1
|
Causey A, Constantine M, Oswald J, Dellomo A, Masters B, Omorogbe E, Admon A, Garzino-Demo A, Ehrlich E. Analysis of the ubiquitin-modified proteome identifies novel host factors in Kaposi's sarcoma herpesvirus lytic reactivation. J Virol 2024:e0122424. [PMID: 39636148 DOI: 10.1128/jvi.01224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and is associated with primary effusion lymphoma (PEL), multicentric Castleman's disease, and two inflammatory diseases. KSHV-associated cancers are primarily associated with genes expressed during latency, while other pathologies are associated with lytic gene expression. The major lytic switch of the virus, Replication and Transcription Activator (RTA), interacts with cellular machinery to co-opt the host ubiquitin proteasome system to evade the immune response as well as activate the program of lytic replication. Through stable isotope labeling using amino acids in cell culture (SILAC) labeling, ubiquitin remnant enrichment, and mass spectrometry, we have analyzed the RTA-dependent ubiquitin-modified proteome. We identified RTA-dependent changes in the populations of polyubiquitin chains, as well as changes in ubiquitinated proteins in both cells expressing RTA and naturally infected cells following lytic reactivation. We observed an enrichment of proteins that are also reported to be SUMOylated, suggesting that RTA, a small ubiquitin-like modifier (SUMO) targeting ubiquitin ligase, may function to alleviate a SUMO-dependent block to lytic reactivation. RTA targeted substrates directly through a ubiquitin ligase domain-dependent mechanism as well as indirectly through cellular ubiquitin ligase RAUL. Our ubiquitome analysis revealed an RTA-dependent mechanism of immune evasion. We provide evidence of inhibition of transporter associated with antigen processing (TAP)-dependent peptide transport, resulting in decreased human leukocyte antigen (HLA) complex stability. The results of this analysis increase our understanding of mechanisms governing the latent to lytic transition in addition to the identification of a novel RTA-dependent mechanism of immune evasion. IMPORTANCE Kaposi's sarcoma herpesvirus, an AIDS-associated pathogen, is associated with multiple cancers and inflammatory syndromes. This virus has a latent and lytic lifecycle, each associated with pathogenesis and oncogenesis. Here, we identify proteins that display differential abundance in different phases of the lifecycle. We provide evidence supporting a new model of viral immune evasion. These findings increase our understanding of how the virus manipulates the host cell and provides new targets for intervention.
Collapse
Affiliation(s)
- Amerria Causey
- Biological Sciences, Towson University, Towson, Maryland, USA
| | | | - Jessica Oswald
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Anna Dellomo
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Bronwyn Masters
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Esosa Omorogbe
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Arie Admon
- Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alfredo Garzino-Demo
- Department of Microbial Pathogenesis, University of Maryland Baltimore School of Dentistry, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elana Ehrlich
- Biological Sciences, Towson University, Towson, Maryland, USA
| |
Collapse
|
2
|
Furuhata T, Devadasan Racheal PA, Murayama I, Toyoda U, Okamoto A. One-Pot, Photocontrolled Enzymatic Assembly of the Structure-Defined Heterotypic Polyubiquitin Chain. J Am Chem Soc 2023; 145:11690-11700. [PMID: 37200097 DOI: 10.1021/jacs.3c01912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterotypic polyubiquitins are an emerging class of polyubiquitins that have attracted interest because of their potential diversity of structures and physiological functions. There is an increasing demand for structure-defined synthesis of heterotypic chains to investigate the topological factors underlying the intracellular signals that are characteristically mediated by the heterotypic chain. However, the applicability of chemical and enzymatic polyubiquitin synthesis developed to date has been limited by laborious rounds of ligation and purification or by a lack of modularity of the chain structure with respect to the length and the branch position. Here, we established a one-pot, photocontrolled synthesis of structurally defined heterotypic polyubiquitin chains. We designed ubiquitin derivatives with a photolabile protecting group at a lysine residue used for polymerization. Repetitive cycles of linkage-specific enzymatic elongation and photoinduced deprotection of the protected ubiquitin units enabled stepwise addition of ubiquitins with appropriate functionalities to control the length and branching positions. The positional control of branching was achieved without isolation of intermediates, allowing one-pot synthesis of K63 triubiqutin chains and a K63/K48 heterotypic tetraubiquitin chain with defined branching positions. The present study provides a chemical platform for the efficient construction of long polyubiquitin chains with defined branch structures that will facilitate the understanding of the essential relationships between functions and structures of the heterotypic chain that have hitherto been overlooked.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Phebee Angeline Devadasan Racheal
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Iori Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Usano Toyoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Importance of accessibility to the extracellular juxtamembrane stalk region of membrane protein for substrate recognition by viral ubiquitin ligase K5. Biochem J 2022; 479:2261-2278. [DOI: 10.1042/bcj20220288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a carcinogenic virus that latently infects B cells and causes malignant tumors in immunocompromised patients. KSHV utilizes two viral E3 ubiquitin ligases, K3 and K5, in KSHV-infected cells to mediate the polyubiquitination-dependent down-regulation of several host membrane proteins involved in the immune system. Although K3 and K5 are members of the same family and have similar structural topologies, K3 and K5 have different substrate specificities. Hence, K5 may have a different substrate recognition mode than K3; however, the molecular basis of substrate recognition remains unclear. Here, we investigated the reason why human CD8α, which is known not to be a substrate for both K3 and K5, is not recognized by them, to obtain an understanding for molecular basis of substrate specificity. CD8α forms a disulfide-linked homodimer under experimental conditions to evaluate the viral ligase-mediated down-regulation. It is known that two interchain disulfide linkages in the stalk region between each CD8α monomer (Cys164–Cys164 and Cys181–Cys181) mediate homodimerization. When the interchain disulfide linkage of Cys181–Cys181 was eliminated, CD8α was down-regulated by K5 with a functional RING variant (RINGv) domain via polyubiquitination at the cytoplasmic tail. Aspartic acid, located at the stalk/transmembrane interface of CD8α, was essential for K5-mediated down-regulation of the CD8α mutant without a Cys181–Cys181 linkage. These results suggest that disulfide linkage near the stalk/transmembrane interface critically inhibits substrate targeting by K5. Accessibility to the extracellular juxtamembrane stalk region of membrane proteins may be important for substrate recognition by the viral ubiquitin ligase K5.
