1
|
Zhang Y, Lim HS, Hu C, Zhang R. Spatiotemporal dynamics of forest fires in the context of climate change: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33305-x. [PMID: 38662294 DOI: 10.1007/s11356-024-33305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Forest fires are sudden, destructive, hazardous, and challenging to manage and rescue, earning them a place on UNESCO's list of the world's eight major natural disasters. Currently, amid global warming, all countries worldwide have entered a period of high forest fire incidence. Due to global warming, the frequency of forest fires has accelerated, the likelihood of large fires has increased, and the spatial and temporal dynamics of forest fires have shown different trends. Therefore, the impact of climate change on the spatiotemporal dynamics of forest fires has become a hot issue in the field of forest fire research in recent years. Therefore, it is of great significance and necessity to conduct a review of the research in this area. This review delves into the interactions and impacts between climate change and the spatiotemporal dynamics of forest fires. To address this issue, scholars have mainly adopted the following research methods: first, statistical analysis methods, second, the establishment of spatiotemporal prediction models for meteorology and forest fires, and third, the coupling of climate models with forest fire risk forecasting models. The statistical analysis method relies on the analysis of historical meteorological and fire-related data to study the effects of climate change and meteorological factors on fire occurrence. Meanwhile, forest fire prediction models utilize technical tools such as remote sensing. These models synthesize historical meteorological and fire-related data, incorporating key meteorological factors such as temperature, rainfall, relative humidity, and wind. The models revealed the spatial and temporal distribution patterns of fires, identified key drivers, and explored the interactions between climate change and forest fire dynamics, culminating in the construction of predictive models. With the deepening of the study, the coupling of climate models and fire risk ranking systems became a trend in the prediction of forest fire risk trends. Moreover, as the climate warms, the increased frequency of extreme weather events like heatwaves, droughts, snow and ice storms, and El Niño-Southern Oscillation (ENSO) has accelerated forest fire occurrences and raised the risk of major fires. This review offers valuable technical insights by comprehensively analyzing the spatial and temporal characteristics of forest fires, elucidating key meteorological drivers, and exploring potential mechanisms. These insights serve as a scientific foundation for preventive measures and effective forest fire management. In the face of a changing climate, this synthesis contributes to the development of informed strategies to mitigate the escalating threat of forest fires.
Collapse
Affiliation(s)
- Yuanjun Zhang
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Hwee San Lim
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Chengyu Hu
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Rui Zhang
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| |
Collapse
|
2
|
Liu P, Yin B, Gu L, Zhang S, Ren J, Wang Y, Duan W, Zhen W. Heat stress affects tassel development and reduces the kernel number of summer maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1186921. [PMID: 37351221 PMCID: PMC10282950 DOI: 10.3389/fpls.2023.1186921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/24/2023]
Abstract
Maize grain yield is drastically reduced by heat stress (HTS) during anthesis and early grain filling. However, the mechanism of HTS in reproductive organs and kernel numbers remains poorly understood. From 2018 to 2020, two maize varieties (ND372, heat tolerant; and XY335, heat sensitive) and two temperature regimens (HTS, heat stress; and CK, natural control) were evaluated, resulting in four treatments (372CK, 372HTS, 335CK, and 335HTS). HTS was applied from the nine-leaf stage (V9) to the anthesis stage. Various morphological traits and physiological activities of the tassels, anthers, and pollen from the two varieties were evaluated to determine their correlation with kernel count. The results showed that HTS reduced the number of florets, tassel volume, and tassel length, but increased the number of tassel branches. HTS accelerates tassel degradation and reduces pollen weight, quantity, and viability. Deformation and reduction in length and volume due to HTS were observed in both the Nongda 372 (ND372) and Xianyu 335 (XY335) varieties, with the average reductions being 22.9% and 35.2%, respectively. The morphology of the anthers changed more conspicuously in XY335 maize. The number of kernels per spike was reduced in the HTS group compared with the CK group, with the ND372 and XY335 varieties showing reductions of 47.3% and 59.3%, respectively. The main factors underlying the decrease in yield caused by HTS were reductions in pollen quantity and weight, tassel rachis, and branch length. HTS had a greater effect on the anther shape, pollen viability, and phenotype of XY335 than on those of ND372. HTS had a greater impact on anther morphology, pollen viability, and the phenotype of XY335 but had no influence on the appearance or dissemination of pollen from tassel.
