1
|
Lee MJ, Hammouda MB, Miao W, Okafor AE, Jin YJ, Sun H, Jain V, Markovtsov V, Diao Y, Gregory SG, Zhang JY. UBE2N Is Essential for Maintenance of Skin Homeostasis and Suppression of Inflammation. J Invest Dermatol 2024:S0022-202X(24)00376-2. [PMID: 38796140 DOI: 10.1016/j.jid.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
UBE2N, a Lys63 ubiquitin-conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n knockout in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration as well as signs of edema and blistering. Single-cell transcriptomic analyses and RT-qPCR showed that Ube2n-knockout keratinocytes expressed elevated myeloid cell chemoattractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemoattractant Ccl27a. Consistently, the infiltrating immune cells were predominantly myeloid-derived cells, including neutrophils and M1-like macrophages, which expressed high levels of inflammatory cytokines such as Il1β and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated inflammation, epidermal and dermal thickening, and immune infiltration of the Ube2n-mutant skin. Together, these findings highlight a key role of keratinocyte UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.
Collapse
Affiliation(s)
- Min Jin Lee
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics & Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Manel Ben Hammouda
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Wanying Miao
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Arinze E Okafor
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Yingai J Jin
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Huiying Sun
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - Yarui Diao
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA; Department of Pathology, School of Medicine, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
2
|
Lee MJ, Hammouda MB, Miao W, Okafor A, Jin Y, Sun H, Jain V, Markovtsov V, Diao Y, Gregory SG, Zhang JY. UBE2N is essential for maintenance of skin homeostasis and suppression of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569631. [PMID: 38105982 PMCID: PMC10723344 DOI: 10.1101/2023.12.01.569631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
UBE2N, a Lys63-ubiquitin conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n-knockout (KO) in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included eczematous inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration, as well as signs of edema and blistering. Single cell transcriptomic analyses and RT-qPCR showed that Ube2n KO keratinocytes expressed elevated myeloid cell chemo-attractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemo-attractant, Ccl27a. Consistently, the infiltrating immune cells of Ube2n-KO skin were predominantly myeloid-derived cells including neutrophils and M1-like macrophages that were highly inflammatory, as indicated by expression of Il1β and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated eczema, epidermal and dermal thickening, and immune infiltration of the Ube2n mutant skin. Together, these findings highlight a key role of keratinocyte-UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.
Collapse
Affiliation(s)
- Min Jin Lee
- Department of Dermatology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Wanying Miao
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Arinze Okafor
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yingai Jin
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Huiying Sun
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cell Signal 2022; 94:110329. [PMID: 35390466 DOI: 10.1016/j.cellsig.2022.110329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
ISG15 encoded by a type I interferon (IFN) inducible gene mediates an important cellular process called ISGylation. ISGylation emerges as a powerful host tactic against intracellular pathogens like Mycobacterium tuberculosis (Mtb). However, the exact role of ISGylation in immunity remains elusive. To shed light on how ISGylation, which is both interesting and complex, participates in immunity against Mtb, this manuscript summarized the current knowledge about the structural characteristics and targets of ISG15 and how ISGylation cross-talks with other host post-translational modifications to exert its effect.
Collapse
Affiliation(s)
- Zilu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory Chongqing, 400030, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Morale MG, da Silva Abjaude W, Silva AM, Villa LL, Boccardo E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci Rep 2018; 8:3476. [PMID: 29472602 PMCID: PMC5823898 DOI: 10.1038/s41598-018-21416-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NFκB activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.,Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Montenegro Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Kudumala SR, Penserga T, Börner J, Slipchuk O, Kakad P, Lee LH, Qureshi A, Pielage J, Godenschwege TA. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system. PLoS One 2017; 12:e0183605. [PMID: 28837701 PMCID: PMC5570280 DOI: 10.1371/journal.pone.0183605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.