Collapse
|
5
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
6
|
Kajikawa M, Imaizumi N, Machii S, Nakamura T, Harigane N, Kimura M, Miyano K, Ishido S, Kanamoto T. Kaposi's sarcoma-associated herpesvirus ubiquitin ligases downregulate cell surface expression of l-selectin. J Gen Virol 2021; 102. [PMID: 34726593 DOI: 10.1099/jgv.0.001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi's sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nanae Imaizumi
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shiho Machii
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoka Nakamura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nana Harigane
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Minako Kimura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
7
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
8
|
Abstract
Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.
Collapse
|
9
|
Vere G, Kealy R, Kessler BM, Pinto-Fernandez A. Ubiquitomics: An Overview and Future. Biomolecules 2020; 10:E1453. [PMID: 33080838 PMCID: PMC7603029 DOI: 10.3390/biom10101453] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| | - Rachel Kealy
- St Anne’s College, University of Oxford, Oxford OX2 6HS, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute (CAMS), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| |
Collapse
|
10
|
Mendes ML, Fougeras MR, Dittmar G. Analysis of ubiquitin signaling and chain topology cross-talk. J Proteomics 2020; 215:103634. [PMID: 31918034 DOI: 10.1016/j.jprot.2020.103634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/13/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is a powerful post-translational modification implicated in many cellular processes. Although ubiquitination is associated with protein degradation, depending on the topology of polyubiquitin chains, protein ubiquitination is connected to non-degradative events in DNA damage response, cell cycle control, immune response, trafficking, intracellular localization, and vesicle fusion events. It has been shown that a ubiquitin chain can contain two or more topologies at the same time. These branched chains add another level of complexity to ubiquitin signaling, increasing its versatility and specificity. Mass spectrometry-based proteomics has been playing an important role in the identification of all types of ubiquitin chains and linkages. This review aims to provide an overview of ubiquitin chain topology and associated signaling pathways and discusses the MS-based proteomic methodologies used to determine such topologies. SIGNIFICANCE: Ubiquitination plays important roles in many cellular processes. Proteins can be monoubiquitinated or polyubiquitinated forming non-branched or branched chains in a high number of possible combinations, each associated with different cellular processes. The detection and the topology of ubiquitin chains is thus of extreme importance in order to explain such processes. Advances in mass spectrometry based proteomics allowed for the discovery and topology mapping of many ubiquitin chains. This review revisits the state of the art in ubiquitin chain identification by mass spectrometry and gives an insight on the implication of such chains in many cellular processes.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Miriam R Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
11
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
12
|
Abstract
The small protein ubiquitin and its multiple polymers are encountered free in cells and as post-translational modifications on all proteins. Different polyubiquitin three dimensional structures are shown to correlate uniquely with different cellular functions as part of the diverse ubiquitin signaling. At the same time, this multiplicity of structures provides serious challenges to the analytical biochemist. Globally applicable strategies are presented here for the analyses of polyubiquitins and of ubiquitinated proteins, which take advantage of the speed, specificity and sensitivity of top-down tandem mass spectrometry. Particular attention is given to the supervised interpretation of fragmentation as revealed in the MS/MS spectra of these branched proteins. The strategy is compatible with any MS activation technology, is applicable to all polyubiquitin linkage and chain types, can be extended to ubiquitin-like proteins, and will be compatible with and enhanced by continuing advances in LC-MS/MS instrumentation and interpretation software.
Collapse
Affiliation(s)
- Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Amanda E Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States.
| |
Collapse
|
13
|
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell 2017; 66:458-472.e5. [PMID: 28525740 DOI: 10.1016/j.molcel.2017.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
Abstract
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response.
