1
|
Lu F, Huang S. The Roles of Mast Cells in Parasitic Protozoan Infections. Front Immunol 2017; 8:363. [PMID: 28428784 PMCID: PMC5382204 DOI: 10.3389/fimmu.2017.00363] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
Protozoan parasites such as Plasmodium spp., Leishmania spp., Trypanosoma spp., and Toxoplasma gondii are major causes of parasitic diseases in both humans and animals. The immune system plays a critical role against protozoa, but their immune mechanism remains poorly understood. This highlights the need to investigate the function of immune cells involved in the process of parasite infections and the responses of host immune system to parasite infections. Mast cells (MCs) are known to be central players in allergy and anaphylaxis, and it has been demonstrated that MCs have crucial roles in host defense against a number of different pathogens, including parasites. To date, there are many studies that have examined the interaction of helminth-derived antigens and MCs. As one of the major effector cells, MCs also play an important role in the immune response against some parasitic protozoa, but their role in protozoan infections is, however, less well characterized. Herein, we review the current knowledge about the roles of MCs and their mediators during infections involving highly pathogenic protozoa including Plasmodium spp., Leishmania spp., Trypanosoma spp., and T. gondii. We offer a general review of the data from patients and experimental animal models infected with the aforementioned protozoa, which correlate MCs and MC-derived mediators with exacerbated inflammation and disease progression as well as protection against the parasitic infections in different circumstances. This review updates our current understanding of the roles of MCs during parasitic protozoan infections, and the participation of MCs in parasitic protozoan infections could be of a potential therapeutic target.
Collapse
Affiliation(s)
- Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Roy A, Sawesi O, Pettersson U, Dagälv A, Kjellén L, Lundén A, Åbrink M. Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice. BMC Immunol 2016; 17:15. [PMID: 27267469 PMCID: PMC4897876 DOI: 10.1186/s12865-016-0155-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. RESULTS Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-α, IL-1β, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. CONCLUSIONS Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Osama Sawesi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Ulrika Pettersson
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, The National Veterinary Institute, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden.
| |
Collapse
|
3
|
Roy A, Femel J, Huijbers EJM, Spillmann D, Larsson E, Ringvall M, Olsson AK, Åbrink M. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS One 2016; 11:e0156151. [PMID: 27223472 PMCID: PMC4880347 DOI: 10.1371/journal.pone.0156151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/10/2016] [Indexed: 01/13/2023] Open
Abstract
In hematopoietic cells, serglycin proteoglycans mainly contribute to proper storage and secretion of inflammatory mediators via their negatively charged glycosaminoglycans. Serglycin proteoglycans are also expressed in cancer cells where increased expression has been linked to poor prognosis. However, the serglycin-dependent mediators promoting cancer progression remain to be determined. In the present study we report that genetic ablation of serglycin proteoglycan completely blocks lung metastasis in the MMTV-PyMT-driven mouse breast cancer model, while serglycin-deficiency did not affect primary tumour growth or number of mammary tumours. Although E-cadherin expression was higher in the serglycin-deficient primary tumour tissue, indicating reduced invasiveness, serglycin-deficient tumour cells were still detected in the circulation. These data suggest that serglycin proteoglycans play a role in extravasation as well as colonization and growth of metastatic cells. A microarray expression analysis and functional annotation of differentially expressed genes identified several biological pathways where serglycin may be important. Our results suggest that serglycin and serglycin-dependent mediators are potential drug targets to prevent metastatic disease/dissemination of cancer.