Collapse
Affiliation(s)
- Sirisha R. Kudumala
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Tyrone Penserga
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jana Börner
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Olesya Slipchuk
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Priyanka Kakad
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - LaTasha H. Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Aater Qureshi
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jan Pielage
- Department of Biology, Division of Zoology/Neurobiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Tanja A. Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Joo E, Fukushima T, Harada N, Reed JC, Matsuzawa SI, Inagaki N. Ubc13 haploinsufficiency protects against age-related insulin resistance and high-fat diet-induced obesity. Sci Rep 2016; 6:35983. [PMID: 27796312 PMCID: PMC5086849 DOI: 10.1038/srep35983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with low-grade inflammation that leads to insulin resistance and type 2 diabetes via Toll-like Receptor (TLR) and TNF-family cytokine receptor (TNFR) signaling pathways. Ubc13 is an ubiquitin-conjugating enzyme responsible for non-canonical K63-linked polyubiquitination of TNF receptor-associated factor (TRAF)-family adapter proteins involved in TLR and TNFR pathways. However, the relationship between Ubc13 and metabolic disease remains unclear. In this study, we investigated the role of Ubc13 in insulin resistance and high-fat diet (HFD)-induced obesity. We compared wild-type (WT) and Ubc13 haploinsufficient (ubc13+/−) mice under normal diet (ND) and HFD, since homozygous knockout mice (ubc13−/−) are embryonic lethal. Male and female ubc13+/− mice were protected against age-related insulin resistance under ND and HFD compared to WT mice. Interestingly, only female ubc13+/− mice were protected against HFD-induced obesity and hepatic steatosis. Moreover, only female HFD-fed ubc13+/− mice showed lower expression of inflammatory cytokines that was secondary to reduction in weight gain not present in the other groups. In summary, our results indicate that suppression of Ubc13 activity may play a metabolic role independent of its inflammatory function. Thus, Ubc13 could represent a therapeutic target for insulin resistance, diet-induced obesity, and associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Erina Joo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toru Fukushima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - John C Reed
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Roche, Pharma Research &Early Development, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Abstract
Among all the E2 ubiquitin-conjugating enzymes, Ubc13, which heterodimerizes with Uev1a, specifically mediates lysine 63 (K63)-linked protein polyubiquitylation, a process that does not lead to proteasomal degradation of its substrates. Instead, it plays a key role in signal transduction. Numerous roles of Lys63-linked polyubiquitylation in immune responses have emerged, indicating the importance of this regulatory strategy. Here, we summarize some of the signaling pathways that depend on Lys63-linked polyubiquitylation during innate and adaptive immune responses, with a focus on the underlying molecular mechanisms. In addition, we describe how Ubc13 itself is regulated and outline its function in transforming growth factor β signaling. We discuss the current progress in pharmacological targeting of Ubc13 in inflammatory and autoimmune diseases as well as cancer therapy.
Collapse
Affiliation(s)
- Xuefeng Wu
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis 2014; 5:e1079. [PMID: 24556694 PMCID: PMC3944268 DOI: 10.1038/cddis.2014.54] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/08/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial neoplasm in children. In NB, loss of p53 function is largely due to cytoplasmic sequestration rather than mutation. Ubiquitin-conjugating enzyme E2 N (UBE2N), also known as Ubc13, is an E2 ubiquitin-conjugating enzyme that promotes formation of monomeric p53 that results in its cytoplasmic translocation and subsequent loss of function. Therefore, inhibition of UBE2N may reactivate p53 by promoting its nuclear accumulation. Here, we show that NSC697923, a novel UBE2N inhibitor, exhibits potent cytotoxicity in a panel of NB cell lines evidenced by its ability to induce apoptosis. In p53 wild-type NB cells, NSC697923 induced nuclear accumulation of p53, which led to its increased transcriptional activity and tumor suppressor function. Interestingly, in p53 mutant NB cells, NSC697923 induced cell death by activating JNK pathway. This effect was reversible by blocking JNK activity with its selective inhibitor, SP600125. More importantly, NSC697923 impeded cell growth of chemoresistant LA-N-6 NB cell line in a manner greater than conventional chemotherapy drugs doxorubicin and etoposide. NSC697923 also revealed in vivo antitumor efficacy in NB orthotopic xenografts. Taken together, our results suggest that UBE2N is a potential therapeutic target in NB and provide a basis for the rational use of UBE2N inhibitors like NSC697923 as a novel treatment option for NB patients.