Collapse
|
14
|
Rana ASJB, Ge Y, Strieter ER. Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys11/Lys48 Branched Ubiquitin Chains. J Proteome Res 2017; 16:3363-3369. [PMID: 28737031 DOI: 10.1021/acs.jproteome.7b00381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of cellular signaling events are tightly regulated by a diverse set of ubiquitin chains. Recent work has suggested that branched ubiquitin chains composed of Lys11 and Lys48 isopeptide linkages play a critical role in regulating cell cycle progression. Yet, endogenous Lys11/Lys48 branched chains could not be detected. By combining a Lys11 linkage specific antibody with high-resolution middle-down mass spectrometry (an approach termed UbiChEM-MS) we sought to identify endogenous Lys11/Lys48 branched ubiquitin chains in cells. Using asynchronous cells, we find that Lys11-linked branched chains can only be detected upon cotreatment with a proteasome and nonselective deubiquitinase inhibitor. Releasing cells from mitotic arrest results in a marked accumulation of Lys11/Lys48 branched chains in which branch points represent ∼3-4% of the total ubiquitin population. This report highlights the utility of UbiChEM-MS in characterizing the architecture of Lys11 Ub chains under various cellular conditions and corroborates the formation of Lys11/Lys48 branched chains during mitosis.
Collapse
Affiliation(s)
- Ambar S J B Rana
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Human Proteomics Program, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Ohtake F, Tsuchiya H. The emerging complexity of ubiquitin architecture. J Biochem 2017; 161:125-133. [PMID: 28011818 DOI: 10.1093/jb/mvw088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains.
Collapse
Affiliation(s)
- Fumiaki Ohtake
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikaru Tsuchiya
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
16
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Crowe SO, Rana ASJB, Deol KK, Ge Y, Strieter ER. Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains in Cellulo. Anal Chem 2017; 89:4428-4434. [PMID: 28291339 PMCID: PMC5541364 DOI: 10.1021/acs.analchem.6b03675] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin (Ub) has a broad functional range that has been ascribed to the formation of an array of polymeric ubiquitin chains. Understanding the precise roles of ubiquitin chains, however, is difficult due to their complex chain topologies. Branched ubiquitin chains are particularly challenging, as multiple modifications on a single ubiquitin preclude the use of standard bottom-up proteomic approaches. Developing methods to overcome these challenges is crucial considering evidence suggesting branched chains regulate the stability of proteins. In this study, we employ Ubiquitin Chain Enrichment Middle-down Mass Spectrometry (UbiChEM-MS) to identify branched chains that cannot be detected using bottom-up proteomic methods. Specifically, we employ tandem ubiquitin binding entities (TUBEs) and the K29-selective Npl4 Zinc Finger 1 (NZF1) domain from the deubiquitinase TRABID to enrich for chains from human cells. Minimal trypsinolysis followed by high resolution mass spectrometric analysis reveals that Ub chain branching can indeed be detected using both Ub binding domains (UBDs) tested at endogenous levels. We find that ∼1% of chains isolated with TUBEs contain Ub branch points, with this value rising to ∼4% after proteasome inhibition. Electron-transfer dissociation (ETD) analysis indicates the presence of K48 in these branched chains. The use of the NZF1 domain reveals that ∼4% of the isolated chains contain branch points with no apparent dependence on proteasome inhibition. Our results demonstrate an effective strategy for detecting and characterizing the dynamics of branched conjugates under different cellular conditions.
Collapse
Affiliation(s)
- Sean O. Crowe
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ambar S. J. B. Rana
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kirandeep K. Deol
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Kuang P, Tan M, Zhou W, Zhang Q, Sun Y. SAG/RBX2 E3 ligase complexes with UBCH10 and UBE2S E2s to ubiquitylate β-TrCP1 via K11-linkage for degradation. Sci Rep 2016; 6:37441. [PMID: 27910872 PMCID: PMC5133542 DOI: 10.1038/srep37441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022] Open
Abstract
SAG/RBX2 and RBX1 are two family members of RING components of Cullin-RING ligases (CRLs), required for their enzymatic activity. Previous studies showed that SAG prefers to bind with CUL5, as well as CUL1, whereas RBX1 binds exclusively to CULs1–4. Detailed biochemical difference between SAG and RBX1, and whether SAG mediates cross-talk between CRL5 and CRL1 are previously unknown. Here we report that the levels of SAG and β-TrCP1 are inversely correlated, and SAG-CUL5-βTrCP1 forms a complex under physiological condition. SAG-CUL5, but not RBX1-CUL1, negatively modulates β-TrCP1 levels by shortening its protein half-life through promoting its ubiquitylation via atypical K11-linkage. Consistently, chemical inducers of SAG reduced β-TrCP1 level. Furthermore, SAG mainly binds to E2s UBCH10 and UBE2S known to mediate K11 linkage of ubiquitin, whereas RBX1 exclusively binds to E2s CDC34 and UBCH5C, known to mediate K48 linkage of ubiquitin. Finally, silencing of either UBCH10 or UBE2S, but not UBCH5C, caused accumulation of endogenous β-TrCP1, suggesting that β-TrCP1 is a physiological substrate of SAG-UBCH10C/UBE2S. Our study, for the first time, differentiates SAG and RBX1 biochemically via their respective binding to different E2s; and shows a negative cross-talk between CRL5 and CRL1 through SAG mediated ubiquitylation of β-TrCP1.
