (PP2Ac). A mouse overexpressing PP2Ac in T cells develops glomerulonephritis in an IL-17-dependent manner. Here, using microarray analyses, we demonstrate that increased expression of PP2Ac grants T cells the capacity to produce an array of proinflammatory effector molecules. Because IL-17 is important in the expression of glomerulonephritis, we studied the mechanism through which PP2Ac dysregulation facilitates its production. We report that PP2Ac is involved in the regulation of the Il17 locus by enhancing histone 3 acetylation through a mechanism that involves activation of interferon regulatory factor 4. Increased histone 3 acetylation of the Il17 locus is shared between T cells of PP2Ac transgenic mice and patients with SLE. We propose that, by promoting the inflammatory capacity of T cells, PP2Ac dysregulation contributes to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- From the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | | | |
Collapse
|
25
|
Abstract
Protein phosphatase 2A (PP2A), one of the main serine-threonine phosphatases in mammalian cells, maintains cell homoeostasis by counteracting most of the kinase-driven intracellular signalling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumour suppressors is often required for development of cancer. PP2A has been shown to be genetically altered or functionally inactivated in many solid cancers and leukaemias, and is therefore a tumour suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myeloid leukaemia and other malignancies characterised by aberrant activity of oncogenic kinases. Preclinical studies show that pharmacological restoration of PP2A tumour-suppressor activity by PP2A-activating drugs (eg, FTY720) effectively antagonises cancer development and progression. Here, we discuss PP2A as a druggable tumour suppressor in view of the possible introduction of PP2A-activating drugs into anticancer therapeutic protocols.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
26
|
Abstract
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation.
Collapse
Affiliation(s)
| | - Young Yang
- Center for Women’s Disease, Department of Biological Science, Sookmyung Women’s University, Seoul 140-742, Korea
| |
Collapse
|
27
|
Prévost M, Chamousset D, Nasa I, Freele E, Morrice N, Moorhead G, Trinkle-Mulcahy L. Quantitative fragmentome mapping reveals novel, domain-specific partners for the modular protein RepoMan (recruits PP1 onto mitotic chromatin at anaphase). Mol Cell Proteomics 2013; 12:1468-86. [PMID: 23362328 DOI: 10.1074/mcp.m112.023291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the "fragmentomes" of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins.
Collapse
Affiliation(s)
- Michèle Prévost
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
B56α subunit of protein phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial cells. Biochem Biophys Res Commun 2013; 430:476-81. [DOI: 10.1016/j.bbrc.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022]
|
29
|
Abstract
Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
Collapse
|
30
|
The B55α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress. Biochem J 2012; 444:239-47. [PMID: 22417654 DOI: 10.1042/bj20111606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The FOXO1 (forkhead box O1) transcription factor influences many key cellular processes, including those important in metabolism, proliferation and cell death. Reversible phosphorylation of FOXO1 at Thr(24) and Ser(256) regulates its subcellular localization, with phosphorylation promoting cytoplasmic localization, whereas dephosphorylation triggers nuclear import and transcriptional activation. In the present study, we used biochemical and molecular approaches to isolate and link the serine/threonine PP2A (protein phosphatase 2A) holoenzyme containing the B55α regulatory subunit, with nuclear import of FOXO1 in pancreatic islet β-cells under oxidative stress, a condition associated with cellular dysfunction in Type 2 diabetes. The mechanism of FOXO1 dephosphorylation and nuclear translocation was investigated in pancreatic islet INS-1 and βTC-3 cell lines subjected to oxidative stress. A combined chemical cross-linking and MS strategy revealed the association of FOXO1 with a PP2A holoenzyme composed of the catalytic C, structural A and B55α regulatory subunits. Knockdown of B55α in INS-1 cells reduced FOXO1 dephosphorylation, inhibited FOXO1 nuclear translocation and attenuated oxidative stress-induced cell death. Furthermore, both B55α and nuclear FOXO1 levels were increased under hyperglycaemic conditions in db/db mouse islets, an animal model of type 2 diabetes. We conclude that B55α-containing PP2A is a key regulator of FOXO1 activity in vivo.