Collapse
Affiliation(s)
- Pan Liu
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Baozhong Yin
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Limin Gu
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Shaoyun Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Jianhong Ren
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Yandong Wang
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Weiwei Duan
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Wenchao Zhen
- College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| |
Collapse
|
3
|
Wu X, Zhou S, Xu G, Liu C, Zhang Y. Research on carbon emission measurement and low-carbon path of regional industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90301-90317. [PMID: 35867299 DOI: 10.1007/s11356-022-22006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
As industry is the world's leading carbon emitter, promoting industrial carbon reduction is of key significance to carbon peak and carbon neutrality. Using a data-driven method, based on the collection and processing of relevant data from statistical yearbooks and others, we analyze the efficiency and amount of carbon emission of each industrial sector after processing multi-dimensional data by the improved IPCC EF method of calculating carbon emissions. In addition, we adopt the LMDI decomposition method for data modeling to measure the contribution of energy efficiency, industrial structure, GDP per capita, and population size to carbon emission changes, to identify targets for industrial carbon reduction, and to propose a targeted optimization path for carbon emission. We show how the method is implemented by taking the statistics of Anhui Province from 2010 to 2019 as an example and advises on an optimization path for carbon emission in Anhui Province. This study is of both theoretical and practical significance as it provides theoretical and methodological support for the low-carbon development of the regional industry, and provides a reference for other countries and regions to explore the path of low-carbon and environment-friendly green transformation and upgrading.
Collapse
Affiliation(s)
- Xue Wu
- Business School, Suzhou University, Suzhou, 234000, China
| | - Shuling Zhou
- Business School, Suzhou University, Suzhou, 234000, China.
| | - Guowei Xu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, 234000, China
| | - Conghu Liu
- Business School, Suzhou University, Suzhou, 234000, China
- School of Economics and Management, Tsinghua University, Beijing, 100084, China
| | - Yingyan Zhang
- Business School, Suzhou University, Suzhou, 234000, China
| |
Collapse
|
4
|
Patel RS, Rupani R, Impreso S, Lui A, Patel NA. Role of alternatively spliced, pro-survival Protein Kinase C delta VIII (PKCδVIII) in ovarian cancer. FASEB Bioadv 2022; 4:235-253. [PMID: 35415459 PMCID: PMC8984081 DOI: 10.1096/fba.2021-00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer is the deadliest malignant disease in women. Protein Kinase C delta (PRKCD; PKCδ) is serine/threonine kinase extensively linked to various cancers. In humans, PKCδ is alternatively spliced to PKCδI and PKCδVIII. However, the specific function of PKCδ splice variants in ovarian cancer has not been elucidated yet. Hence, we evaluated their expression in human ovarian cancer cell lines (OCC): SKOV3 and TOV112D, along with the normal T80 ovarian cells. Our results demonstrate a marked increase in PKCδVIII in OCC compared to normal ovarian cells. Therefore, we elucidated the role of PKCδVIII and the underlying mechanism of its expression in OCC. Using overexpression and knockdown studies, we demonstrate that PKCδVIII increases cellular survival and migration in OCC. Further, overexpression of PKCδVIII in T80 cells resulted in increased expression of Bcl2 and knockdown of PKCδVIII in OCC decreased Bcl2 expression. Using co-immunoprecipitations and immunocytochemistry, we demonstrate nuclear localization of PKCδVIII in OCC and further show increased association of PKCδVIII with Bcl2 and Bcl-xL in OCC. Using PKCδ splicing minigene, mutagenesis, siRNA and antisense oligonucleotides, we demonstrate that increased levels of alternatively spliced PKCδVIII in OCC is regulated by splice factor SRSF2. Finally, we verified that PKCδVIII levels are elevated in samples of human ovarian cancer tissue. The data presented here demonstrate that the alternatively spliced, signaling kinase PKCδVIII is a viable target to develop therapeutics to combat progression of ovarian cancer.