Collapse
Affiliation(s)
- Peng Kuang
- Department of Internal Medicine, Beijing University School of Medicine, 38 Xueyuan Road, Beijing, 100191, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Qiang Zhang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
20
|
Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z, Sun Y. Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Clin Cancer Res 2016; 23:1104-1116. [PMID: 27591266 DOI: 10.1158/1078-0432.ccr-16-1585] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023]
Abstract
Purpose: Recent studies have shown that the process of protein neddylation was abnormally activated in several human cancers. However, it is unknown whether and how UBE2F, a less characterized neddylation E2, regulates lung cancer cell survival, and whether and how NOXA, a proapoptotic protein, is ubiquitylated and degraded by which E3 and via which ubiquitin linkage.Experimental Design: Methods of immunohistochemistry and immunoblotting were utilized to examine UBE2F protein expression. The biological functions of UBE2F were evaluated by in vitro cell culture and in vivo xenograft models. The in vivo complex formation among UBE2F-SAG-CUL5-NOXA was measured by a pulldown assay. Polyubiquitylation of NOXA was evaluated by in vivo and in vitro ubiquitylation assays.Results: UBE2F is overexpressed in non-small cell lung cancer (NSCLC) and predicts poor patient survival. While UBE2F overexpression promotes lung cancer growth both in vitro and in vivo, UBE2F knockdown selectively inhibits tumor growth. By promoting CUL5 neddylation, UBE2F/SAG/CUL5 tri-complex activates CRL5 (Cullin-RING-ligase-5) to ubiquitylate NOXA via a novel K11, but not K48, linkage for targeted proteasomal degradation. CRL5 inactivation or forced expression of K11R ubiquitin mutant caused NOXA accumulation to induce apoptosis, which is rescued by NOXA knockdown. Notably, NOXA knockdown rescues the UBE2F silencing effect, indicating a causal role of NOXA in this process. In lung cancer tissues, high levels of UBE2F and CUL5 correlate with a low level of NOXA and poor patient survival.Conclusions: By ubiquitylating and degrading NOXA through activating CRL5, UBE2F selectively promotes lung cancer cell survival and could, therefore, serve as a novel cancer target. Clin Cancer Res; 23(4); 1104-16. ©2016 AACR.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Haomin Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhenqiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Pinto MJ, Alves PL, Martins L, Pedro JR, Ryu HR, Jeon NL, Taylor AM, Almeida RD. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 2016; 212:789-801. [PMID: 27022091 PMCID: PMC4810304 DOI: 10.1083/jcb.201509039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
The intra-axonal events governing formation of presynaptic terminals are still poorly understood. Pinto et al. reveal a mechanism by which a localized decrease in proteasome degradation and resultant accumulation of polyubiquitinated proteins at nascent sites signal assembly of presynaptic terminals. Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses.
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro L Alves
- Instituto de Educação e Cidadania, 3770-033 Mamarrosa, Portugal
| | - Luís Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Hyun R Ryu
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea
| | - Noo Li Jeon
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-744, Korea Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
| | - Anne M Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal Institute for Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal School of Allied Health Technologies, Polytechnic Institute of Porto, 4400-330 Vila Nova de Gaia, Portugal
| |
Collapse
|
22
|
Lee AE, Geis-Asteggiante L, Dixon EK, Miller M, Wang Y, Fushman D, Fenselau C. Preparing to read the ubiquitin code: top-down analysis of unanchored ubiquitin tetramers. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:629-637. [PMID: 28239975 PMCID: PMC5618806 DOI: 10.1002/jms.3787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/13/2023]
Abstract
The characterization of polyubiquitin chains has been an analytical challenge for several decades. It has been shown that anchored and unanchored polyubiquitin chains with different isopeptide linkages and lengths exhibit a wide range of profoundly different cellular functions. However, structure function studies have been hindered by the difficulty of characterizing these complex chain structures. This report presents a broadly applicable workflow to characterize ubiquitin tetramers without the need for genetic mutations or reiterative immunoprecipitations. We use a top-down proteomic strategy that exploits ETciD activation on an orbitrap Fusion Lumos and manual interpretation aided by graphical interpretation of mass shifts to facilitate characterization of chain topography and lysine linkage sites. Our workflow differentiates all topological features of the numerous isomers of tetraubiquitin, which have molecular masses in excess of 34 000 Da and identifies linkage sites in these branched proteins. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amanda E Lee
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Emma K Dixon
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Meredith Miller
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Yan Wang
- Proteomics Core Facility, University of Maryland, College Park, MD, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
23
|
Cho M, Myoung J. OX40 and 4-1BB downregulate Kaposi’s sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells. J Gen Virol 2016; 96:3635-3645. [PMID: 26467721 DOI: 10.1099/jgv.0.000312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the human gammaherpesvirus subfamily and is associated with malignancies of endothelial origin (Kaposi’s sarcoma, KS) and B-cell origin [primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD)]. Viral lytic replication is known to be required for KS and MCD. As KSHV-related tumours mostly develop in human subjects when the immune system is compromised by immunosuppressive regimen, human immunodeficiency virus infection or some genetic deficiencies, KSHV-specific immune responses are believed to be important in the control of KSHV replication. However, analysis of the roles of immune cells in viral pathogenesis has been difficult due to the lack of an adequate animal model. Recently, congenital OX40 deficiency, as determined by genome-wide exome sequencing, was shown to be associated with aggressive childhood KS in a patient, suggesting that disrupted OX40–OX40L interactions might be implicated in disease development. Here, we report that interaction of recombinant OX40 protein with OX40L expressed on endothelial cells severely impaired KSHV lytic replication. Furthermore, 4-1BB–4-1BBL interactions were also capable of efficiently inhibiting viral replication in B-cells and endothelial cells. To the best of our knowledge, this is the first direct evidence that ligation of tumour necrosis factor superfamily members and their cognate receptors is important for the control of viral lytic replication. These data are likely to pave the way for the development of KSHV-specific therapies for KS and MCD, in which viral lytic replication is a disease-determining factor.
