1
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Slade A, Kattini R, Campbell C, Holcik M. Diseases Associated with Defects in tRNA CCA Addition. Int J Mol Sci 2020; 21:E3780. [PMID: 32471101 PMCID: PMC7312816 DOI: 10.3390/ijms21113780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
tRNA nucleotidyl transferase 1 (TRNT1) is an essential enzyme catalyzing the addition of terminal cytosine-cytosine-adenosine (CCA) trinucleotides to all mature tRNAs, which is necessary for aminoacylation. It was recently discovered that partial loss-of-function mutations in TRNT1 are associated with various, seemingly unrelated human diseases including sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD), retinitis pigmentosa with erythrocyte microcytosis, and progressive B-cell immunodeficiency. In addition, even within the same disease, the severity and range of the symptoms vary greatly, suggesting a broad, pleiotropic impact of imparting TRNT1 function on diverse cellular systems. Here, we describe the current state of knowledge of the TRNT1 function and the phenotypes associated with mutations in TRNT1.
Collapse
Affiliation(s)
| | | | | | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.S.); (R.K.); (C.C.)
| |
Collapse
|
3
|
Pawar K, Shigematsu M, Loher P, Honda S, Rigoutsos I, Kirino Y. Exploration of CCA-added RNAs revealed the expression of mitochondrial non-coding RNAs regulated by CCA-adding enzyme. RNA Biol 2019; 16:1817-1825. [PMID: 31512554 DOI: 10.1080/15476286.2019.1664885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Post-transcriptional non-template additions of nucleotides to 3'-ends of RNAs play important roles in the stability and function of RNA molecules. Although tRNA nucleotidyltransferase (CCA-adding enzyme) is known to add CCA trinucleotides to 3'-ends of tRNAs, whether other RNA species can be endogenous substrates of CCA-adding enzyme has not been widely explored yet. Herein, we used YAMAT-seq to identify non-tRNA substrates of CCA-adding enzyme. YAMAT-seq captures RNA species that form secondary structures with 4-nt protruding 3'-ends of the sequence 5'-NCCA-3', which is the hallmark structure of RNAs that are generated by CCA-adding enzyme. By executing YAMAT-seq for human breast cancer cells and mining the sequence data, we identified novel candidate substrates of CCA-adding enzyme. These included fourteen 'CCA-RNAs' that only contain CCA as non-genomic sequences, and eleven 'NCCA-RNAs' that contain CCA and other nucleotides as non-genomic sequences. All newly-identified (N)CCA-RNAs were derived from the mitochondrial genome and were localized in mitochondria. Knockdown of CCA-adding enzyme severely reduced the expression levels of (N)CCA-RNAs, suggesting that the CCA-adding enzyme-catalyzed CCA additions stabilize the expression of (N)CCA-RNAs. Furthermore, expression levels of (N)CCA-RNAs were severely reduced by various cellular treatments, including UV irradiation, amino acid starvation, inhibition of mitochondrial respiratory complexes, and inhibition of the cell cycle. These results revealed a novel CCA-mediated regulatory pathway for the expression of mitochondrial non-coding RNAs.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Lardelli RM, Schaffer AE, Eggens VRC, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Çağlayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet 2017; 49:457-464. [PMID: 28092684 PMCID: PMC5325768 DOI: 10.1038/ng.3762] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.
