1
|
Qi F, Yang L, Chang G, Wang X, Tao G, Xiao H. Comprehensive mendelian randomization reveals atrial fibrillation-breast cancer relationship and explores common druggable targets. Front Pharmacol 2024; 15:1435545. [PMID: 39170695 PMCID: PMC11335625 DOI: 10.3389/fphar.2024.1435545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Atrial fibrillation (AF) and breast cancer pose significant risks to human health. The reasons behind the concurrent occurrence of AF and breast cancer remain unclear, leading to complex treatment approaches. Mendelian Randomization (MR) analyses aim to offer genetic evidence supporting the causation of AF and breast cancer and to investigate common druggable genes associated with both conditions. Methods We used two-samples of MR to sequentially explore the causal relationship between atrial fibrillation and breast cancer, and between atrial fibrillation and breast cancer therapeutic drugs, and verified the stability of the results through colocalization analysis. We utilized the Connectivity map database to infer the direction of drug effects on disease. Finally, we explored druggable genes that play a role in AF and breast cancer and performed a Phenome-wide MR analysis to analyze the potential side effects of drug targets. Results We found 15 breast cancer therapeutic drugs that significantly support a causal association between AF and breast cancer through expression in blood and/or atrial appendage tissue. Among these, activation of ANXA5 by Docetaxel, inhibition of EIF5A by Fulvestrant, and inhibition of GNA12 by Tamoxifen increased the risk of AF, while inhibition of ANXA5 by Gemcitabine and Vinorebine and inhibition of PCGF6 by Paclitaxel reduced the risk of AF. Inhibition of MSH6 and SF3B1 by Cyclophosphamide, as well as inhibition of SMAD4 and PSMD2 and activation of ASAH1 and MLST8 by Doxorubicin can have bidirectional effects on AF occurrence. XBP1 can be used as a common druggable gene for AF and breast cancer, and there are no potential side effects of treatment against this target. Conclusion This study did not find a direct disease causality between AF and breast cancer but identified 40 target genes for 15 breast cancer therapeutic drugs associated with AF, clarified the direction of action of 8 breast cancer therapeutic drugs on AF, and finally identified one common druggable target for AF and breast cancer.
Collapse
Affiliation(s)
- Fenglin Qi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lunzhe Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangbin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guanghong Tao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Bratei AA, Stefan-van Staden RI. Correlations between MSH2 and MSH6 Concentrations in Different Biological Fluids and Clinicopathological Features in Colorectal Adenocarcinoma Patients and Their Contribution to Fast and Early Diagnosis of Colorectal Adenocarcinoma. Biomedicines 2023; 11:3213. [PMID: 38137434 PMCID: PMC10741075 DOI: 10.3390/biomedicines11123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: The human MutS homolog, hMSH2, is known to be involved in DNA mismatch repair and is responsible for maintaining the stability of the genome. When DNA damage occurs, MSH2 promotes cell apoptosis via the regulation of ATR/Chk2/p53 signal transduction, and MSH2 deficiency is also related to accelerated telomere shortening in humans. MSH2 missense mutations are involved in a defective DNA reparation process, and it can be implied in carcinogenesis, as it is already involved in well-known cancer-related syndromes such as Lynch syndrome. Human MSH6, which stands for mutS homolog 6, is a member of the MMR family that is responsible for the repair of post-replicative mismatched DNA bases. It is also one of the proteins with gene mutations that are associated with a high risk of developing Lynch syndrome, leading to a large series of tumors. (2) Methods: Patients and their clinical and pathological features were selected from the database of the project GRAPHSENSGASTROINTES and used accordingly, with ethics committee approval no. 32647/2018 awarded by the County Emergency Hospital from Targu-Mures. Analyses were conducted on whole blood, saliva, urine, and tumoral tissue samples using a stochastic method with stochastic microsensors. (3) Results: The results obtained using stochastic sensors were correlated with a series of macroscopic and microscopic pathological features for each sample type. Criteria or relationships were established for tumor location, vascular and perineural invasions, lymph node metastases, the presence of tumor deposits, and the presence of a mucus compound in the tumor mass. (4) Conclusions: The correlation between the concentrations of MSH2 in the four types of samples and the pathological features allowed for the fast characterization of a tumor, which can help surgeons and oncologists choose personalized treatments. Also, the colorectal tumor location was correlated with the concentration of MSH2 in whole blood, urine, and saliva. MSH6, which stands for mutS homolog 6, is not only useful in immunohistochemistry but in pathology practice as well. In this paper, the relationships between MSH6 levels in four biological fluids-whole blood, saliva, urine, and tissues-and tumor locations among the colorectal area, gross features, presence of a mucinous compound, molecular subtype, stroma features, and vascular invasions are presented.