Collapse
Affiliation(s)
- Min Cho
- Korea Zoonosis Research Institute and Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute and Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bioactive Material Sciences, New Drug Development Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
24
|
Morimoto D, Shirakawa M. The evolving world of ubiquitin: transformed polyubiquitin chains. Biomol Concepts 2016; 7:157-67. [PMID: 27226101 DOI: 10.1515/bmc-2016-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The regulation of diverse cellular events by proteins that have undergone post-translational modification with ubiquitin is well documented. Ubiquitin can be polymerized and eight types of polyubiquitin chain contribute to the complexity and specificity of the ubiquitin signal. Unexpectedly, recent studies have shown that ubiquitin itself undergoes post-translational modification by acetylation and phosphorylation; moreover, amyloid-like fibrils comprised of polyubiquitin chains have been discovered. Thus, ubiquitin is not only conjugated to substrate proteins, but also modified and transformed itself. Here, we review these novel forms of ubiquitin signal, with a focus on fibril formation of polyubiquitin chains and its underlying biological relevance.
Collapse
|
25
|
Lee AE, Geis-Asteggiante L, Dixon EK, Kim Y, Kashyap TR, Wang Y, Fushman D, Fenselau C. Preparing to read the ubiquitin code: characterization of ubiquitin trimers by top-down mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:315-21. [PMID: 27041663 PMCID: PMC4909354 DOI: 10.1002/jms.3759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 05/12/2023]
Abstract
The profound effects of ubiquitination on the movement and processing of cellular proteins depend exquisitely on the structures of monoubiquitin and polyubiquitin modifications. Unconjugated polyubiquitins also have a variety of intracellular functions. Structures and functions are not well correlated yet, because the structures of polyubiquitins and polyubiquitin modifications of proteins are difficult to decipher. We are moving towards a robust strategy to provide that structural information. In this report electron transfer dissociation mass spectra of six synthetic ubiquitin trimers (multiply branched proteins with molecular masses exceeding 25,600 Da) are examined using an Orbitrap Fusion Lumos instrument to determine how top-down mass spectrometry can characterize the chain topology and linkage sites in a single, facile workflow. The efficacy of this method relies on the formation, detection, and interpretation of extensive fragmentation.
Collapse
Affiliation(s)
- Amanda E Lee
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Emma K Dixon
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Yeji Kim
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Tanuja R Kashyap
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Yan Wang
- Proteomics Core Facility, University of Maryland, College Park, MD, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD, 20742, USA
| |
Collapse
|
26
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
27
|
He F, Wollscheid HP, Nowicka U, Biancospino M, Valentini E, Ehlinger A, Acconcia F, Magistrati E, Polo S, Walters KJ. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. Cell Rep 2016; 14:2683-94. [PMID: 26971995 DOI: 10.1016/j.celrep.2016.01.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Myosin VI is critical for cargo trafficking and sorting during early endocytosis and autophagosome maturation, and abnormalities in these processes are linked to cancers, neurodegeneration, deafness, and hypertropic cardiomyopathy. We identify a structured domain in myosin VI, myosin VI ubiquitin-binding domain (MyUb), that binds to ubiquitin chains, especially those linked via K63, K11, and K29. Herein, we solve the solution structure of MyUb and MyUb:K63-linked diubiquitin. MyUb folds as a compact helix-turn-helix-like motif and nestles between the ubiquitins of K63-linked diubiquitin, interacting with distinct surfaces of each. A nine-amino-acid extension at the C-terminal helix (Helix2) of MyUb is required for myosin VI interaction with endocytic and autophagic adaptors. Structure-guided mutations revealed that a functional MyUb is necessary for optineurin interaction. In addition, we found that an isoform-specific helix restricts MyUb binding to ubiquitin chains. This work provides fundamental insights into myosin VI interaction with ubiquitinated cargo and functional adaptors.
Collapse
Affiliation(s)
- Fahu He
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hans-Peter Wollscheid
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Urszula Nowicka
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Matteo Biancospino
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Eleonora Valentini
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Aaron Ehlinger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Filippo Acconcia
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elisa Magistrati
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy; DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy.
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
28
|
Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila. Infect Immun 2015; 84:99-107. [PMID: 26483404 DOI: 10.1128/iai.01165-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022] Open
Abstract
The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K(6), K(11), K(27), K(29), K(33), K(48), and K(63)). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K(48)-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K(11)-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K(11)-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase.