Collapse
Affiliation(s)
| | - Rea Rupani
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | | | - Ashley Lui
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Niketa A. Patel
- James A. Haley Veterans HospitalTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
5
|
Miao LN, Pan D, Shi J, Du JP, Chen PF, Gao J, Yu Y, Shi DZ, Guo M. Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective. Front Cardiovasc Med 2022; 9:816369. [PMID: 35242825 PMCID: PMC8885814 DOI: 10.3389/fcvm.2022.816369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) is a protein kinase with important cellular functions. PKC-δ, a member of the novel PKC subfamily, has been well-documented over the years. Activation of PKC-δ plays an important regulatory role in myocardial ischemia/reperfusion (IRI) injury and myocardial fibrosis, and its activity and expression levels can regulate pathological cardiovascular diseases such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. This article aims to review the structure and function of PKC-δ, summarize the current research regarding its activation mechanism and its role in cardiovascular disease, and provide novel insight into further research on the role of PKC-δ in cardiovascular diseases.
Collapse
Affiliation(s)
- Li-na Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-peng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-fei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Da-Zhuo Shi
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Ming Guo
| |
Collapse
|
6
|
PKCδ deficiency inhibits fetal development and is associated with heart elastic fiber hyperplasia and lung inflammation in adult PKCδ knockout mice. PLoS One 2021; 16:e0253912. [PMID: 34197550 PMCID: PMC8248728 DOI: 10.1371/journal.pone.0253912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C-delta (PKCδ) has a caspase-3 recognition sequence in its structure, suggesting its involvement in apoptosis. In addition, PKCδ was recently reported to function as an anti-cancer factor. The generation of a PKCδ knockout mouse model indicated that PKCδ plays a role in B cell homeostasis. However, the Pkcrd gene, which is regulated through complex transcription, produces multiple proteins via alternative splicing. Since gene mutations can result in the loss of function of molecular species required for each tissue, in the present study, conditional PKCδ knockout mice lacking PKCδI, II, IV, V, VI, and VII were generated to enable tissue-specific deletion of PKCδ using a suitable Cre mouse. We generated PKCδ-null mice that lacked whole-body expression of PKCδ. PKCδ+/- parental mice gave birth to only 3.4% PKCδ-/- offsprings that deviated significantly from the expected Mendelian ratio (χ2(2) = 101.7, P < 0.001). Examination of mice on embryonic day 11.5 (E11.5) showed the proportion of PKCδ-/- mice implanted in the uterus in accordance with Mendelian rules; however, approximately 70% of the fetuses did not survive at E11.5. PKCδ-/- mice that survived until adulthood showed enlarged spleens, with some having cardiac and pulmonary abnormalities. Our findings suggest that the lack of PKCδ may have harmful effects on fetal development, and heart and lung functions after birth. Furthermore, our study provides a reference for future studies on PKCδ deficient mice that would elucidate the effects of the multiple protein variants in mice and decipher the roles of PKCδ in various diseases.