Collapse
Affiliation(s)
- Alexandru Adrian Bratei
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest, Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540139 Targu-Mures, Romania
| | - Raluca-Ioana Stefan-van Staden
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Britton BM, London JA, Martin-Lopez J, Jones ND, Liu J, Lee JB, Fishel R. Exploiting the distinctive properties of the bacterial and human MutS homolog sliding clamps on mismatched DNA. J Biol Chem 2022; 298:102505. [PMID: 36126773 PMCID: PMC9597889 DOI: 10.1016/j.jbc.2022.102505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022] Open
Abstract
MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juana Martin-Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan D Jones
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
4
|
The unstructured linker of Mlh1 contains a motif required for endonuclease function which is mutated in cancers. Proc Natl Acad Sci U S A 2022; 119:e2212870119. [PMID: 36215471 PMCID: PMC9586283 DOI: 10.1073/pnas.2212870119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair (MMR) prevents mutations caused by DNA-replication errors and suppresses multiple types of cancers. During MMR, the Mlh1-Pms1 complex is recruited to mispair-containing DNA and nicks the newly replicated DNA strand, targeting it for degradation and resynthesis. Here, we identified an amino acid sequence within the unstructured linker of Mlh1 required for endonuclease activity. This sequence functioned when moved within the Mlh1 linker or when moved to the Pms1 linker. These results reveal a functional role for the intrinsically disordered region, which is conserved from yeast to humans and is mutated in cancer, suggesting that it organizes the catalytically active complex even though the required sequence can be distant from the active site. Eukaryotic DNA mismatch repair (MMR) depends on recruitment of the Mlh1-Pms1 endonuclease (human MLH1-PMS2) to mispaired DNA. Both Mlh1 and Pms1 contain a long unstructured linker that connects the N- and carboxyl-terminal domains. Here, we demonstrated the Mlh1 linker contains a conserved motif (Saccharomyces cerevisiae residues 391–415) required for MMR. The Mlh1-R401A,D403A-Pms1 linker motif mutant protein was defective for MMR and endonuclease activity in vitro, even though the conserved motif could be >750 Å from the carboxyl-terminal endonuclease active site or the N-terminal adenosine triphosphate (ATP)-binding site. Peptides encoding this motif inhibited wild-type Mlh1-Pms1 endonuclease activity. The motif functioned in vivo at different sites within the Mlh1 linker and within the Pms1 linker. Motif mutations in human cancers caused a loss-of-function phenotype when modeled in S. cerevisiae. These results suggest that the Mlh1 motif promotes the PCNA-activated endonuclease activity of Mlh1-Pms1 via interactions with DNA, PCNA, RFC, or other domains of the Mlh1-Pms1 complex.
Collapse
|
5
|
DuPrie ML, Palacio T, Calil FA, Kolodner RD, Putnam CD. Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair. DNA Repair (Amst) 2022; 119:103405. [PMID: 36122480 PMCID: PMC9639671 DOI: 10.1016/j.dnarep.2022.103405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S. cerevisiae and human homologs have only identified an interaction between the Msh2 connector domain and Mlh1. Here we investigated whether a conserved Msh6 ATPase/core domain-Mlh1 interaction and an Msh2-Msh6 interaction with Pms1 also act in MMR. Mutations in MLH1 affecting interactions with both the Msh2 and Msh6 interfaces caused MMR defects, whereas equivalent pms1 mutations did not cause MMR defects. Mutant Mlh1-Pms1 complexes containing Mlh1 amino acid substitutions were defective for recruitment to mispaired DNA by Msh2-Msh6, did not support MMR in reconstituted Mlh1-Pms1-dependent MMR reactions in vitro, but were proficient in Msh2-Msh6-independent Mlh1-Pms1 endonuclease activity. These results indicate that Mlh1, the common subunit of the Mlh1-Pms1, Mlh1-Mlh2, and Mlh1-Mlh3 complexes, but not Pms1, is recruited by Msh2-Msh6 through interactions with both of its subunits.
Collapse
Affiliation(s)
- Matthew L DuPrie
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tatiana Palacio
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Felipe A Calil
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Cellular and Molecular Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Moores-UCSD Cancer Center University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Institute of Genomic Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA.
| |
Collapse
|
6
|
An integrative pan-cancer analysis reveals the oncogenic role of mutS homolog 6 (MSH6) in human tumors. Aging (Albany NY) 2021; 13:25271-25290. [PMID: 34941572 PMCID: PMC8714153 DOI: 10.18632/aging.203745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
There are three most important mismatch repair genes in the mismatch repair system, MSH6 is one of them and it plays an essential role in DNA mismatch repair. Several emerging cell- or animal-based studies have verified that MSH6 mutations are closely linked to the occurrence, progression or metastasis of cancer, but there is still no practicable pan-cancer analysis. On account of the available datasets of the cancer genome atlas (TCGA) and Gene expression omnibus (GEO), a comprehensive analysis of the potential carcinogenic effects of the MSH6 gene was conducted in 33 human cancers. MSH6 was highly expressed in most cancers, and the high expression of MSH6 was associated with poor overall survival prognosis of patients with multiple cancers, such as adrenocortical carcinoma. MSH6 mutations occurred in most cancers and were closely related to the prognosis of cancer patients. Increased phosphorylation levels of S227 and S830 were noted in several tumors, including breast cancer and colon cancer. MSH6 expression was also observed to be correlated with cancer-associated fibroblasts and CD8+ T-cells infiltration levels in various cancer types, e. g. pancreatic adenocarcinoma or testicular germ cell tumors. Furthermore, pathway enrichment analysis demonstrated that the main biological activities of MSH6 were related to ATPase activity, mismatch repair, and DNA metabolism-related functions. Altogether, our pan-cancer research has suggested that the MSH6 expression level was closely related to the carcinogenesis and prognosis of certain tumors, which helps to know the effect of MSH6 in tumorigenesis from the point of view of clinical tumor samples.