Collapse
Affiliation(s)
- Rea M Lardelli
- University of California San Diego, La Jolla, California, USA
| | - Ashleigh E Schaffer
- University of California San Diego, La Jolla, California, USA.,Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA.,Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Veerle R C Eggens
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zinayida Schlachetzki
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Basak Rosti
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Naiara Akizu
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Eric Scott
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Jennifer L Silhavy
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Laura Dean Heckman
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Rasim Ozgur Rosti
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Esra Dikoglu
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Anne Gregor
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Alicia Guemez-Gamboa
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Damir Musaev
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Rohit Mande
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Ari Widjaja
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Tim L Shaw
- University of California San Diego, La Jolla, California, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Isaac Marin-Valencia
- Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Justin H Davies
- Department of Paediatric Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Linda de Meirleir
- Pediatric Neurology and Metabolic Diseases, Universitair Ziekenhuis Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hulya Kayserili
- Medical Genetics Department, Koc University School of Medicine, Istanbul, Turkey
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul Turkey
| | - Mary Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Linda Warwick
- Australian Capital Territory Genetic Service, The Canberra Hospital, Canberra City, Australian Capital Territory, Australia
| | - David Chitayat
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, School of Medicine, Istanbul Bilim University, Istanbul, Turkey.,Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Maria Kibaek
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David Manchester
- Department of Pediatrics, Clinical Genetics and Metabolism, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Muramatsu
- Department of Pediatrics, Gunma University School of Medicine, Showa-machi, Maebashi City, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nicola Foulds
- Southampton University Hospitals Trust, Southampton, UK
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Neil C Chi
- UCSD Cardiology, University of California San Diego, La Jolla, California, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Women, Mother and Neonates, "Vittore Buzzi" Children's Hospital, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Stefania Maria Bova
- Child Neurology Unit, Department of Pediatrics, "Vittore Buzzi" Children Hospital, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Stacey B Gabriel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Murat Gunel
- Yale Program on Neurogenetics, Departments of Neurosurgery, Neurobiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Enza Maria Valente
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marie-Cecile Nassogne
- Pediatric Neurology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Eric J Bennett
- University of California San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA.,Department of Physiology, National University of Singapore and Molecular Engineering Laboratory, A*STAR, Singapore
| | - Frank Baas
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Joseph G Gleeson
- University of California San Diego, La Jolla, California, USA.,Laboratory of Pediatric Brain Disease and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
5
|
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res 2015; 43:5617-29. [PMID: 25958396 PMCID: PMC4477674 DOI: 10.1093/nar/gkv471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
CCA-adding enzymes synthesize and maintain the C-C-A sequence at the tRNA 3'-end, generating the attachment site for amino acids. While tRNAs are the most prominent substrates for this polymerase, CCA additions on non-tRNA transcripts are described as well. To identify general features for substrate requirement, a pool of randomized transcripts was incubated with the human CCA-adding enzyme. Most of the RNAs accepted for CCA addition carry an acceptor stem-like terminal structure, consistent with tRNA as the main substrate group for this enzyme. While these RNAs show no sequence conservation, the position upstream of the CCA end was in most cases represented by an adenosine residue. In tRNA, this position is described as discriminator base, an important identity element for correct aminoacylation. Mutational analysis of the impact of the discriminator identity on CCA addition revealed that purine bases (with a preference for adenosine) are strongly favoured over pyrimidines. Furthermore, depending on the tRNA context, a cytosine discriminator can cause a dramatic number of misincorporations during CCA addition. The data correlate with a high frequency of adenosine residues at the discriminator position observed in vivo. Originally identified as a prominent identity element for aminoacylation, this position represents a likewise important element for efficient and accurate CCA addition.
Collapse
Affiliation(s)
- Sandra Wende
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sonja Bonin
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Oskar Götze
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Brameier M, Ibing W, Höfer K, Montag J, Stahl-Hennig C, Motzkus D. Mapping the small RNA content of simian immunodeficiency virions (SIV). PLoS One 2013; 8:e75063. [PMID: 24086438 PMCID: PMC3781035 DOI: 10.1371/journal.pone.0075063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
Recent evidence indicates that regulatory small non-coding RNAs are not only components of eukaryotic cells and vesicles, but also reside within a number of different viruses including retroviral particles. Using ultra-deep sequencing we have comprehensively analyzed the content of simian immunodeficiency virions (SIV), which were compared to mock-control preparations. Our analysis revealed that more than 428,000 sequence reads matched the SIV mac239 genome sequence. Among these we could identify 12 virus-derived small RNAs (vsRNAs) that were highly abundant. Beside known retrovirus-enriched small RNAs, like 7SL-RNA, tRNALys3 and tRNALys isoacceptors, we also identified defined fragments derived from small ILF3/NF90-associated RNA snaR-A14, that were enriched more than 50 fold in SIV. We also found evidence that small nucleolar RNAs U2 and U12 were underrepresented in the SIV preparation, indicating that the relative number or the content of co-isolated exosomes was changed upon infection. Our comprehensive atlas of SIV-incorporated small RNAs provides a refined picture of the composition of retrovirions, which gives novel insights into viral packaging.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Exosomes/metabolism
- High-Throughput Nucleotide Sequencing
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Recognition Particle/genetics
- Signal Recognition Particle/metabolism
- Simian Immunodeficiency Virus/genetics
- Virion/genetics
Collapse
Affiliation(s)
- Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Wiebke Ibing
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Katharina Höfer
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Judith Montag
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | | | - Dirk Motzkus
- Unit of Infection Models, German Primate Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS). Arch Virol 2013; 159:235-48. [PMID: 23942952 PMCID: PMC3906528 DOI: 10.1007/s00705-013-1802-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/19/2013] [Indexed: 11/05/2022]
Abstract
Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted “modified panhandle” structure, the 5’ and 3’ termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3’- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3’ adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5’- and 3’-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties.