Collapse
|
7
|
Li K, Wang Z. Splicing factor SRSF2-centric gene regulation. Int J Biol Sci 2021; 17:1708-1715. [PMID: 33994855 PMCID: PMC8120470 DOI: 10.7150/ijbs.58888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 01/14/2023] Open
Abstract
Serine/arginine-rich splicing factor 2 (SRSF2) is a splicing factor that is widely expressed in a variety of mammalian cell types. Increasing evidence has confirmed that SRSF2 plays vital roles in a number of biological and pathological processes. Therefore, it is important to understand how its expression is regulated, and how it regulates the expression of its target genes. Recently, we found that SRSF2 expression could be upregulated by herpes simplex virus-1 (HSV-1) infection, and that altered SRSF2 expression, in turn, epigenetically regulates the transcription of HSV-1 genes. Further studies on T cell exhaustion demonstrated that upregulated SRSF2 in exhausted T cells elevated the levels of multiple immune checkpoint molecules by associating with the acyl-transferases, P300 and CBP, and by altering histone modification near the transcription start sites of these genes, thereby influencing signal transducer and activator of transcription 3 binding to these gene promoters. These findings suggest that SRSF2 acts as an important sensor and effector during disease progression. Here, we discuss the molecules that regulate SRSF2 gene expression and their associated mechanisms, and the mechanisms via which SRSF2 regulates the expression of target genes, thus providing novel insights into the central role of SRSF2 in gene regulation.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
8
|
Multilevel Regulation of Protein Kinase CδI Alternative Splicing by Lithium Chloride. Mol Cell Biol 2021; 41:e0033820. [PMID: 33288642 PMCID: PMC8088272 DOI: 10.1128/mcb.00338-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3β) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3β activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3β signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.
Collapse
|
9
|
Luo J, Zhang P, Zhao T, Jia M, Yin P, Li W, Zhang ZR, Fu Y, Gong T. Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis. ACS NANO 2019; 13:3910-3923. [PMID: 30938986 DOI: 10.1021/acsnano.8b06924] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liver fibrosis is a serious liver disease associated with high morbidity and mortality. The activation of hepatic stellate cells (HSCs) and the overproduction of extracellular matrix proteins are key features during disease progression. In this work, chondroitin sulfate nanomicelles (CSmicelles) were developed as a delivery system targeting HSCs for the treatment of liver fibrosis. CS-deoxycholic acid conjugates (CS-DOCA) were synthesized via amide bond formation. Next, retinoic acid (RA) and doxorubicin (DOX) were encapsulated into CSmicells to afford a DOX+RA-CSmicelles codelivery system. CSmicelles were selectively taken up in activated HSCs and hepatoma (HepG2) cells other than in normal hepatocytes (LO2), the internalization of which was proven to be mediated by CD44 receptors. Interestingly, DOX+RA-CSmicelles preferentially accumulated in the Golgi apparatus, destroyed the Golgi structure, and ultimately downregulated collagen I production. Following tail-vein injection, DOX+RA-CSmicelles were delivered to the cirrhotic liver and showed synergistic antifibrosis effects in the CCl4-induced fibrotic rat model. Further, immunofluorescence staining of dissected liver tissues revealed CD44-specific delivery of CS derivatives to activated HSCs. Together, our results demonstrate the great potential of CS based carrier systems for the targeted treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Ting Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Mengdi Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Peng Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Wenhao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
10
|
Goldie BJ, Fitzsimmons C, Weidenhofer J, Atkins JR, Wang DO, Cairns MJ. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif. Front Mol Neurosci 2017; 10:259. [PMID: 28878619 PMCID: PMC5573442 DOI: 10.3389/fnmol.2017.00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.
