1
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
2
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
3
|
Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front Cardiovasc Med 2015; 2:14. [PMID: 26664886 PMCID: PMC4671355 DOI: 10.3389/fcvm.2015.00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Lyna Thach
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Rebekah Bernard
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Vincent Chan
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre , Guangzhou , China ; Faculty of Health Sciences, University of Macau , Macau , China
| | - Harveen Kaur
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Margaret Brimble
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Narin Osman
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Peter J Little
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| |
Collapse
|
4
|
Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:213-22. [PMID: 22986288 DOI: 10.1016/j.bbalip.2012.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/08/2012] [Accepted: 09/08/2012] [Indexed: 01/08/2023]
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival. Remarkably many of the enzymes regulated downstream of RhoA either use phospholipids as substrates (e.g. phospholipase D, phospholipase C-epsilon, PTEN, PI3 kinase) or are regulated by phospholipid products (e.g. protein kinase D, Akt). Thus lysophospholipids signal from outside of the cell and control phospholipid signaling processes within the cell that they target. Here we review evidence suggesting an integrative role for RhoA in responding to lysophospholipids upregulated in the pathophysiological environment, and in transducing this signal to cellular responses through effects on phospholipid regulatory or phospholipid regulated enzymes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
5
|
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. BIOCHEMISTRY (MOSCOW) 2012; 77:1-14. [DOI: 10.1134/s0006297912010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Involvement of vasodilator-stimulated phosphoprotein in UDP-induced microglial actin aggregation via PKC- and Rho-dependent pathways. Purinergic Signal 2011; 7:403-11. [PMID: 21567128 DOI: 10.1007/s11302-011-9237-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/02/2011] [Indexed: 12/22/2022] Open
Abstract
Microglia are major immunocompetent cells in the central nervous system and retain highly dynamic motility. The processes which allow these cells to move, such as chemotaxis and phagocytosis, are considered part of their functions and are closely related to purinergic signaling. Previously, we reported that the activation of the P2Y(6) receptor by UDP stimulation in microglia evoked dynamic cell motility which enhanced their phagocytic capacity, as reported by Koizumi et al. (Nature 446(7139):1091-1095, 2007). These responses require actin cytoskeletal rearrangement, which is seen after UDP stimulation. However, the intracellular signaling pathway has not been defined. In this study, we found that UDP in rat primary microglia rapidly induced the transient phosphorylation at Ser157 of vasodilator-stimulated phosphoprotein (VASP). VASP, one of actin binding protein, accumulated at the plasma membrane where filamentous (F)-actin aggregated in a time-dependent manner. The phosphorylation of VASP was suppressed by inhibition of PKC. UDP-induced local actin aggregations were also abrogated by PKC inhibitors. The Rho inhibitor CT04 and the expression of p115-RGS, which suppresses G(12/13) signaling, attenuated UDP-induced phosphorylation of VASP and actin aggregation. These results indicate that PKC- and Rho-dependent phosphorylation of VASP is involved in UDP-induced actin aggregation of microglia.
Collapse
|
7
|
Borroto-Escuela DO, Romero-Fernandez W, García-Negredo G, Correia PA, Garriga P, Fuxe K, Ciruela F. Dissecting the Conserved NPxxY Motif of the M 3 Muscarinic Acetylcholine Receptor: Critical Role of Asp-7.49 for Receptor Signaling and Multiprotein Complex Formation. Cell Physiol Biochem 2011; 28:1009-22. [DOI: 10.1159/000335788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2011] [Indexed: 12/13/2022] Open
|
8
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
9
|
Everett PB, Senogles SE. D3dopamine receptor signals to activation of phospholipase D through a complex with Rho. J Neurochem 2010; 112:963-71. [DOI: 10.1111/j.1471-4159.2009.06508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Litosch I, Pujari R, Lee SJ. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-β1. Cell Signal 2009; 21:1379-84. [DOI: 10.1016/j.cellsig.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022]
|
11
|
Abstract
Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | |
Collapse
|
12
|
Oude Weernink PA, López de Jesús M, Schmidt M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 374:399-411. [PMID: 17245604 PMCID: PMC2020506 DOI: 10.1007/s00210-007-0131-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/20/2006] [Indexed: 11/12/2022]
Abstract
Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP(2) by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP(2) and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions.