Collapse
|
7
|
Hagihara M, Shiroto S, Igarashi S, Sato SI. Guanine-tethered Oligonucleotides Restore Abnormal Protein Synthesis with a SNP Mutation in a 5′-UTR G-quadruplex of Human MSH2. CHEM LETT 2021. [DOI: 10.1246/cl.210391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Hagihara
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shuhei Shiroto
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shunya Igarashi
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shin-ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
8
|
Zhang H, Xiao X, Wei W, Huang C, Wang M, Wang L, He Y, Sun J, Jiang Y, Jiang G, Zhang X. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSα/ATM-p73 axis in bladder cancer. Mol Cancer 2021; 20:70. [PMID: 33874956 PMCID: PMC8054397 DOI: 10.1186/s12943-021-01360-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cisplatin (CDDP) has become a standard-of-care treatment for muscle-invasive bladder cancer (MIBC), while chemoresistance remains a major challenge. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the regulatory functions as well as complexities of circRNAs in modulating CDDP-based chemotherapy in bladder cancer are yet to be well revealed. METHODS Through analyzing the expression profile of circRNAs in bladder cancer tissues, RNA FISH, circRNA pull-down assay, mass spectrometry analysis and RIP, circLIFR was identified and its interaction with MSH2 was confirmed. The effects of circLIFR and MSH2 on CDDP-based chemotherapy were explored by flow cytometry and rescue experiments. Co-IP and Western blot were used to investigate the molecular mechanisms underlying the functions of circLIFR and MSH2. Biological implications of circLIFR and MSH2 in bladder cancer were implemented in tumor xenograft models and PDX models. RESULTS CircLIFR was downregulated in bladder cancer and expression was positively correlated with favorable prognosis. Moreover, circLIFR synergizing with MSH2, which was a mediator of CDDP sensitivity in bladder cancer cells, positively modulated sensitivity to CDDP in vitro and in vivo. Mechanistically, circLIFR augmented the interaction between MutSα and ATM, ultimately contributing to stabilize p73, which triggered to apoptosis. Importantly, MIBC with high expression of circLIFR and MSH2 was more sensitive to CDDP-based chemotherapy in tumor xenograft models and PDX models. CONCLUSIONS CircLIFR could interact with MSH2 to positively modulate CDDP-sensitivity through MutSα/ATM-p73 axis in bladder cancer. CircLIFR and MSH2 might be act as promising therapeutic targets for CDDP-resistant bladder cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjie Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanqiao He
- Department of Laboratory Animal Science, Nanchang University, Nanchang, 330006, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangkai Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
LeBlanc SJ, Gauer JW, Hao P, Case BC, Hingorani MM, Weninger KR, Erie DA. Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res 2019; 46:10782-10795. [PMID: 30272207 PMCID: PMC6237781 DOI: 10.1093/nar/gky865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein–DNA and DNA–DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.
Collapse
Affiliation(s)
- Sharonda J LeBlanc
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob W Gauer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengyu Hao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Brandon C Case
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Thirumal Kumar D, Susmita B, Judith E, Priyadharshini Christy J, George Priya Doss C, Zayed H. Elucidating the role of interacting residues of the MSH2-MSH6 complex in DNA repair mechanism: A computational approach. DNA Repair (Amst) 2019; 115:325-350. [DOI: 10.1016/bs.apcsb.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Graham WJ, Putnam CD, Kolodner RD. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair. J Biol Chem 2018; 293:18055-18070. [PMID: 30237169 PMCID: PMC6254361 DOI: 10.1074/jbc.ra118.005439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2–Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2–Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2–Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide–binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2–Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo. The mutant Msh2–Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1–Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1–Pms1-independent and Mlh1–Pms1-dependent MMR reactions in vitro and in activation of the Mlh1–Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2–Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.