Collapse
Affiliation(s)
- Belinda J Goldie
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia.,World Premier International Research Center - Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| | - Dan O Wang
- World Premier International Research Center - Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in ResearchKyoto, Japan
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
11
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos 2017; 45:375-389. [PMID: 28188297 DOI: 10.1124/dmd.116.073254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/06/2017] [Indexed: 02/13/2025] Open
Abstract
The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
12
|
El Bassit G, Patel RS, Carter G, Shibu V, Patel AA, Song S, Murr M, Cooper DR, Bickford PC, Patel NA. MALAT1 in Human Adipose Stem Cells Modulates Survival and Alternative Splicing of PKCδII in HT22 Cells. Endocrinology 2017; 158:183-195. [PMID: 27841943 PMCID: PMC5412980 DOI: 10.1210/en.2016-1819] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023]
Abstract
Brain injury may be caused by trauma or may occur in stroke and neurodegenerative diseases. Because the central nervous system is unable to regenerate efficiently, there is utmost interest in the use of stem cells to promote neuronal survival. Of interest here are human adipose-derived stem cells (hASCs), which secrete factors that enhance regeneration and survival of neurons in sites of injury. We evaluated the effect of hASC secretome on immortalized mouse hippocampal cell line (HT22) after injury. Protein kinase C δ (PKCδ) activates survival and proliferation in neurons and is implicated in memory. We previously showed that alternatively spliced PKCδII enhances neuronal survival via B-cell lymphoma 2 Bcl2 in HT22 neuronal cells. Our results demonstrate that following injury, treatment with exosomes from the hASC secretome increases expression of PKCδII in HT22 cells and increases neuronal survival and proliferation. Specifically, we demonstrate that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA contained in the hASC exosomes mediates PKCδII splicing, thereby increasing neuronal survival. Using antisense oligonucleotides for MALAT1 and RNA immunoprecipitation assays, we demonstrate that MALAT1 recruits splice factor serine-arginine-rich splice factor 2 (SRSF2) to promote alternative splicing of PKCδII. Finally, we evaluated the role of insulin in enhancing hASC-mediated neuronal survival and demonstrated that insulin treatment dramatically increases the association of MALAT1 and SRSF2 and substantially increases survival and proliferation after injury in HT22 cells. In conclusion, we demonstrate the mechanism of action of hASC exosomes in increasing neuronal survival. This effect of hASC exosomes to promote wound healing can be further enhanced by insulin treatment in HT22 cells.
Collapse
Affiliation(s)
| | | | - Gay Carter
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
| | | | | | - Shijie Song
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
| | | | - Denise R. Cooper
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Molecular Medicine,
| | - Paula C. Bickford
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Neurosurgery and Brain Survival, University of South Florida, Tampa, Florida 33612
| | - Niketa A. Patel
- James A. Haley Veterans Hospital, Tampa, Florida 33612; and
- Molecular Medicine,
| |
Collapse
|
13
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
14
|
Mellai M, Cattaneo M, Storaci AM, Annovazzi L, Cassoni P, Melcarne A, De Blasio P, Schiffer D, Biunno I. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy. Oncotarget 2016; 6:12452-67. [PMID: 25948789 PMCID: PMC4494950 DOI: 10.18632/oncotarget.3611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
The suppressor of Lin-12-like (C. elegans) (SEL1L) is involved in the endoplasmic reticulum (ER)-associated degradation pathway, malignant transformation and stem cells. In 412 formalin-fixed and paraffin-embedded brain tumors and 39 Glioblastoma multiforme (GBM) cell lines, we determined the frequency of five SEL1L single nucleotide genetic variants with regulatory and coding functions by a SNaPShot™ assay. We tested their possible association with brain tumor risk, prognosis and therapy. We studied the in vitro cytotoxicity of valproic acid (VPA), temozolomide (TMZ), doxorubicin (DOX) and paclitaxel (PTX), alone or in combination, on 11 GBM cell lines, with respect to the SNP rs12435998 genotype. The SNP rs12435998 was prevalent in anaplastic and malignant gliomas, and in meningiomas of all histologic grades, but unrelated to brain tumor risks. In GBM patients, the SNP rs12435998 was associated with prolonged overall survival (OS) and better response to TMZ-based radio-chemotherapy. GBM stem cells with this SNP showed lower levels of SEL1L expression and enhanced sensitivity to VPA.