Collapse
|
9
|
Lu C, Deng J, Li L, Wang D, Li G. Application of metabolomics on diagnosis and treatment of patients with psoriasis in traditional Chinese medicine. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:280-8. [PMID: 23747921 DOI: 10.1016/j.bbapap.2013.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
Traditional Chinese medicine (TCM) is one of the oldest forms of medical system. With syndrome as the core of diagnosis and therapy in TCM, it has the advantage of collecting macroscopic information of patients for diagnosis. To understand the in vivo mechanism of TCM, a metabolomics approach was used to investigate the global biological characterization of the urine of psoriasis patients with Blood Stasis Syndrome and the therapeutic metabolomics mechanism of the Optimized Yinxieling formula. A total of 41 cases of psoriasis patients with Blood Stasis Syndrome and 19 healthy volunteers were enrolled in this study. Fasting urine samples from patients with consecutive Optimized Yinxieling intake after 0, 4, 8 and 12 weeks and from healthy volunteers were analyzed by Orthogonal Projection on Latent Structures Discriminant Analysis (OPLS-DA), which was utilized for High Performance Liquid Chromatography (HPLC) analysis and temporal metabolic changes identification. For psoriasis group, the scores of PASI of patients decreased after 12 weeks of Optimized Yinxieling treating. The metabolic variations visualized not only in the healthy group and psoriasis group, but also in the psoriasis group before and after Optimized Yinxieling treatment, demonstrated that the metabolic characteristics of the two groups were significantly different. The optimized complex structure of the target proteins from Protein Data Bank was analyzed by software package Discovery Studio. With docking score of original inhibitor and the receptor as the threshold values, two compounds from Chinese medicinal chemical database were predicted to have good interactions with the target proteins. The Metabolomics technique combining molecular docking analysis enhanced our current understanding of the metabolic response to Blood Stasis Syndrome of Psoriasis and the action mechanism of Optimized Yinxieling. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Chuanjian Lu
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine (Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou 510120, China.
| | | | | | | | | |
Collapse
|
10
|
Zhang LJ, Bhattacharya S, Leid M, Ganguli-Indra G, Indra AK. Ctip2 is a dynamic regulator of epidermal proliferation and differentiation by integrating EGFR and Notch signaling. J Cell Sci 2012; 125:5733-44. [PMID: 23015591 DOI: 10.1242/jcs.108969] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidermal morphogenesis results from a delicate balance between keratinocyte proliferation and differentiation, and this balance is perturbed upon deletion of transcription factor Ctip2. Here we demonstrate that Ctip2, in a cell autonomous manner, controls keratinocyte proliferation and cytoskeletal organization, and regulates the onset and maintenance of differentiation in keratinocytes in culture. Ctip2 integrates keratinocyte proliferation and the switch to differentiation by directly and positively regulating EGFR transcription in proliferating cells and Notch1 transcription in differentiating cells. In proliferative cells, the EGFR promoter is occupied by Ctip2, whereas Ctip2 is only recruited to the Notch1 promoter under differentiating conditions. Activation of EGFR signaling downregulates Ctip2 at the transcript level, whereas high calcium signaling triggers SUMOylation, ubiquitination and proteasomal degradation of Ctip2 at the protein level. Together, our findings demonstrate a novel mechanism(s) of Ctip2-mediated, coordinated control of epidermal proliferation and terminal differentiation, and identify a pathway of negative feedback regulation of Ctip2 during epidermal development.
Collapse
Affiliation(s)
- Ling-juan Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
11
|
Mihara K, Elliott G, Boots A, Nelissen R. Inhibition of p38 kinase suppresses the development of psoriasis-like lesions in a human skin transplant model of psoriasis. Br J Dermatol 2012; 167:455-7. [DOI: 10.1111/j.1365-2133.2012.10939.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
Best known for its role in targeting protein degradation by the proteasome, ubiquitin modification has also emerged as an important mechanism that regulates cell signaling through proteasome-independent mechanisms. The role of ubiquitin as a versatile signaling tag is characteristically illustrated in the NF-κB pathways, which regulate a variety of physiological and pathological processes in response to diverse stimuli. Here, we review the role of ubiquitination in different steps of the NF-κB signaling cascades, focusing on recent advances in understanding the mechanisms of protein kinase activation by polyubiquitin chains in different pathways that converge on NF-κB.
Collapse
|