Collapse
Affiliation(s)
| | - Christopher D Putnam
- From the Ludwig Institute for Cancer Research San Diego,; Departments of Medicine and
| | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research San Diego,; Cellular and Molecular Medicine,; Moores-UCSD Cancer Center, and; Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669.
| |
Collapse
|
12
|
Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners. Nat Struct Mol Biol 2018; 25:650-659. [PMID: 30061603 DOI: 10.1038/s41594-018-0092-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA mismatch repair (MMR) involves both exonuclease 1 (Exo1)-dependent and Exo1-independent pathways. We found that the unstructured C-terminal domain of Saccharomyces cerevisiae Exo1 contains two MutS homolog 2 (Msh2)-interacting peptide (SHIP) boxes downstream from the MutL homolog 1 (Mlh1)-interacting peptide (MIP) box. These three sites were redundant in Exo1-dependent MMR in vivo and could be replaced by a fusion protein between an N-terminal fragment of Exo1 and Msh6. The SHIP-Msh2 interactions were eliminated by the msh2M470I mutation, and wild-type but not mutant SHIP peptides eliminated Exo1-dependent MMR in vitro. We identified two S. cerevisiae SHIP-box-containing proteins and three candidate human SHIP-box-containing proteins. One of these, Fun30, had a small role in Exo1-dependent MMR in vivo. The Remodeling of the Structure of Chromatin (Rsc) complex also functioned in both Exo1-dependent and Exo1-independent MMR in vivo. Our results identified two modes of Exo1 recruitment and a peptide module that mediates interactions between Msh2 and other proteins, and they support a model in which Exo1 functions in MMR by being tethered to the Msh2-Msh6 complex.
Collapse
|
13
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
14
|
Abstract
Sebaceous neoplasms such as adenoma, sebaceoma, and carcinoma, although sporadic in their occurrence, are clinically significant because of their association with Muir-Torre syndrome (MTS). MTS is a rare autosomal dominant genodermatosis characterized by the occurrence of sebaceous neoplasms and/or keratoacanthomas and visceral malignancies. MTS is usually the result of germline mutations in the DNA mismatch repair genes MSH2 and, albeit less commonly, MLH1. Although less know, MSH6 is yet another key player. Evidence from Lynch syndrome indicates that pathogenic germline mutations in MSH6 are typically microsatellite stable and have a clinical presentation that differs from that associated with germline mutations in MSH2 and/or MLH1. Given this unique mutator phenotype of MSH6, the primary aim of this review was to underscore the clinical manifestations associated with pathogenic mutations in MSH6 in patients with MTS. As the current clinical and laboratory work-up of MTS is geared toward patients harboring a germline mutation in MSH2 and/or MLH1, an additional aim was to provide a scaffolding for the work-up of a patient presenting with an isolated germline mutation in MSH6.
Collapse
|
15
|
Bowen N, Kolodner RD. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins. Proc Natl Acad Sci U S A 2017; 114:3607-3612. [PMID: 28265089 PMCID: PMC5389320 DOI: 10.1073/pnas.1701753114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian and Saccharomyces cerevisiae mismatch repair (MMR) proteins catalyze two MMR reactions in vitro. In one, mispair binding by either the MutS homolog 2 (Msh2)-MutS homolog 6 (Msh6) or the Msh2-MutS homolog 3 (Msh3) stimulates 5' to 3' excision by exonuclease 1 (Exo1) from a single-strand break 5' to the mispair, excising the mispair. In the other, Msh2-Msh6 or Msh2-Msh3 activate the MutL homolog 1 (Mlh1)-postmeiotic segregation 1 (Pms1) endonuclease in the presence of a mispair and a nick 3' to the mispair, to make nicks 5' to the mispair, allowing Exo1 to excise the mispair. DNA polymerase δ (Pol δ) is thought to catalyze DNA synthesis to fill in the gaps resulting from mispair excision. However, colocalization of the S. cerevisiae mispair recognition proteins with the replicative DNA polymerases during DNA replication has suggested that DNA polymerase ε (Pol ε) may also play a role in MMR. Here we describe the reconstitution of Pol ε-dependent MMR using S. cerevisiae proteins. A mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze both short-patch and long-patch 5' nick-directed MMR of a substrate containing a +1 (+T) mispair. When the substrate contained a nick 3' to the mispair, a mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze an MMR reaction that required Mlh1-Pms1. These results demonstrate that Pol ε can act in eukaryotic MMR in vitro.
Collapse
Affiliation(s)
- Nikki Bowen
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669;
- Department of Cellular and Molecular Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
- Moores-University of California San Diego Cancer Center, University of California School of Medicine, La Jolla, CA 92093-0669
- Institute of Genomic Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
| |
Collapse
|
16
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
17
|
Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair (Amst) 2016; 38:3-13. [PMID: 26698650 PMCID: PMC4740188 DOI: 10.1016/j.dnarep.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute for Molecular Medicine, University of CA, San Diego School of Medicine, La Jolla, CA 92093-0669, United States.
| |
Collapse
|
18
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
19
|
Abstract
Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism.
Collapse
Affiliation(s)
- Richard Fishel
- From the Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and the Department of Physics and the Biophysics Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
20
|
Smith CE, Bowen N, Graham WJ, Goellner EM, Srivatsan A, Kolodner RD. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System. J Biol Chem 2015; 290:21580-90. [PMID: 26170454 PMCID: PMC4571882 DOI: 10.1074/jbc.m115.662189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/07/2022] Open
Abstract
Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR.