Collapse
|
31
|
Miller JP, Yeh N, Hofstetter CP, Keskin D, Goldstein AS, Koff A. p27kip1 protein levels reflect a nexus of oncogenic signaling during cell transformation. J Biol Chem 2012; 287:19775-85. [PMID: 22511779 DOI: 10.1074/jbc.m112.361972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SV40 small t-antigen (ST) collaborates with SV40 large T-antigen (LT) and activated rasv12 to promote transformation in a variety of immortalized human cells. A number of oncogenes or the disruption of the general serine-threonine phosphatase protein phosphatase 2A (PP2A) can replace ST in this paradigm. However, the relationship between these oncogenes and PP2A activity is not clear. To address this, we queried the connectivity of these molecules in silico. We found that p27 was connected to each of those oncogenes that could substitute for ST. We further determined that p27 loss can substitute for the expression of ST during transformation of both rodent and human cells. Conversely, knock-in cells expressing the degradation-resistant S10A and T187A mutants of p27 were resistant to the transforming activities of ST. This suggests that p27 is an important target of the tumor-suppressive effects of PP2A and likely an important target of the multitude of cellular oncoproteins that emulate the transforming function of ST.
Collapse
Affiliation(s)
- Jeffrey P Miller
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pitre A, Davis N, Paul M, Orr AW, Skalli O. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A. Mol Biol Cell 2012; 23:1243-53. [PMID: 22337773 PMCID: PMC3315805 DOI: 10.1091/mbc.e11-08-0685] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synemin is an intermediate filament protein present in glioblastomas (GBMs) but not in normal brain. In GBM cells synemin interacts with and antagonizes PP2A, which is the phosphatase dephosphorylating Akt. This maintains the phosphorylation status of Akt sites that are substrates for PDPK1 and mTORc2, thereby fostering proliferation. The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21Cip1, and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.
Collapse
Affiliation(s)
- Aaron Pitre
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
33
|
Rosenthal SL, Wang X, Demirci FY, Barmada MM, Ganguli M, Lopez OL, Kamboh MI. Beta-amyloid toxicity modifier genes and the risk of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2012; 1:191-8. [PMID: 22984654 PMCID: PMC3560458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a complex and multifactorial disease. So far ten loci have been identified for LOAD, including APOE, PICALM, CLU, BIN1, CD2AP, CR1, CD33, EPHA1, ABCA7, and MS4A4A/MS4A6E, but they explain about 50% of the genetic risk and thus additional risk genes need to be identified. Amyloid beta (Aβ) plaques develop in the brains of LOAD patients and are considered to be a pathological hallmark of this disease. Recently 12 new Aβ toxicity modifier genes (ADSSL1, PICALM, SH3KBP1, XRN1, SNX8, PPP2R5C, FBXL2, MAP2K4, SYNJ1, RABGEF1, POMT2, and XPO1) have been identified that potentially play a role in LOAD risk. In this study, we have examined the association of 222 SNPs in these 12 candidate genes with LOAD risk in 1291 LOAD cases and 958 cognitively normal controls. Single site and haplotype analyses were performed using PLINK. Following adjustment for APOE genotype, age, sex, and principal components, we found single nucleotide polymorphisms (SNPs) in PPP2R5C, PICALM, SH3KBP1, XRN1, and SNX8 that showed significant association with risk of LOAD. The top SNP was located in intron 3 of PPP2R5C (P=0.009017), followed by an intron 19 SNP in PICALM (P=0.0102). Haplotype analysis revealed significant associations in ADSSL1, PICALM, PPP2R5C, SNX8, and SH3KBP1 genes. Our data indicate that genetic variation in these new candidate genes affects the risk of LOAD. Further investigation of these genes, including additional replication in other case-control samples and functional studies to elucidate the pathways by which they affect Aβ, are necessary to determine the degree of involvement these genes have for LOAD risk.
Collapse
|
34
|
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011:329098. [PMID: 21904669 PMCID: PMC3166778 DOI: 10.4061/2011/329098] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Angela Bononi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Expression and distribution of PPP2R5C gene in leukemia. J Hematol Oncol 2011; 4:21. [PMID: 21548944 PMCID: PMC3117819 DOI: 10.1186/1756-8722-4-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, we clarified at the molecular level novel chromosomal translocation t(14;14)(q11;q32) in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A). It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR), and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. FINDINGS Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. CONCLUSIONS Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.
Collapse
|
36
|
Yang J, Phiel C. Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci 2010; 87:659-66. [PMID: 20934435 DOI: 10.1016/j.lfs.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022]
Abstract
Members of the B'/B56/PR61 family regulatory subunits of PP2A determine the subcellular localization, substrate specificity, and catalytic activity of PP2A in a wide range of biological processes. Here, we summarize the structure and intracellular localization of B56-containing PP2As and review functions of B56-containing PP2As in several major developmental/cancer signaling pathways.
Collapse
Affiliation(s)
- Jing Yang
- The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, the Ohio State University, 700 Children's Dr., Columbus, OH, 43205, United States.
| | | |
Collapse
|