Collapse
|
29
|
Helzer KT, Hooper C, Miyamoto S, Alarid ET. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 2015; 54:R151-67. [PMID: 25943391 PMCID: PMC4457637 DOI: 10.1530/jme-14-0308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The nuclear receptor (NR) superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to NR-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the NR signaling pathway. In this review, we explore the role of NR ubiquitylation and discuss how the expanding roles of ubiquitin could be leveraged to identify additional entry points to control receptor function for future therapeutic development.
Collapse
Affiliation(s)
- Kyle T Helzer
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Christopher Hooper
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
30
|
Davis ME, Gack MU. Ubiquitination in the antiviral immune response. Virology 2015; 479-480:52-65. [PMID: 25753787 PMCID: PMC4774549 DOI: 10.1016/j.virol.2015.02.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS.
Collapse
Affiliation(s)
- Meredith E Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
31
|
Clague MJ, Heride C, Urbé S. The demographics of the ubiquitin system. Trends Cell Biol 2015; 25:417-26. [PMID: 25906909 DOI: 10.1016/j.tcb.2015.03.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The ubiquitin system is a major coordinator of cellular physiology through regulation of both protein degradation and signalling pathways. A key building block of a systems-level understanding has been generated by global proteomic studies, which provide copy number estimates for each component. The aggregate of ubiquitin, conjugating enzymes (E1, E2, and E3s), and deubiquitylases (DUBs) represents ∼1.3% of total cellular protein. Complementary approaches have generated quantitative measurements of various ubiquitin pools and further subdivision into different ubiquitin chain topologies. Systematic studies aimed at associating specific enzymes (E2s and DUBs) with the dynamics of these different pools have also made significant progress. Here, we delineate the emerging picture of the most significant determinants of the cellular ubiquitin economy.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | - Claire Heride
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
32
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
33
|
Robertson MJ, Deane FM, Stahlschmidt W, von Kleist L, Haucke V, Robinson PJ, McCluskey A. Synthesis of the Pitstop family of clathrin inhibitors. Nat Protoc 2014; 9:1592-606. [PMID: 24922269 DOI: 10.1038/nprot.2014.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1-series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2-series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3-4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.
Collapse
Affiliation(s)
- Mark J Robertson
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Fiona M Deane
- 1] Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia. [2]
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Berlin, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam McCluskey
- Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
34
|
Sato M, Konuma R, Sato K, Tomura K, Sato K. Fertilization-induced K63-linked ubiquitylation mediates clearance of maternal membrane proteins. Development 2014; 141:1324-1331. [PMID: 24595290 DOI: 10.1242/dev.103044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2024]
Abstract
In Caenorhabditis elegans, fertilization triggers endocytosis and rapid turnover of maternal surface membrane proteins in lysosomes, although the precise mechanism of this inducible endocytosis is unknown. We found that high levels of K63-linked ubiquitin chains transiently accumulated on endosomes upon fertilization. Endocytosis and the endosomal accumulation of ubiquitin were both regulated downstream of the anaphase-promoting complex, which drives the oocyte's meiotic cell cycle after fertilization. The clearance of maternal membrane proteins and the accumulation of K63-linked ubiquitin on endosomes depended on UBC-13 and UEV-1, which function as an E2 complex that specifically mediates chain elongation of K63-linked polyubiquitin. CAV-1-GFP, an endocytic cargo protein, was modified with K63-linked polyubiquitin in a UBC-13/UEV-1-dependent manner. In ubc-13 or uev-1 mutants, CAV-1-GFP and other membrane proteins were internalized from the plasma membrane normally after fertilization. However, they were not efficiently targeted to the multivesicular body (MVB) pathway but recycled to the cell surface. Our results suggest that UBC-13-dependent K63-linked ubiquitylation is required for proper MVB sorting rather than for internalization. These results also demonstrate a developmentally controlled function of K63-linked ubiquitylation.
Collapse
Affiliation(s)
- Miyuki Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | |
Collapse
|
35
|
Weller CE, Pilkerton ME, Chatterjee C. Chemical strategies to understand the language of ubiquitin signaling. Biopolymers 2014; 101:144-55. [PMID: 23576160 PMCID: PMC5770187 DOI: 10.1002/bip.22253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022]
Abstract
Ubiquitin (Ub) is a small 76 amino acid long protein that is highly conserved in all eukaryotes studied to date. In humans, more than 600 ligases are involved in the reversible modification of specific lysine side-chain amines in substrate proteins by conjugation with the C-terminal carboxylate of Ub. Initially monoubiquitylated proteins can undergo repetitive ubiquitylation starting from one of seven lysine residues or the α-amine in the first Ub to generate a variety of polyUb chains with different topologies and functions. The most well known role for protein ubiquitylation is in targeting substrates for proteolytic destruction by 26S proteasomes. However, a growing body of evidence indicates that both mono- and polyubiquitylation play proteasome-independent roles in modulating the structure, function, and localization of protein substrates. Understanding the complexity of Ub-mediated functions in our cells is a major challenge for modern biology. In addition to well-established in vivo genetic methods, biochemical and biophysical investigations of ubiquitylated proteins in vitro can shed light on the direct mechanistic roles for Ub in different contexts. Such studies have traditionally been limited by the ability to obtain sufficient quantities of homogenously ubiquitylated proteins with precisely defined linkages. This review focuses on recent advances in both synthetic and recombinant protein-based methods that have yielded access to homogenously site-specifically ubiquitylated proteins. Mechanistic studies of the roles for protein ubiquitylation and of the enzymes involved in protein deubiquitylation that are enabled by these chemical tools are highlighted.