Collapse
Affiliation(s)
| | - Nikki Bowen
- From the Ludwig Institute for Cancer Research
| | | | | | | | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research, the Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center, and the Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
21
|
Groothuizen FS, Winkler I, Cristóvão M, Fish A, Winterwerp HHK, Reumer A, Marx AD, Hermans N, Nicholls RA, Murshudov GN, Lebbink JHG, Friedhoff P, Sixma TK. MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. eLife 2015; 4:e06744. [PMID: 26163658 PMCID: PMC4521584 DOI: 10.7554/elife.06744] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch. DOI:http://dx.doi.org/10.7554/eLife.06744.001 The genetic code of DNA is written using four letters: “A”, “C”, “T”, and “G”. Molecules of DNA form a double helix in which the letters in the two opposing strands pair up in a specific manner—“A” pairs with “T”, and “C” pairs with “G”. A cell must replicate its DNA before it divides, and sometimes the wrong DNA letter can get added into the new DNA strand. If left uncorrected, these mistakes accumulate over time and can eventually harm the cell. As a result, cells have evolved several ways to identify these mistakes and correct them, including one known as “mismatch repair”. Mismatch repair occurs via several stages. The process starts when a protein called MutS comes across a site in the DNA where the letters are mismatched (for example, where an “A” is paired with a “C”, instead of a “T”). MutS can recognize such a mismatch, bind it, and then bind to another molecule called ATP. MutS then changes shape and encircles the DNA like a clamp that can slide along the DNA. Only when it forms this “sliding clamp” state can MutS recruit another protein called MutL. This activity in turn triggers a series of further events that ultimately correct the mismatch. However, it remains poorly understood how MutS forms a clamp around DNA and how and why this state recruits MutL in order to start the repair. To visualize this short-lived intermediate, Groothuizen et al. trapped the relevant complex in the presence of DNA containing a mismatch and then used a technique called X-ray crystallography to determine the three-dimensional structure of MutS bound to MutL. The structure reveals that two copies of MutS tilt across each other and open up a channel, which is large enough to accommodate the DNA. In this manner, MutS is able to form a loose ring around the DNA. The changes in the structure and the movement of the DNA to the new channel were confirmed using another technique, commonly referred to as FRET. Groothuizen et al. observed that the movements in the MutS protein also serve to make the interfaces available that can recognize MutL. If these interfaces were disturbed, MutS and MutL were unable to associate with each other, which resulted in a failure to trigger mismatch repair. Further analysis revealed that that MutL binds to DNA only after MutS has recognised the mismatch and formed a clamp around it. This is the first time that the MutS clamp and the MutS/MutL complex have been visualized, and further work is now needed to understand how MutL triggers other events that ultimately repair the mismatched DNA. DOI:http://dx.doi.org/10.7554/eLife.06744.002
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ines Winkler
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Michele Cristóvão
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Alexander Fish
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Annet Reumer
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreas D Marx
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Nicolaas Hermans
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robert A Nicholls
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Garib N Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joyce H G Lebbink
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
22
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Abstract
Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, Ohio 43210 Human Genetics Institute, The Ohio State University Medical Center, Columbus, Ohio 43210 Physics Department, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
24
|
Campbell CS, Hombauer H, Srivatsan A, Bowen N, Gries K, Desai A, Putnam CD, Kolodner RD. Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004327. [PMID: 24811092 PMCID: PMC4014439 DOI: 10.1371/journal.pgen.1004327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022] Open
Abstract
In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1. Lynch syndrome (hereditary nonpolyposis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. In this syndrome, predisposition to cancer results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the human mismatch repair genes MLH1, MSH2, MSH6 or PMS2. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. In Saccharomyces cerevisiae, the MLH2 gene encodes a MutL homolog protein whose role in DNA mismatch repair has been unclear. Here, we used phylogenetic analysis to demonstrate that the S. cerevisiae Mlh2 protein and the mammalian Pms1 protein are homologs. A combination of genetics, biochemistry and imaging studies were used to demonstrate that the Mlh1-Mlh2 complex is recruited to mispair-containing DNA by the Msh2-Msh6 and Msh2-Msh3 mispair recognition complexes where it forms foci that colocalize with Mlh1-Pms1 foci (note that scPms1 is the homolog of hPms2) and augments the function of the Mlh1-Pms1 complex. Thus, this work establishes the Mlh1-Mlh2 complex as a non-essential accessory factor that functions in MMR.