Collapse
Affiliation(s)
- Marta Mellai
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Monica Cattaneo
- Institute for Genetic and Biomedical Research, National Research Council, Milan 20138, Italy
| | | | - Laura Annovazzi
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin/Città della Salute e della Scienza, Turin 10126, Italy
| | - Antonio Melcarne
- Department of Neurosurgery, CTO Hospital/Città della Salute e della Scienza, Turin 10126, Italy
| | | | - Davide Schiffer
- Neuro-Bio-Oncology Center/Policlinico di Monza Foundation, Vercelli 13100, Italy
| | - Ida Biunno
- Institute for Genetic and Biomedical Research, National Research Council, Milan 20138, Italy.,IRCCS-Multimedica, Milan 20138, Italy
| |
Collapse
|
15
|
Ravi S, Schilder RJ, Kimball SR. Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism. J Nutr 2015; 145:841-6. [PMID: 25761502 PMCID: PMC4408736 DOI: 10.3945/jn.114.203216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is a critical step in gene expression that results in the removal of intronic sequences from immature mRNA, leading to the production of mature mRNA that can be translated into protein. Alternative pre-mRNA splicing is the process whereby alternative exons and/or introns are selectively included or excluded, generating mature mRNAs that encode proteins that may differ in function. The resulting alterations in the pattern of protein isoform expression can result in changes in protein-protein interaction, subcellular localization, and flux through metabolic pathways. Although basic mechanisms of pre-mRNA splicing of introns and exons are reasonably well characterized, how these mechanisms are regulated remains poorly understood. The goal of this review is to highlight selected recent advances in our understanding of the regulation of pre-mRNA splicing by nutrients and modulation of nutrient metabolism that result from changes in pre-mRNA splicing.
Collapse
Affiliation(s)
- Suhana Ravi
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, The Pennsylvania State University, State College, PA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| |
Collapse
|
16
|
Patel RS, Carter G, Cooper DR, Apostolatos H, Patel NA. Transformer 2β homolog (Drosophila) (TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle. J Biol Chem 2014; 289:31662-31672. [PMID: 25261467 DOI: 10.1074/jbc.m114.592337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.
Collapse
Affiliation(s)
- Rekha S Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Gay Carter
- James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Denise R Cooper
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Hercules Apostolatos
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
17
|
Moon H, Cho S, Loh TJ, Oh HK, Jang HN, Zhou J, Kwon YS, Liao DJ, Jun Y, Eom S, Ghigna C, Biamonti G, Green MR, Zheng X, Shen H. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1132-40. [PMID: 25220236 DOI: 10.1016/j.bbagrm.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 02/03/2023]
Abstract
The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.
Collapse
Affiliation(s)
- Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyun Kyung Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jianhua Zhou
- JiangSu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Young-Soo Kwon
- Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - D Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Soohyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Michael R Green
- Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
18
|
Carter G, Patel R, Apostolatos A, Murr M, Cooper DR, Patel NA. Protein kinase C delta (PKCδ) splice variant modulates senescence via hTERT in adipose-derived stem cells. Stem Cell Investig 2014; 1:3. [PMID: 27358850 DOI: 10.3978/j.issn.2306-9759.2014.01.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/17/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) were isolated and characterized from lean and obese subjects. We previously reported that distinct differences were observed in differentiating lean and obese preadipocytes. Protein kinase C delta (PKCδ) is alternatively spliced and has important roles in apoptosis. PKCδI promotes apoptosis and PKCδVIII promotes survival. Our previous data indicated an increase in the survival kinase, PKCδVIII in ADSC derived from an obese donor. We also determined that obese adipocytes were resistant to apoptosis. Here, we determine the relationship between a survival kinase PKCδVIII and hTERT expression in adipose derived stem cells from a lean and obese subject. METHODS We evaluated the telomerase activity and human telomerase reverse transcriptase (hTERT) expression in lean and obese ADSC. The lean and obese ADSC were purchased as cryopreserved cells from ZenBio™ (Research Triangle Park, NC, USA). Analyses were performed using PRISM™ software and analyzed using two-tailed Student's t-test. RESULTS We observed an increase in telomerase in differentiating obese ADSC using western blot analysis. We determined the levels of hTERT splice variants. hTERT α+/β+ splice variant was increased after transfected of PKCδVIII. We next determined whether PKCδVIII over-expression affected the levels of telomerase. The results indicate an increase in telomerase with PKCδVIII over-expression. CONCLUSIONS Over-expression of PKCδVIII in lean ADSC substantially increased expression of hTERT and telomerase. The decreased senescence seen in obese ADSC may in part be attributed to PKCδVIII. Obese ADSC undergo lower senescence and may have increased growth potential. These results propose a larger epigenetic modification in obese ADSC compared to lean ADSC.