Collapse
|
8
|
Goring ME, Leibovitch M, Gea-Mallorqui E, Karls S, Richard F, Hanic-Joyce PJ, Joyce PBM. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2097-106. [PMID: 23872483 DOI: 10.1016/j.bbapap.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022]
Abstract
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.
Collapse
Affiliation(s)
- Mark E Goring
- Department of Biology, Concordia University, Montréal, H4B 1R6, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Wolf J, Obermaier-Kusser B, Jacobs M, Milles C, Mörl M, von Pein HD, Grau AJ, Bauer MF. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation. J Neurol Sci 2012; 316:108-11. [PMID: 22326363 DOI: 10.1016/j.jns.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive.
Collapse
Affiliation(s)
- Joachim Wolf
- Department of Neurology, Klinikum Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pyrophosphorolysis of CCA addition: implication for fidelity. J Mol Biol 2011; 414:28-43. [PMID: 22001019 DOI: 10.1016/j.jmb.2011.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
Abstract
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3' end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3' end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.
Collapse
|
11
|
Findeiss S, Langenberger D, Stadler PF, Hoffmann S. Traces of post-transcriptional RNA modifications in deep sequencing data. Biol Chem 2011; 392:305-13. [PMID: 21345160 DOI: 10.1515/bc.2011.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many aspects of the RNA maturation leave traces in RNA sequencing data in the form of deviations from the reference genomic DNA. This includes, in particular, genomically non-encoded nucleotides and chemical modifications. The latter leave their signatures in the form of mismatches and conspicuous patterns of sequencing reads. Modified mapping procedures focusing on particular types of deviations can help to unravel post-transcriptional modification, maturation and degradation processes. Here, we focus on small RNA sequencing data that is produced in large quantities aimed at the analysis of microRNA expression. Starting from the recovery of many well known modified sites in tRNAs, we provide evidence that modified nucleotides are a pervasive phenomenon in these data sets. Regarding non-encoded nucleotides we concentrate on CCA tails, which surprisingly can be found in a diverse collection of transcripts including sub-populations of mature microRNAs. Although small RNA sequencing libraries alone are insufficient to obtain a complete picture, they can inform on many aspects of the complex processes of RNA maturation.
Collapse
Affiliation(s)
- Sven Findeiss
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelsrtrasse 16-18, Leipzig, Germany
| | | | | | | |
Collapse
|
12
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Vörtler S, Mörl M. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. FEBS Lett 2009; 584:297-302. [PMID: 19883645 DOI: 10.1016/j.febslet.2009.10.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/29/2009] [Indexed: 02/04/2023]
Abstract
tRNA-nucleotidyltransferases are fascinating and unusual RNA polymerases responsible for the synthesis of the nucleotide triplet CCA at the 3'-terminus of tRNAs. As this CCA end represents an essential functional element for aminoacylation and translation, these polymerases (CCA-adding enzymes) are of vital importance in all organisms. With a possible origin of ancient telomerase-like activity, the CCA-adding enzymes obviously emerged twice during evolution, leading to structurally different, but functionally identical enzymes. The evolution as well as the unique polymerization features of these interesting proteins will be discussed in this review.