Collapse
Affiliation(s)
| | | | - Martina Schmidt
- />Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
14
|
Wu EHT, Tam BHL, Wong YH. Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 2006; 273:2388-98. [PMID: 16704413 DOI: 10.1111/j.1742-4658.2006.05245.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that G protein signaling plays an active role in the regulation of cell survival. Our previous study demonstrated the regulatory effects of G(i/o) proteins in nerve growth factor-induced activation of pro-survival Akt kinase. In the present study we explored the role of various members of the G(s), G(q/11) and G(12/13) subfamilies in the regulation of Akt in cultured mammalian cells. In human embryonic kidney 293 cells transiently expressing constitutively active mutants of G alpha11, G alpha14, G alpha16, G alpha12, or G alpha13 (G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, respectively), basal phosphorylation of Akt was attenuated, as revealed by western blotting analysis using a phosphospecific anti-Akt immunoglobulin. In contrast, basal Akt phosphorylation was unaffected by the overexpression of a constitutively active G alpha(s) mutant (G alpha(s)QL). Additional experiments showed that G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, but not G alpha(s)QL, attenuated phosphorylation of the Akt-regulated translation regulator tuberin. Moreover, they were able to inhibit the epidermal growth factor-induced Akt activation and tuberin phosphorylation. The inhibitory mechanism of Gq family members was independent of phospholipase Cbeta activation and calcium signaling because G alpha11QL, G alpha14QL and G alpha16QL remained capable of inhibiting epidermal growth factor-induced Akt activation in cells pretreated with U73122 and the intracellular calcium chelator, BAPTA/AM. Finally, overexpression of the dominant negative mutant of RhoA blocked G alpha12QL- and G alpha13QL-mediated inhibition, suggesting that activated G alpha12 and G alpha13 inhibit Akt signaling via RhoA. Collectively, this study demonstrated the inhibitory effect of activated G alpha11, G alpha14, G alpha16, G alpha12 and G alpha13 on pro-survival Akt signaling.
Collapse
Affiliation(s)
- Eddy H T Wu
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
15
|
Abstract
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation.
Collapse
Affiliation(s)
- Masami Hiroyama
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Chen JS, Exton JH. Sites on phospholipase D2 phosphorylated by PKCα. Biochem Biophys Res Commun 2005; 333:1322-6. [PMID: 15979581 DOI: 10.1016/j.bbrc.2005.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
The phosphorylation sites in phospholipase D2 (PLD2) induced by activation of protein kinase Calpha (PKCalpha) in COS 7 cells were analyzed by mass spectrometry. Ser134, 146, and 243, and Thr72, 99/100, and 252 were identified. These sites were mutated to Ala and the double mutation of Ser243 and Thr252 eliminated the phosphorylation. However, the PLD2 activity, and the binding between PKCalpha and PLD2 were unaffected by the mutations. We conclude that phosphorylation of these residues is not required for PLD2 activation by PKCalpha, and that protein-protein interaction between PLD2 and PKCalpha is sufficient to activate PLD2.
Collapse
Affiliation(s)
- Jun-Song Chen
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
17
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
18
|
Kam Y, Exton JH. Role of phospholipase D in the activation of protein kinase D by lysophosphatidic acid. Biochem Biophys Res Commun 2004; 315:139-43. [PMID: 15013437 DOI: 10.1016/j.bbrc.2004.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Indexed: 11/24/2022]
Abstract
Protein kinase D was auto-phosphorylated at Ser916 and trans-phosphorylated at Ser744/Ser748 in Rat-2 fibroblasts treated with lysophosphatidic acid. Both phosphorylations were inhibited by 1-butanol, which blocks phosphatidic acid formation by phospholipase D. The phosphorylations were also reduced in Rat-2 clones with decreased phospholipase D activity. Platelet-derived growth factor-induced protein kinase D phosphorylation showed a similar requirement for phospholipase D, but that induced by 4beta-phorbol 12 myristate 13-acetate did not. Propranolol an inhibitor of diacylglycerol formation from phosphatidic acid blocked the phosphorylation of protein kinase D, whereas dioctanoylglycerol induced it. The temporal pattern of auto-phosphorylation of protein kinase D closely resembled that of phospholipase D activation and preceded the trans-phosphorylation by protein kinase C. These results suggest that protein kinase D is activated by lysophosphatidic acid through sequential phosphorylation and that diacylglycerol produced by PLD via phosphatidic acid is required for the autophosphorylation that occurs prior to protein kinase C-mediated phosphorylation.