Collapse
Affiliation(s)
- Gay Carter
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| | - Rekha Patel
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| | - André Apostolatos
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| | - Michel Murr
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| | - Denise R Cooper
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| | - Niketa A Patel
- 1 James A Haley Veterans Hospital, Tampa, FL, USA ; 2 Department of Molecular Medicine and 3 Surgery, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Liu Z, Li T, Jiang K, Huang Q, Chen Y, Qian F. Induction of chemoresistance by all-trans retinoic acid via a noncanonical signaling in multiple myeloma cells. PLoS One 2014; 9:e85571. [PMID: 24416428 PMCID: PMC3887062 DOI: 10.1371/journal.pone.0085571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/30/2013] [Indexed: 12/16/2022] Open
Abstract
Despite the successful application of all-trans retinoic acid (ATRA) in multiple myeloma treatment, ATRA-induced chemoresistance in the myeloma patients is very common in clinic. In this study, we evaluated the effect of ATRA on the expression of apurinic endonuclease/redox factor-1 (Ape/Ref-1) in the U266 and RPMI-8226 myeloma cells to explore the chemoresistance mechanism involved. ATRA treatment induced upregulation of Ape/Ref-1 via a noncanonical signaling pathway, leading to enhanced pro-survival activity counteracting melphalan (an alkylating agent). ATRA rapidly activated p38-MSK (mitogen- and stress activated protein kinase) cascade to phosphorylate cAMP response element-binding protein (CREB). Phosphorylated CREB was recruited to the Ape/Ref-1 promoter to evoke the gene expression. The stimulation of ATRA on Ape/Ref-1 expression was attenuated by either p38-MSK inhibitors or overexpression of dominant-negative MSK1 mutants. Moreover, ATRA-mediated Ape/Ref-1 upregulation was correlated with histone modification and activation of CBP/p300, an important cofactors for CREB transcriptional activity. C646, a competitive CBP/p300 inhibitor, abolished the upregulation of Ape/Ref-1 induced by ATRA. Intriguingly, CBP rather than p300 played a dominant role in the expression of Ape/Ref-1. Hence, our study suggests the existence of a noncanonical mechanism involving p38-MSK-CREB cascade and CBP induction to mediate ATRA-induced Ape/Ref-1 expression and acquired chemoresistance in myeloma cells.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tao Li
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- * E-mail:
| | - Kesheng Jiang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Qiaoli Huang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yicheng Chen
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Qian
- Department of Medical Function, Medical School of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
20
|
Patel R, Apostolatos A, Carter G, Ajmo J, Gali M, Cooper DR, You M, Bisht KS, Patel NA. Protein kinase C δ (PKCδ) splice variants modulate apoptosis pathway in 3T3L1 cells during adipogenesis: identification of PKCδII inhibitor. J Biol Chem 2013; 288:26834-46. [PMID: 23902767 DOI: 10.1074/jbc.m113.482638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increased food intake and lack of physical activity results in excess energy stored in adipocytes, and this imbalance contributes to obesity. New adipocytes are required for storage of energy in the white adipose tissue. This process of adipogenesis is widely studied in differentiating 3T3L1 preadipocytes in vitro. We have identified a key signaling kinase, protein kinase C delta (PKCδ), whose alternative splice variant expression is modulated during adipogenesis. We demonstrate that PKCδII splice variant promotes survival in differentiating 3T3L1 cells through the Bcl2 pathway. Here we demonstrate that resveratrol, a naturally occurring polyphenol, increases apoptosis and inhibits adipogenesis along with disruption of PKCδ alternative splicing during 3T3L1 differentiation. Importantly, we have identified a PKCδII splice variant inhibitor. This inhibitor may be a valuable tool with therapeutic implications in obesity.