Collapse
Affiliation(s)
- Christopher S. Campbell
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Hans Hombauer
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Anjana Srivatsan
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Nikki Bowen
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Kerstin Gries
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Arshad Desai
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Srivatsan A, Bowen N, Kolodner RD. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. J Biol Chem 2014; 289:9352-64. [PMID: 24550389 DOI: 10.1074/jbc.m114.552190] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
Collapse
|
26
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
27
|
Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 2013; 9:e1003869. [PMID: 24204293 PMCID: PMC3814310 DOI: 10.1371/journal.pgen.1003869] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/25/2013] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. Although EXO1 is considered to be the major repair nuclease functioning in mismatch repair, the relatively low mutation rates caused by an exo1 deletion suggest otherwise. Here we used genetics, microscopy and protein biochemistry to analyze the model organism Saccharomyces cerevisiae to further characterize a poorly understood mismatch repair pathway that functions in the absence of EXO1 that is highly dependent on the Mlh1-Pms1 complex. Surprisingly, we found that the highly conserved metal binding site that is critical for the endonuclease activity of the Mlh1-Pms1 heterodimer is required for MMR in the absence of Exo1 to a much greater extent than in the presence of Exo1. Thus, this work establishes that there are at least two different polynucleotide excision pathways that function in MMR.
Collapse
Affiliation(s)
- Catherine E Smith
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
28
|
DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc Natl Acad Sci U S A 2013; 110:17308-13. [PMID: 24101514 DOI: 10.1073/pnas.1308595110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging.
Collapse
|
29
|
Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome. Cancer Lett 2013; 342:36-42. [PMID: 23981578 DOI: 10.1016/j.canlet.2013.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 07/08/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development.
Collapse
|
30
|
Sedletska Y, Culard F, Midoux P, Malinge JM. Interaction studies of muts and mutl with DNA containing the major cisplatin lesion and its mismatched counterpart under equilibrium and nonequilibrium conditions. Biopolymers 2013; 99:636-47. [DOI: 10.1002/bip.22232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/04/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Affiliation(s)
| | - Françoise Culard
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| |
Collapse
|
31
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
32
|
Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair. J Mol Biol 2013; 425:1881-1898. [PMID: 23458407 DOI: 10.1016/j.jmb.2013.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR.
Collapse
|
33
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
34
|
Hargreaves VV, Putnam CD, Kolodner RD. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. J Biol Chem 2012; 287:41232-44. [PMID: 23045530 DOI: 10.1074/jbc.m112.402495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatch repair are poorly understood. Here we show that ATP induces a conformational change within the C-terminal region of Msh6 that protects the trypsin cleavage site after Msh6 residue Arg(1124). An engineered disulfide bond within this region prevented the ATP-driven conformational change and resulted in an Msh2-Msh6 complex that bound mispaired bases but could not form sliding clamps or bind Mlh1-Pms1. The engineered disulfide bond also reduced mismatch repair efficiency in vivo, indicating that this ATP-driven conformational change plays a role in mismatch repair.
Collapse
Affiliation(s)
- Victoria V Hargreaves
- Ludwig Institute for Cancer Research, Department of Medicine, Moores-University of California San Diego Cancer Center, and Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669, USA
| | | | | |
Collapse
|
35
|
Cho WK, Jeong C, Kim D, Chang M, Song KM, Hanne J, Ban C, Fishel R, Lee JB. ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 2012; 20:1264-1274. [PMID: 22682745 DOI: 10.1016/j.str.2012.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
Abstract
The mismatch repair (MMR) initiation protein MutS forms at least two types of sliding clamps on DNA: a transient mismatch searching clamp (∼1 s) and an unusually stable (∼600 s) ATP-bound clamp that recruits downstream MMR components. Remarkably, direct visualization of single MutS particles on mismatched DNA has not been reported. We have combined real-time particle tracking with fluorescence resonance energy transfer (FRET) to image MutS diffusion dynamics on DNA containing a single mismatch. We show searching MutS rotates during diffusion independent of ionic strength or flow rate, suggesting continuous contact with the DNA backbone. In contrast, ATP-bound MutS clamps that are visually and successively released from the mismatch spin freely around the DNA, and their diffusion is affected by ionic strength and flow rate. These observations show that ATP binding alters the MutS diffusion mechanics on DNA, which has a number of implications for the mechanism of MMR.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Cherlhyun Jeong
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Daehyung Kim
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Minhyeok Chang
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Kyung-Mi Song
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Jeungphill Hanne
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
| | - Changill Ban
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
- Physics Department, The Ohio State University, Columbus, OH 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| |
Collapse
|
36
|
Plys AJ, Rogacheva MV, Greene EC, Alani E. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair. J Mol Biol 2012; 422:192-203. [PMID: 22659005 DOI: 10.1016/j.jmb.2012.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30 nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.
Collapse
Affiliation(s)
- Aaron J Plys
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2073, USA
| | | | | | | |
Collapse
|
37
|
Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. EMBO J 2012; 31:2528-40. [PMID: 22505031 DOI: 10.1038/emboj.2012.95] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/21/2012] [Indexed: 12/18/2022] Open
Abstract
MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.