Collapse
Affiliation(s)
- Yoonseok Kam
- Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
19
|
Buratta S, Mambrini R, Miniaci MC, Tempia F, Mozzi R. Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J Neurochem 2004; 89:730-8. [PMID: 15086529 DOI: 10.1046/j.1471-4159.2004.02403.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cerebellar slices, the lowering of oxygen availability, obtained by bubbling N(2) in the medium, reduced the incorporation of radioactive serine into phosphatidylserine (PtdSer). CPCCOEt, an antagonist of metabotropic glutamate receptors type 1 (mGluR1) counteracted the effect, whereas antagonists of NMDA or AMPA receptors were ineffective. In oxygenated slices, agonists of Group I mGluRs, which include mGluR1, inhibited PtdSer synthesis. This effect was also counteracted by CPCCOEt. These findings indicate that glutamate inhibits PtdSer synthesis by acting on mGluR1. This could be important in relation to the known release of glutamate in hypoxia-ischaemia conditions. In cerebellar Purkinje cells, mGluR1 are involved in the generation of mGluR-EPSP evoked by parallel fibre stimulation. The administration of l-serine to cerebellar slices reduced in a dose-dependent manner the mGluR-EPSP evoked by parallel fibre stimulation. The effect was mostly due to the increased synthesis of PtdSer. Thus inhibition of PtdSer synthesis, mediated by mGluR1, may participate in the generation of mGluR-EPSP.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Internal Medicine, Section of Biochemistry, University of Perugia, Perugia, Italy
| | | | | | | | | |
Collapse
|
20
|
Abstract
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, Gö 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.
Collapse
Affiliation(s)
- Jun-Song Chen
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
21
|
Kam Y, Exton JH. Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid. FASEB J 2004; 18:311-9. [PMID: 14769825 DOI: 10.1096/fj.03-0731com] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitogens activate protein translation through phosphorylation of p7S6 kinase (p70(S6K)) and eIF4E binding protein 1 (4E-BP1) mediated by the mammalian target of rapamycin (mTOR) or phosphoinositide 3-kinase (PI3K). A recent report (Science 294, 1942, 2001) has implicated phospholipase D (PLD) in mTOR signaling. We studied the role of PLD in the phosphorylation of p70(S6K) and 4E-BP1 induced by lysophosphatidic acid (LPA) and platelet-derived growth factor (PDGF) using fibroblasts deficient in PLD activity and also 1-butanol, which inhibits phosphatidic acid production by PLD. The reduction in PLD activity in both situations impaired the effect of LPA on mTOR signaling but did not inhibit the effect of PDGF. PDGF induced marked phosphorylation of Akt (a PI3K target) but this was not affected by PLD deficiency. LPA caused much less phosphorylation of Akt and this was dependent on PLD activity. Toxin B, which inactivates Rho GTPases, markedly impaired PLD1 activation and phosphorylation of Akt, p70(S6K), and 4E-BP1 induced by LPA but had a minimal or no effect on the actions of PDGF. These results support the hypothesis that LPA activates protein translation through the action of PLD1-generated PA on mTOR and the PI3K/Akt pathway whereas PDGF acts through P13K/Akt independent of PLD1.
Collapse
Affiliation(s)
- Yoonseok Kam
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
22
|
Ghosh S, Moore S, Bell RM, Dush M. Functional analysis of a phosphatidic acid binding domain in human Raf-1 kinase: mutations in the phosphatidate binding domain lead to tail and trunk abnormalities in developing zebrafish embryos. J Biol Chem 2003; 278:45690-6. [PMID: 12925535 DOI: 10.1074/jbc.m302933200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we and others identified a 35-amino acid segment within human Raf-1 kinase that preferentially binds phosphatidic acid. The presence of phosphatidic acid was found to be necessary for the translocation of Raf-1 to the plasma membrane. We have now employed a combination of alanine-scanning and deletion mutagenesis to identify the critical amino acid residues in Raf-1 necessary for interaction with phosphatidic acid. Progressive mutations within a tetrapeptide motif (residues 398-401 of human Raf-1) reduced and finally eliminated binding of Raf-1 to phosphatidic acid. We then injected zebrafish embryos with RNA encoding wild-type Raf-1 kinase or a mutant version with triple alanine mutations in the tetrapeptide motif and followed the morphological fate of embryonic development. Embryos with mutant but not wild-type Raf-1 exhibited defects in posterior axis formation exemplified by bent trunk and tail structures. Molecular evidence for lack of signaling through mutated Raf-1 was obtained by aberrant in situ hybridization of the ntl (no tail) gene, which functions downstream of Raf-1. Our results demonstrate that a functional phosphatidate binding site is necessary for Raf-1 function in embryonic development.