Collapse
Affiliation(s)
- Caroline E Weller
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | |
Collapse
|
36
|
Stahlschmidt W, Robertson MJ, Robinson PJ, McCluskey A, Haucke V. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J Biol Chem 2014; 289:4906-18. [PMID: 24407285 DOI: 10.1074/jbc.m113.535211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.
Collapse
Affiliation(s)
- Wiebke Stahlschmidt
- From the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
37
|
Aida K, Hayashi H, Inamura K, Mizuno T, Sugiyama Y. Differential Roles of Ubiquitination in the Degradation Mechanism of Cell Surface–Resident Bile Salt Export Pump and Multidrug Resistance–Associated Protein 2. Mol Pharmacol 2013; 85:482-91. [DOI: 10.1124/mol.113.091090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
38
|
Abstract
Ubiquitination is a post-translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the latest discoveries in this field and discuss how they impact our understanding of the ubiquitin system in host defence mechanisms as well as self-tolerance.
Collapse
Affiliation(s)
- Julia Zinngrebe
- Centre for Cell Death, Cancer, and Inflammation (CCCI) UCL Cancer Institute, University College London, London, UK
| | | | | | | |
Collapse
|
39
|
Timms RT, Duncan LM, Tchasovnikarova IA, Antrobus R, Smith DL, Dougan G, Weekes MP, Lehner PJ. Haploid genetic screens identify an essential role for PLP2 in the downregulation of novel plasma membrane targets by viral E3 ubiquitin ligases. PLoS Pathog 2013; 9:e1003772. [PMID: 24278019 PMCID: PMC3836740 DOI: 10.1371/journal.ppat.1003772] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system.
Collapse
Affiliation(s)
- Richard T. Timms
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lidia M. Duncan
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Iva A. Tchasovnikarova
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Duncan L. Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Dutta D, Chakraborty S, Bandyopadhyay C, Valiya Veettil M, Ansari MA, Singh VV, Chandran B. EphrinA2 regulates clathrin mediated KSHV endocytosis in fibroblast cells by coordinating integrin-associated signaling and c-Cbl directed polyubiquitination. PLoS Pathog 2013; 9:e1003510. [PMID: 23874206 PMCID: PMC3715429 DOI: 10.1371/journal.ppat.1003510] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.
Collapse
Affiliation(s)
- Dipanjan Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Sayan Chakraborty
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Chirosree Bandyopadhyay
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mairaj Ahmed Ansari
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Vivek Vikram Singh
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Tanno H, Komada M. The ubiquitin code and its decoding machinery in the endocytic pathway. J Biochem 2013; 153:497-504. [PMID: 23564907 DOI: 10.1093/jb/mvt028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of individual plasma membrane proteins needs to be regulated strictly depending on the situation under which the cell is placed. To reduce the level of a specific plasma membrane protein in a short period, cells internalize the protein from the cell surface by endocytosis and degrade it in the lysosome. Internalized cargo proteins are transported to the limiting membrane of the early endosome, from which they are incorporated into the lumenal vesicles of the endosome. Such endosomes, called the late endosome or multivesicular body, fuse with the lysosome, thereby delivering cargo proteins to the lysosomal lumen and exposing them to acid hydrolases. During this lysosomal trafficking process, ubiquitination serves as a signal that drives internalization and endosome-to-lysosome transport of the cargo proteins. In this review, we discuss the types of ubiquitination that drive these trafficking processes, and how the ubiquitin (Ub) modifications are recognized by specific Ub-binding proteins.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | |
Collapse
|
42
|
Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013; 21:727-40. [PMID: 23562397 DOI: 10.1016/j.str.2013.02.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 02/02/2023]
Abstract
Research on ubiquitin (Ub) signaling has focused primarily on homogeneously linked polyUb. Although polyUb containing different linkages within the same chain exist, their structures and signaling properties are unknown. These mixed-linkage chains could be unbranched (i.e., no more than one lysine or methionine linkage per Ub) or branched. Here, we examined the structure, dynamics, receptor selectivity, and disassembly of branched and unbranched tri-Ub containing both K48 and K63 linkages. Each linkage was virtually indistinguishable from its counterpart in homogeneously linked polyUb. Linkage-selective receptors from hHR23A and Rap80 preferentially bound to the K48 or K63 linkages in the branched trimer. Linkage-selective deubiquitinases specifically cleaved their cognate Ub-Ub linkages in mixed-linkage chains, and the 26S proteasome recognized and processed branched tri-Ub. We conclude that mixed-linkage chains retain the distinctive signaling properties of their K48 and K63 components and that these multiple signals can be recognized by multiple linkage-specific receptors. Finally, we propose a new, comprehensive notation for Ub and Ub-like polymers.