Collapse
|
38
|
Geng H, Sakato M, DeRocco V, Yamane K, Du C, Erie DA, Hingorani M, Hsieh P. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). J Biol Chem 2012; 287:9777-9791. [PMID: 22277660 DOI: 10.1074/jbc.m111.316919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heterodimeric human MSH2-MSH6 protein initiates DNA mismatch repair (MMR) by recognizing mismatched bases that result from replication errors. Msh2(G674A) or Msh6(T1217D) mice that have mutations in or near the ATP binding site of MSH2 or ATP hydrolysis catalytic site of MSH6 develop cancer and have a reduced lifespan due to loss of the MMR pathway (Lin, D. P., Wang, Y., Scherer, S. J., Clark, A. B., Yang, K., Avdievich, E., Jin, B., Werling, U., Parris, T., Kurihara, N., Umar, A., Kucherlapati, R., Lipkin, M., Kunkel, T. A., and Edelmann, W. (2004) Cancer Res. 64, 517-522; Yang, G., Scherer, S. J., Shell, S. S., Yang, K., Kim, M., Lipkin, M., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2004) Cancer Cell 6, 139-150). Mouse embryonic fibroblasts from these mice retain an apoptotic response to DNA damage. Mutant human MutSα proteins MSH2(G674A)-MSH6(wt) and MSH2(wt)-MSH6(T1219D) are profiled in a variety of functional assays and as expected fail to support MMR in vitro, although they retain mismatch recognition activity. Kinetic analyses of DNA binding and ATPase activities and examination of the excision step of MMR reveal that the two mutants differ in their underlying molecular defects. MSH2(wt)-MSH6(T1219D) fails to couple nucleotide binding and mismatch recognition, whereas MSH2(G674A)-MSH6(wt) has a partial defect in nucleotide binding. Nevertheless, both mutant proteins remain bound to the mismatch and fail to promote efficient excision thereby inhibiting MMR in vitro in a dominant manner. Implications of these findings for MMR and DNA damage signaling by MMR proteins are discussed.
Collapse
Affiliation(s)
- Hui Geng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Miho Sakato
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Vanessa DeRocco
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kazuhiko Yamane
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Chunwei Du
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manju Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Peggy Hsieh
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892,.
| |
Collapse
|
39
|
Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 2012; 147:1040-53. [PMID: 22118461 DOI: 10.1016/j.cell.2011.10.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/22/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.
Collapse
Affiliation(s)
- Hans Hombauer
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | | | | | | | |
Collapse
|
40
|
Law S, Feig M. Base-flipping mechanism in postmismatch recognition by MutS. Biophys J 2011; 101:2223-31. [PMID: 22067162 PMCID: PMC3207177 DOI: 10.1016/j.bpj.2011.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/15/2022] Open
Abstract
DNA mismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokaryotes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molecular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the DNA surrounding a G·T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further examined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of ~2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely leading to sliding-clamp formation.
Collapse
Affiliation(s)
- Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| |
Collapse
|
41
|
Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 2011; 286:17326-37. [PMID: 21454657 DOI: 10.1074/jbc.m110.187641] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.
Collapse
Affiliation(s)
- Ines Winkler
- Institute for Biochemistry, FB 08, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Germann MW, Johnson CN, Spring AM. Recognition of Damaged DNA: Structure and Dynamic Markers. Med Res Rev 2010; 32:659-83. [DOI: 10.1002/med.20226] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Markus W. Germann
- Department of Chemistry; Georgia State University; Atlanta Georgia 30302
- Department of Biology and the Neuroscience Institute; Georgia State University; Atlanta Georgia 30302
| | | | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Yang Y, Chaerkady R, Kandasamy K, Huang TC, Selvan LDN, Dwivedi SB, Kent OA, Mendell JT, Pandey A. Identifying targets of miR-143 using a SILAC-based proteomic approach. MOLECULAR BIOSYSTEMS 2010. [PMID: 20544124 DOI: 10.1039/c00401f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although the targets of most miRNAs have not been experimentally identified, microRNAs (miRNAs) have begun to be extensively characterized in physiological, developmental and disease-related contexts in recent years. Thus far, mainly computational approaches have been employed to predict potential targets for the large majority of miRNAs. Although miRNAs exert a major influence on the efficiency of translation of their targets in animals, most studies describing experimental identification of miRNA target genes are based on detection of altered mRNA levels. miR-143 is a miRNA involved in tumorigenesis in multiple types of cancer, smooth muscle cell fate and adipocyte differentiation. Only a few miR-143 targets are experimentally verified, so we employed a SILAC-based quantitative proteomic strategy to systematically identify potential targets of miR-143. In total, we identified >1200 proteins from MiaPaCa2 pancreatic cancer cells, of which 93 proteins were downregulated >2-fold in miR-143 mimic transfected cells as compared to controls. Validation of 34 of these candidate targets in luciferase assays showed that 10 of them were likely direct targets of miR-143. Importantly, we also carried out gene expression profiling of the same cells and observed that the majority of the candidate targets identified by proteomics did not show a concomitant decrease in mRNA levels confirming that miRNAs affect the expression of most targets through translational inhibition. Our study clearly demonstrates that quantitative proteomic approaches are important and necessary for identifying miRNA targets.