Collapse
Affiliation(s)
- Sujoy Ghosh
- GlaxoSmithKline, Genetics Research, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
23
|
Bakker RA, Casarosa P, Timmerman H, Smit MJ, Leurs R. Constitutively active Gq/11-coupled receptors enable signaling by co-expressed G(i/o)-coupled receptors. J Biol Chem 2003; 279:5152-61. [PMID: 14610092 DOI: 10.1074/jbc.m309200200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Co-expression of guanine nucleotide-binding regulatory (G) protein-coupled receptors (GPCRs), such as the G(i/o)-coupled human 5-hydroxytryptamine receptor 1B (5-HT(1B)R), with the G(q/11)-coupled human histamine 1 receptor (H1R) results in an overall increase in agonist-independent signaling, which can be augmented by 5-HT(1B)R agonists and inhibited by a selective inverse 5-HT(1B)R agonist. Interestingly, inverse H1R agonists inhibit constitutively H1R-mediated as well as 5-HT(1B)R agonist-induced signaling in cells co-expressing both receptors. This phenomenon is not solely characteristic of 5-HT(1B)R; it is also evident with muscarinic M2 and adenosine A1 receptors and is mimicked by mastoparan-7, an activator of G(i/o) proteins, or by over-expression of Gbetagamma subunits. Likewise, expression of the G(q/11)-coupled human cytomegalovirus (HCMV)-encoded chemokine receptor US28 unmasks a functional coupling of G(i/o)-coupled CCR1 receptors that is mediated via the constitutive activity of receptor US28. Consequently, constitutively active G(q/11)-coupled receptors, such as the H1R and HCMV-encoded chemokine receptor US28, constitute a regulatory switch for signal transduction by G(i/o)-coupled receptors, which may have profound implications in understanding the role of both constitutive GPCR activity and GPCR cross-talk in physiology as well as in the observed pathophysiology upon HCMV infection.
Collapse
MESH Headings
- Animals
- COS Cells
- DNA/chemistry
- DNA, Complementary/metabolism
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Genes, Reporter
- Humans
- Inositol Phosphates/metabolism
- Intercellular Signaling Peptides and Proteins
- Ligands
- Models, Biological
- Peptides
- Protein Binding
- Protein Structure, Tertiary
- Receptor, Adenosine A1/metabolism
- Receptor, Muscarinic M2/metabolism
- Receptor, Serotonin, 5-HT1B/chemistry
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transcription, Genetic
- Wasp Venoms/metabolism
Collapse
Affiliation(s)
- Remko A Bakker
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Mitchell R, Robertson DN, Holland PJ, Collins D, Lutz EM, Johnson MS. ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor. J Biol Chem 2003; 278:33818-30. [PMID: 12799371 DOI: 10.1074/jbc.m305825200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M3 muscarinic receptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G, phospholipase C, Ca2+ q/11, protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptor's third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C- or ARF6-dependent activation of PLD2.