Collapse
Affiliation(s)
- Mark A Nakasone
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
43
|
Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog 2013; 9:e1003121. [PMID: 23359647 PMCID: PMC3554608 DOI: 10.1371/journal.ppat.1003121] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/27/2012] [Indexed: 01/01/2023] Open
Abstract
Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity. Numerous bacterial pathogens infecting plants, animals and humans use a common strategy of host colonization, which involves injection of specific proteins termed effectors into the host cell. Identification of effector proteins and elucidation of their individual functions is essential for our understanding of the pathogenesis process. Here, we identify a novel effector, XopL, from Xanthomonas campestris pv. vesicatoria, which causes disease in tomato and pepper plants. We show that XopL suppresses PAMP-related defense gene expression and further characterize XopL as an E3 ubiquitin ligase. This eukaryote-specific function involves attachment of ubiquitin molecule(s) to a particular protein targeted for degradation or localisation to specific cell compartments. Ubiquitination processes play a central role in cell-cycle regulation, DNA repair, cell growth and immune responses. In the case of XopL this activity triggers plant cell death. Through structural and functional analysis we demonstrate that XopL contains two distinct domains, one of which demonstrates a novel fold never previously observed in E3 ubiquitin ligases. This novel domain specifically interacts with plant ubiquitination system components. Our findings provide the first insights into the function of a previously unknown XopL effector and identify a new member of the growing family of bacterial pathogenic factors hijacking the host ubiquitination system.
Collapse
Affiliation(s)
- Alexander U. Singer
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Schulze
- Department of Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tatiana Skarina
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Xu
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hong Cui
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Monique Egler
- Department of Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tharan Srikumar
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, MaRS TMDT 9-805, Toronto, Ontario, Canada
| | - Brian Raught
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, MaRS TMDT 9-805, Toronto, Ontario, Canada
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alexei Savchenko
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (AS); (UB)
| | - Ulla Bonas
- Department of Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail: (AS); (UB)
| |
Collapse
|
44
|
Clague M, Liu H, Urbé S. Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Dev Cell 2012; 23:457-67. [DOI: 10.1016/j.devcel.2012.08.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 12/17/2022]
|
45
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
46
|
Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508-23. [PMID: 22820888 DOI: 10.1038/nrm3394] [Citation(s) in RCA: 498] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
47
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
48
|
Abstract
The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.
Collapse
Affiliation(s)
- David Komander
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | | |
Collapse
|
49
|
Sen A, Madhivanan K, Mukherjee D, Aguilar RC. The epsin protein family: coordinators of endocytosis and signaling. Biomol Concepts 2012; 3:117-126. [PMID: 22942912 DOI: 10.1515/bmc-2011-0060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epsins are a conserved family of endocytic adaptors essential for cell viability in yeast and for embryo development in higher eukaryotes. Epsins function as adaptors by recognizing ubiquitinated cargo and as endocytic accessory proteins by contributing to endocytic network stability/regulation and membrane bending. Importantly, epsins play a critical role in signaling by contributing to epidermal growth factor receptor downregulation and the activation of notch and RhoGTPase pathways. In this review, we present an overview of the epsins and emphasize their functional importance as coordinators of endocytosis and signaling.
Collapse
Affiliation(s)
- Arpita Sen
- Department of Biological Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
50
|
Tanno H, Yamaguchi T, Goto E, Ishido S, Komada M. The Ankrd 13 family of UIM-bearing proteins regulates EGF receptor endocytosis from the plasma membrane. Mol Biol Cell 2012; 23:1343-53. [PMID: 22298428 PMCID: PMC3315809 DOI: 10.1091/mbc.e11-09-0817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ankrd 13A, 13B, and 13D constitute a family of ubiquitin-interacting motif (UIM)-bearing cytoplasmic proteins. They are anchored to the plasma membrane, where they recognize the Lys63-linked polyubiquitin chains tagged to ligand-activated EGF receptor and regulate the endocytosis of EGF receptor from the cell surface in mammalian cells. The mechanism of ubiquitin-dependent endocytosis of cell surface proteins is not completely understood. Here we examine the role of the ankyrin repeat domain (Ankrd) 13A, 13B, and 13D proteins, which constitute a functionally unknown family of ubiquitin-interacting motif (UIM)–bearing proteins, in the process. Stimulation of human HeLa cells with epidermal growth factor (EGF) rapidly induced direct binding of Ankrd 13 proteins to ubiquitinated EGF receptor (EGFR) via the UIMs. The binding was inhibited when the Ankrd 13 proteins underwent UIM-dependent monoubiquitination, suggesting that their activity is regulated by ubiquitination of themselves. Ankrd 13 proteins bound specifically to Lys-63–linked ubiquitin chains, which was consistent with a previous report that EGFR mainly undergoes Lys-63–linked polyubiquitination. Ankrd 13 proteins were anchored, via the central region and UIMs, to the plasma membrane, where they colocalized with EGFR. Finally, overexpression of wild-type as well as truncated-mutant Ankrd 13 proteins strongly inhibited rapid endocytosis of ubiquitinated EGFR from the surface in EGF-treated cells. We conclude that by binding to the Lys-63–linked polyubiquitin moiety of EGFR at the plasma membrane, Ankrd 13 proteins regulate the rapid internalization of ligand-activated EGFR.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|