Collapse
Affiliation(s)
- Stefan Vörtler
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
14
|
Cho HD, Sood VD, Baker D, Weiner AM. On the role of a conserved, potentially helix-breaking residue in the tRNA-binding alpha-helix of archaeal CCA-adding enzymes. RNA (NEW YORK, N.Y.) 2008; 14:1284-1289. [PMID: 18495940 PMCID: PMC2441987 DOI: 10.1261/rna.1060308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/18/2008] [Indexed: 05/26/2023]
Abstract
Archaeal class I CCA-adding enzymes use a ribonucleoprotein template to build and repair the universally conserved 3'-terminal CCA sequence of the acceptor stem of all tRNAs. A wealth of structural and biochemical data indicate that the Archaeoglobus fulgidus CCA-adding enzyme binds primarily to the tRNA acceptor stem through a long, highly conserved alpha-helix that lies nearly parallel to the acceptor stem and makes many contacts with its sugar-phosphate backbone. Although the geometry of this alpha-helix is nearly ideal in all available cocrystal structures, the helix contains a highly conserved, potentially helix-breaking proline or glycine near the N terminus. We performed a mutational analysis to dissect the role of this residue in CCA-addition activity. We found that the phylogenetically permissible P295G mutant and the phylogenetically absent P295T had little effect on CCA addition, whereas P295A and P295S progressively interfered with CCA addition (C74>C75>A76 addition). We also examined the effects of these mutations on tRNA binding and the kinetics of CCA addition, and performed a computational analysis using Rosetta Design to better understand the role of P295 in nucleotide transfer. Our data indicate that CCA-adding activity does not correlate with the stability of the pre-addition cocrystal structures visualized by X-ray crystallography. Rather, the data are consistent with a transient conformational change involving P295 of the tRNA-binding alpha-helix during or between one or more steps in CCA addition.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
15
|
The rat mitochondrial Ori L encodes a novel small RNA resembling an ancestral tRNA. Biochem Biophys Res Commun 2008; 372:634-8. [PMID: 18514058 DOI: 10.1016/j.bbrc.2008.05.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 11/21/2022]
Abstract
The RNA minihelix, a proposed tRNA precursor, exhibits tRNA-like properties. Sequence-specific RNA minihelices can inhibit cell growth probably due to their binding to the cognate tRNA and naturally occurring non-tRNA substrates for aminoacylation may serve a similar purpose. Thus far, no natural RNA minihelices have been found. In the present study, we found a novel small RNA of 32 nucleotides, which is expressed abundantly in all rat tissues tested. Distinct from all of known endogenous small RNAs, this small RNA (temporarily named as tpl-sRNA) can form an RNA minihelix containing a stem-loop domain followed by ACCA. tpl-sRNA is encoded by the light-strand replication origin (Ori L) of the rat mitochondrial genome, and the 3'-terminal CCA of tpl-sRNA is post-transcriptionally added. Moreover, tpl-sRNA is chargeable in vivo. Our study demonstrates for the first time an endogenous small RNA that resembles an ancestral tRNA and exhibits some tRNA-like properties in mammals.
Collapse
|
16
|
Lizano E, Scheibe M, Rammelt C, Betat H, Mörl M. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair. Biochimie 2008; 90:762-72. [PMID: 18226598 DOI: 10.1016/j.biochi.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022]
Abstract
Representing one of the most fascinating RNA polymerases, the CCA-adding enzyme (tRNA nucleotidyltransferase) is responsible for synthesis and repair of the 3'-terminal CCA sequence in tRNA transcripts. As a consequence of this important function, this enzyme is found in all organisms analyzed so far. Here, it is shown that the closely related enzymes of Homo sapiens and Escherichia coli differ substantially in their substrate preferences for the incorporation of CTP and ATP. While both enzymes require helical structures (mimicking the upper part of tRNAs) for C addition, the data indicate that the E. coli enzyme--in contrast to the human version--is quite promiscuous concerning the incorporation of ATP, where any RNA ending with two C residues is accepted. This feature is consistent with the primary function of the E. coli protein as a repair enzyme. Furthermore, even if the amino acid motif that interacts with the incoming nucleotides in the NTP binding pocket of these enzymes is destroyed and does no longer discriminate between individual bases, both nucleotidyltransferases have a back-up mechanism that ensures CCA addition with considerable accuracy and efficiency in order to guarantee functional protein synthesis and, consequently, the survival of the cell.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
17
|