Collapse
Affiliation(s)
- Rory Mitchell
- Medical Research Council Membrane and Adapter Proteins Co-operative Group, Membrane Biology Interdisciplinary Research Group, School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, EH8 9XD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
25
|
Zheng B, Berrie CP, Corda D, Farquhar MG. GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A 2003; 100:1745-50. [PMID: 12576545 PMCID: PMC149904 DOI: 10.1073/pnas.0337605100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2002] [Indexed: 11/18/2022] Open
Abstract
Previously we identified MIR16 (membrane interacting protein of RGS16) as an integral membrane glycoprotein that interacts with regulator of G protein signaling proteins and shares significant sequence homology with bacterial glycerophosphodiester phosphodiesterases (GDEs), suggesting that it is a putative mammalian GDE. Here we show that MIR16 belongs to a large, evolutionarily conserved family of GDEs with a characteristic putative catalytic domain that shares a common motif (amino acids 92-116) with the catalytic domains of mammalian phosphoinositide phospholipases C. Expression of wild-type MIR16 (renamed GDE1), but not two catalytic domain mutants (E97A/D99A and H112A), leads to a dramatic increase in glycerophosphoinositol phosphodiesterase (GPI-PDE) activity in HEK 293T cells. Analysis of substrate specificity shows that GDE1/MIR16 selectively hydrolyzes GPI over glycerophosphocholine. The GPI-PDE activity of GDE1/MIR16 expressed in HEK 293T cells can be regulated by stimulation of G protein-coupled, alpha/beta-adrenergic, and lysophospholipid receptors. Membrane topology studies suggest a model in which the catalytic GDE domain faces the lumenextracellular space and the C terminus faces the cytoplasm. Our results suggest that by serving as a PDE for GPI with its activity regulated by G protein signaling, GDE1/MIR16 provides a link between phosphoinositide metabolism and G protein signal transduction.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651, USA
| | | | | | | |
Collapse
|
26
|
Mammalian phospholipase D – properties and regulation. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Kusner DJ, Barton JA, Wen KK, Wang X, Rubenstein PA, Iyer SS. Regulation of phospholipase D activity by actin. Actin exerts bidirectional modulation of Mammalian phospholipase D activity in a polymerization-dependent, isoform-specific manner. J Biol Chem 2002; 277:50683-92. [PMID: 12388543 DOI: 10.1074/jbc.m209221200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many critical cellular processes, including proliferation, vesicle trafficking, and secretion, are regulated by both phospholipase D (PLD) and the actin microfilament system. Stimulation of human PLD1 results in its association with the detergent-insoluble actin cytoskeleton, but the molecular mechanisms and functional consequences of PLD-actin interactions remain incompletely defined. Biochemical and pharmacologic modulation of actin polymerization resulted in complex bidirectional effects on PLD activity, both in vitro and in vivo. Highly purified G-actin inhibited basal and stimulated PLD activity, whereas F-actin produced the opposite effects. Actin-induced modulation of PLD activity was independent of the activating stimulus. The efficacy and potency of the effects of actin were isoform-specific but broadly conserved among actin family members. Human betagamma-actin was only 45% as potent and 40% as efficacious as rabbit skeletal muscle alpha-actin, whereas its inhibitory profile was similar to the single actin species from the yeast, Saccharomyces cerevisiae. Use of actin polymerization-specific reagents indicated that PLD1 binds both monomeric G-actin, as well as actin filaments. These data are consistent with a model in which the physical state of the actin cytoskeleton is a critical determinant of its regulation of PLD activity.
Collapse
Affiliation(s)
- David J Kusner
- Department of Internal Medicine, Division of Infectious Diseases, Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Structural studies of plant and bacterial members of the phospholipase D (PLD) superfamily are providing information about the role of the conserved HKD domains in the structure of the catalytic center and the catalytic mechanism of mammalian PLD isozymes (PLD1 and PLD2). Mutagenesis and sequence comparison studies have also defined the presence of pleckstrin homology and phox homology domains in the N-terminus and have demonstrated that a conserved sequence at the C-terminus is required for catalysis. The N- and C-terminal regions of PLD1 also contain interaction sites for protein kinase C, which can directly activate the enzyme through a non-phosphorylating mechanism. Small G proteins of the Rho and ADP-ribosylation factor families also directly regulate the enzyme, with RhoA binding to a sequence in the C-terminus. Certain tyrosine kinases and members of the Ras subfamily of small G proteins can activate the enzyme, but the mechanisms appear to be indirect. The mechanisms by which agonists activate PLD in vivo probably involve multiple pathways.
Collapse
Affiliation(s)
- John H Exton
- Howard Hughes Medical Institute and Vanderbilt University Medical Center, Nashville, TN 38232-0295, USA.
| |
Collapse
|
29
|
Abstract
The heterotrimeric guanine nucleotide-binding proteins (G proteins) are signal transducers that communicate signals from many hormones, neurotransmitters, chemokines, and autocrine and paracrine factors. The extracellular signals are received by members of a large superfamily of receptors with seven membrane-spanning regions that activate the G proteins, which route the signals to several distinct intracellular signaling pathways. These pathways interact with one another to form a network that regulates metabolic enzymes, ion channels, transporters, and other components of the cellular machinery controlling a broad range of cellular processes, including transcription, motility, contractility, and secretion. These cellular processes in turn regulate systemic functions such as embryonic development, gonadal development, learning and memory, and organismal homeostasis.
Collapse
Affiliation(s)
- Susana R Neves
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|