Collapse
Affiliation(s)
- Rekha Patel
- From the James A Haley Veterans Hospital, Tampa, Florida 33612 and
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dysregulated Alternative Splicing Pattern of PKCδ during Differentiation of Human Preadipocytes Represents Distinct Differences between Lean and Obese Adipocytes. ISRN OBESITY 2013; 2013:161345. [PMID: 24533217 PMCID: PMC3901959 DOI: 10.1155/2013/161345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022]
Abstract
Obesity and its comorbidities affect millions of people. Here, we demonstrate that human preadipocytes are susceptible to programmed cell death (apoptosis) while mature adipocytes are resistant to apoptosis. The molecular mechanisms underlying the phenotype of apoptosis-resistant adipocytes are lesser known. To study the role of apoptosis and define molecular differences in the developmental process of adipogenesis, human preadipocytes were differentiated in vitro to mature adipocytes. Many genes in the apoptosis pathway are alternatively spliced. Our data demonstrates that during differentiation PKC δ , Bclx, and Caspase9 switch to their prosurvival splice variants along with an increase in Bcl2 expression when the cells terminally differentiate into mature adipocytes. Next we determined the expression pattern of these genes in obesity. Our data indicated high expression of PKC δ VIII in adipose tissue of obese patient in different depots. We demonstrate a shift in the in vitro expression of these splice variants in differentiating preadipocytes derived from obese patients along with a decrease in adipogenesis markers. Hence, the programmed splicing of antiapoptotic proteins is a pivotal switch in differentiation that commits adipocytes to a prosurvival pathway. The expression pattern of these genes is dysregulated in obesity and may contribute to adipose tissue dysfunction.
Collapse
|
22
|
Abstract
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA.
| |
Collapse
|
23
|
Gordon R, Anantharam V, Kanthasamy AG, Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation 2012; 9:82. [PMID: 22540228 PMCID: PMC3419619 DOI: 10.1186/1742-2094-9-82] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 04/27/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanisms of progressive dopaminergic neuronal loss in Parkinson's disease (PD) remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF) has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. METHODS In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1) were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS) model of nigral dopaminergic degeneration. RESULTS TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ), an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (si)RNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (-/-) mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the neuroinflammatory LPS model was also observed. CONCLUSIONS Collectively, these results identify proteolytic activation of PKCδ proapoptotic signaling as a key downstream effector of dopaminergic cell death induced by TNF. These findings also provide a rationale for therapeutically targeting PKCδ to mitigate progressive dopaminergic degeneration resulting from chronic neuroinflammatory processes.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
24
|
Brutman-Barazani T, Horovitz-Fried M, Aga-Mizrachi S, Brand C, Brodie C, Rosa J, Sampson SR. Protein kinase Cδ but not PKCα is involved in insulin-induced glucose metabolism in hepatocytes. J Cell Biochem 2012; 113:2064-76. [DOI: 10.1002/jcb.24078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Kim JD, Seo KW, Lee EA, Quang NN, Cho HR, Kwon B. A novel mouse PKCδ splice variant, PKCδIX, inhibits etoposide-induced apoptosis. Biochem Biophys Res Commun 2011; 410:177-82. [PMID: 21549093 DOI: 10.1016/j.bbrc.2011.04.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 12/13/2022]
Abstract
Protein kinase C (PKC) δ plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKCδ generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKCδ isoform named PKCδIX (Genebank Accession No. HQ840432). PKCδIX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKCδ. PKCδIX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKCδIX provided a possibility that this PKCδ isozyme functions as a novel dominant-negative form for PKCδ due to its lack of the ATP-binding domain that is required for the kinase activity of PKCδ. Indeed, overexpression of PKCδIX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKCδIX protein could competitively inhibit the kinase activity of PKCδ. We conclude that PKCδIX can function as a natural dominant-negative inhibitor of PKCδin vivo.
Collapse
Affiliation(s)
- Jung D Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | | | | | | | | | | |
Collapse
|