Cho HD, Chen Y, Varani G, Weiner AM. A model for C74 addition by CCA-adding enzymes: C74 addition, like C75 and A76 addition, does not involve tRNA translocation. J Biol Chem 2006; 281:9801-11. [PMID: 16455665 DOI: 10.1074/jbc.m512603200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme adds CCA to the 3'-end of tRNA one nucleotide at a time, using CTP and ATP as substrates. We found previously that tRNA does not rotate or translocate on the enzyme during the addition of C75 and A76. We therefore predicted that the growing 3'-end of tRNA must, upon addition of each nucleotide, refold to reposition the new 3'-hydroxyl equivalently relative to the solitary nucleotidyltransferase motif. Cocrystal structures of the class I archaeal Archaeoglobus fulgidus enzyme, poised for addition of C75 and A76, confirmed this prediction. We have also demonstrated that an evolutionarily flexible beta-turn facilitates progressive refolding of the 3'-terminal C74 and C75 residues during C75 and A76 addition. Although useful cocrystals corresponding to C74 addition have not yet been obtained, we now show experimentally that tRNA does not rotate or translocate during C74 addition. We therefore propose, based on the existing A. fulgidus cocrystal structures, that the same flexible beta-turn functions as a wedge between the discriminator base (N73) and the terminal base pair of the acceptor stem, unstacking and repositioning N73 to attack the incoming CTP. Thus a single flexible beta-turn would orchestrate consecutive addition of all three nucleotides without significant movement of the tRNA on the enzyme surface.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
19
|
Abstract
The chemical modification of nucleic acids is a ubiquitous phenomenon. Aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a reaction essentially devoted to protein synthesis but it is used also as an emergency mechanism to recycle stalled ribosomes, and it is required for genome replication in some RNA viruses. In several aminoacyl-tRNA synthetases a correction mechanism known as editing is present to prevent aminoacylation errors. Genome data reveal a growing number of open reading frames encoding ARS-like proteins. This strongly suggests the existence of a widespread and nonconventional machinery for aminoacylation and editing. Here we review the different biological functions of aminoacylation and editing; also we propose an evolutionary scenario for the origin of these two reactions, and hypothesize an extant role for RNA charging and editing outside the genetic code.
Collapse
Affiliation(s)
- Renaud Geslain
- Catalan Institute for Research and Advanced Studies (ICREA) and Barcelona Institute for Biomedical Research, Barcelona Science Park, C/Samitier 1-5, Barcelona 08015, Catalonia, Spain
| | | |
Collapse
|
20
|
Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Nucleic Acids Res 2004; 32:3957-66. [PMID: 15282328 PMCID: PMC506818 DOI: 10.1093/nar/gkh738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs. Part of the poly(A) minus RNAs is modified by 3'-terminal addition of C or CA nucleotides. All three RNA populations accumulate in the cytoplasm. Using a mutagenesis approach, we show that the poly(A) region and the 3' end unique region, present at the founder locus, are both important for the maturation and the steady-state accumulation of the different S1 RNA populations. The observation that primary SINE transcripts can be post-transcriptionally processed in vivo into a poly(A)-ending species introduces the possibility that this paRNA is used as a retroposition intermediate.
Collapse
MESH Headings
- 3' Untranslated Regions
- Arabidopsis/genetics
- Base Sequence
- Cytoplasm/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Polyadenylation
- RNA Processing, Post-Transcriptional
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Short Interspersed Nucleotide Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Thierry Pélissier
- CNRS UMR 6547 BIOMOVE and GDR 2157, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
21
|
Cho HD, Weiner AM. A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition. J Biol Chem 2004; 279:40130-6. [PMID: 15265870 DOI: 10.1074/jbc.m405518200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme ATP(CTP):tRNA nucleotidyltransferase builds and repairs the 3'-terminal CCA sequence of tRNA. Although this unusual RNA polymerase has no nucleic acid template, it can construct the CCA sequence one nucleotide at a time using CTP and ATP as substrates. We found previously that tRNA does not translocate along the enzyme during CCA addition (Yue, D., Weiner, A. M., and Maizels, N. (1998) J. Biol. Chem. 273, 29693-29700) and that a single nucleotidyltransferase motif adds all three nucleotides (Shi, P.-Y., Maizels, N., and Weiner, A. M. (1998) EMBO J. 17, 3197-3206). Intriguingly, the CCA-adding enzyme from the archaeon Sulfolobus shibatae is a homodimer that forms a tetramer upon binding two tRNAs. We therefore asked whether the active form of the S. shibatae enzyme might have two quasi-equivalent active sites, one adding CTP and the other ATP. Using an intersubunit complementation approach, we demonstrate that the dimer is active and that a single catalytically active subunit can carry out all three steps of CCA addition. We also locate one UV light-induced tRNA cross-link on the enzyme structure and provide evidence suggesting the location of another. Our data rule out shuttling models in which the 3'-end of the tRNA shuttles from one quasi-equivalent active site to another, demonstrate that tRNA-induced tetramerization is not required for CCA addition, and support a role for the tail domain of the enzyme in tRNA binding.