Collapse
Affiliation(s)
- Yi Yang
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang Y, Chaerkady R, Kandasamy K, Huang TC, Selvan LDN, Dwivedi SB, Kent OA, Mendell JT, Pandey A. Identifying targets of miR-143 using a SILAC-based proteomic approach. MOLECULAR BIOSYSTEMS 2010; 6:1873-82. [PMID: 20544124 DOI: 10.1039/c004401f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the targets of most miRNAs have not been experimentally identified, microRNAs (miRNAs) have begun to be extensively characterized in physiological, developmental and disease-related contexts in recent years. Thus far, mainly computational approaches have been employed to predict potential targets for the large majority of miRNAs. Although miRNAs exert a major influence on the efficiency of translation of their targets in animals, most studies describing experimental identification of miRNA target genes are based on detection of altered mRNA levels. miR-143 is a miRNA involved in tumorigenesis in multiple types of cancer, smooth muscle cell fate and adipocyte differentiation. Only a few miR-143 targets are experimentally verified, so we employed a SILAC-based quantitative proteomic strategy to systematically identify potential targets of miR-143. In total, we identified >1200 proteins from MiaPaCa2 pancreatic cancer cells, of which 93 proteins were downregulated >2-fold in miR-143 mimic transfected cells as compared to controls. Validation of 34 of these candidate targets in luciferase assays showed that 10 of them were likely direct targets of miR-143. Importantly, we also carried out gene expression profiling of the same cells and observed that the majority of the candidate targets identified by proteomics did not show a concomitant decrease in mRNA levels confirming that miRNAs affect the expression of most targets through translational inhibition. Our study clearly demonstrates that quantitative proteomic approaches are important and necessary for identifying miRNA targets.
Collapse
Affiliation(s)
- Yi Yang
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mendillo ML, Putnam CD, Mo AO, Jamison JW, Li S, Woods VL, Kolodner RD. Probing DNA- and ATP-mediated conformational changes in the MutS family of mispair recognition proteins using deuterium exchange mass spectrometry. J Biol Chem 2010; 285:13170-82. [PMID: 20181951 PMCID: PMC2857143 DOI: 10.1074/jbc.m110.108894] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/23/2010] [Indexed: 11/06/2022] Open
Abstract
We have performed deuterium exchange mass spectrometry (DXMS) to probe the conformational changes that the bacterial MutS homodimer and the homologous eukaryotic heterodimer Msh2-Msh6 undergo when binding to ATP or DNA. The DXMS data support the view that high affinity binding to mispair-containing DNA and low affinity binding to fully base-paired DNA both involve forming rings by MutS protein family dimers around the DNA; however, mispair binding protects additional regions from deuterium exchange. DXMS also reveals two distinct conformations upon binding one or two ATP molecules and that binding of two ATP molecules propagates conformational changes to other regions of the protein complexes. The regions showing major changes in deuterium exchange upon ATP binding tend to occur in regions distinct from those involved in DNA binding, suggesting that although communication occurs between DNA and nucleotide binding, sliding clamps formed by binding both ATP and mispairs could result from the simultaneous action of two independent conformational changes.
Collapse
Affiliation(s)
- Marc L. Mendillo
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| | - Christopher D. Putnam
- From the Departments of
Medicine and
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| | | | | | - Sheng Li
- From the Departments of
Medicine and
| | | | - Richard D. Kolodner
- From the Departments of
Medicine and
- Cellular and Molecular Medicine
- Cancer Center, and
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| |
Collapse
|
47
|
Lebbink JHG, Fish A, Reumer A, Natrajan G, Winterwerp HHK, Sixma TK. Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS. J Biol Chem 2010; 285:13131-41. [PMID: 20167596 PMCID: PMC2857095 DOI: 10.1074/jbc.m109.066001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The DNA mismatch repair protein MutS acts as a molecular switch. It toggles between ADP and ATP states and is regulated by mismatched DNA. This is analogous to G-protein switches and the regulation of their “on” and “off” states by guanine exchange factors. Although GDP release in monomeric GTPases is accelerated by guanine exchange factor-induced removal of magnesium from the catalytic site, we found that release of ADP from MutS is not influenced by the metal ion in this manner. Rather, ADP release is induced by the binding of mismatched DNA at the opposite end of the protein, a long-range allosteric response resembling the mechanism of activation of heterotrimeric GTPases. Magnesium influences switching in MutS by inducing faster and tighter ATP binding, allowing rapid downstream responses. MutS mutants with decreased affinity for the metal ion are impaired in fast switching and in vivo mismatch repair. Thus, the G-proteins and MutS conceptually employ the same efficient use of the high energy cofactor: slow hydrolysis in the absence of a signal and fast conversion to the active state when required.
Collapse
Affiliation(s)
- Joyce H G Lebbink
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|