Collapse
Affiliation(s)
- HyunDae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|
22
|
Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities. J Biol Chem 2004; 279:36819-27. [PMID: 15210699 DOI: 10.1074/jbc.m405120200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College St., University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cho HD, Oyelere AK, Strobel SA, Weiner AM. Use of nucleotide analogs by class I and class II CCA-adding enzymes (tRNA nucleotidyltransferase): deciphering the basis for nucleotide selection. RNA (NEW YORK, N.Y.) 2003; 9:970-981. [PMID: 12869708 PMCID: PMC1370463 DOI: 10.1261/rna.2110903] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 04/29/2003] [Indexed: 05/24/2023]
Abstract
We explored the specificity and nature of the nucleotide-binding pocket of the CCA-adding enzyme (tRNA nucleotidyltransferase) by using CTP and ATP analogs as substrates for a panel of class I and class II enzymes. Overall, class I and class II enzymes displayed remarkably similar substrate requirements, implying that the mechanism of CCA addition is conserved between enzyme classes despite the absence of obvious sequence homology outside the active site signature sequence. CTP substrates are more tolerant of base modifications than ATP substrates, but sugar modifications prevent incorporation of both CTP and ATP analogs by class I and class II enzymes. Use of CTP analogs (zebularine, pseudoisocytidine, 6-azacytidine, but not 6-azauridine) suggests that base modifications generally do not interfere with recognition or incorporation of CTP analogs by either class I or class II enzymes, and that UTP is excluded because N-3 is a positive determinant and/or O-4 is an antideterminant. Use of ATP analogs (N6-methyladenosine, diaminopurine, purine, 2-aminopurine, and 7-deaza-adenosine, but not guanosine, deoxyadenosine, 2'-O-methyladenosine, 2'-deoxy-2'-fluoroadenosine, or inosine) suggests that base modifications generally do not interfere with recognition or incorporation of ATP analogs by either class I or class II enzymes, and that GTP is excluded because N-1 is a positive determinant and/or the 2-amino and 6-keto groups are antideterminants. We also found that the 3'-terminal sequence of the growing tRNA substrate can affect the efficiency or specificity of subsequent nucleotide addition. Our data set should allow rigorous evaluation of structural hypotheses for nucleotide selection based on existing and future crystal structures.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
24
|
Augustin MA, Reichert AS, Betat H, Huber R, Mörl M, Steegborn C. Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. J Mol Biol 2003; 328:985-94. [PMID: 12729736 DOI: 10.1016/s0022-2836(03)00381-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All tRNA molecules carry the invariant sequence CCA at their 3'-terminus for amino acid attachment. The post-transcriptional addition of CCA is carried out by ATP(CTP):tRNA nucleotidyltransferase, also called CCase. This enzyme catalyses a unique template-independent but sequence-specific nucleotide polymerization reaction. In order to reveal the molecular mechanism of this activity, we solved the crystal structure of human CCase by single isomorphous replacement. The structure reveals a four domain architecture with a cluster of conserved residues forming a positively charged cleft between the first two domains. Structural homology of the N-terminal CCase domain to other nucleotidyltransferases could be exploited for modeling a tRNA-substrate complex. The model places the tRNA 3'-end into the N-terminal nucleotidyltransferase site, close to a patch of conserved residues that provide the binding sites for CTP and ATP. Based on our results, we introduce a corkscrew model for CCA addition that includes a fixed active site and a traveling tRNA-binding region formed by flexible parts of the protein.
Collapse
Affiliation(s)
- Martin A Augustin
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|