Collapse
Affiliation(s)
- Ananya Roy
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Box 7028, 75007, Uppsala, Sweden
- Uppsala University, Department of Medical Biochemistry and Microbiology, Box 582, 75123, Uppsala, Sweden
| | - Julia Femel
- Uppsala University, Department of Medical Biochemistry and Microbiology, Box 582, 75123, Uppsala, Sweden
| | - Elisabeth J. M. Huijbers
- VUMC—Cancer Center Amsterdam, Angiogenesis Laboratory, Dept. of Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Dorothe Spillmann
- Uppsala University, Department of Medical Biochemistry and Microbiology, Box 582, 75123, Uppsala, Sweden
| | - Erik Larsson
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck laboratory, 751 85, Uppsala, Sweden
| | - Maria Ringvall
- Uppsala University, Department of Medical Biochemistry and Microbiology, Box 582, 75123, Uppsala, Sweden
| | - Anna-Karin Olsson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Box 582, 75123, Uppsala, Sweden
| | - Magnus Åbrink
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Box 7028, 75007, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
4
|
Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS One 2015; 10:e0126688. [PMID: 25978773 PMCID: PMC4433182 DOI: 10.1371/journal.pone.0126688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/07/2015] [Indexed: 01/31/2023] Open
Abstract
The serglycin proteoglycan is mainly expressed by hematopoietic cells where the major function is to retain the content of storage granules and vesicles. In recent years, expression of serglycin has also been found in different forms of human malignancies and a high serglycin expression level has been correlated with a more migratory and invasive phenotype in the case of breast cancer and nasopharyngeal carcinoma. Serglycin has also been implicated in the development of the tumor vasculature in multiple myeloma and hepatocellular carcinoma where reduced expression of serglycin was correlated with a less extensive vasculature. To further investigate the contribution of serglycin to tumor development, we have used the immunocompetent RIP1-Tag2 mouse model of spontaneous insulinoma formation crossed into serglycin deficient mice. For the first time we show that serglycin-deficiency affects orthotopic primary tumor growth and tumor vascular functionality of late stage carcinomas. RIP1-Tag2 mice that lack serglycin develop larger tumors with a higher proliferative activity but unaltered apoptosis compared to normal RIP1-Tag2 mice. The absence of serglycin also enhances the tumor vessel functionality, which is better perfused than in tumors from serglycin wild type mice. The presence of the pro-angiogenic modulators vascular endothelial growth factor and hepatocyte growth factor were decreased in the serglycin deficient mice which suggests a less pro-angiogenic environment in the tumors of these animals. Taken together, we conclude that serglycin affects multiple aspects of spontaneous tumor formation, which strengthens the theory that serglycin acts as an important mediator in the formation and progression of tumors.
Collapse
|
5
|
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence. Nat Commun 2015; 6:6174. [PMID: 25629393 DOI: 10.1038/ncomms7174] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 02/02/2023] Open
Abstract
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes, such as tryptase and chymase, at the cell-cell contact site. This previously unidentified mast cell effector mechanism, which we name the antibody-dependent degranulatory synapse (ADDS), is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably, IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
Collapse
|
6
|
Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014; 3:327. [PMID: 24455486 PMCID: PMC3888995 DOI: 10.3389/fonc.2013.00327] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Serglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion. During the last decade, numerous studies have demonstrated that serglycin is also synthesized by various non-hematopoietic cell types. It has been shown that serglycin is highly expressed by tumor cells and promotes their aggressive phenotype and confers resistance against drugs and complement system attack. Apart from its direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the tumor cell microenvironment thus enhancing tumor development. In the present review, we discuss the role of serglycin in inflammation and tumor progression.
Collapse
Affiliation(s)
- Angeliki Korpetinou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|
7
|
Smith NL, Abi Abdallah DS, Butcher BA, Denkers EY, Baird B, Holowka D. Toxoplasma gondii inhibits mast cell degranulation by suppressing phospholipase Cγ-mediated Ca(2+) mobilization. Front Microbiol 2013; 4:179. [PMID: 23847603 PMCID: PMC3701878 DOI: 10.3389/fmicb.2013.00179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is well-known to subvert normal immune responses, however, mechanisms are incompletely understood. In particular, its capacity to alter receptor-activated Ca2+-mediated signaling processes has not been well-characterized. In initial experiments, we found evidence that T. gondii infection inhibits Ca2+ responses to fMetLeuPhe in murine macrophages. To further characterize the mechanism of inhibition of Ca2+ mobilization by T. gondii, we used the well-studied RBL mast cell model to probe the capacity of T. gondii to modulate IgE receptor-activated signaling within the first hour of infection. Ca2+ mobilization that occurs via IgE/FcεRI signaling leads to granule exocytosis in mast cells. We found that T. gondii inhibits antigen-stimulated degranulation in infected cells in a strain-independent manner. Under these conditions, we found that cytoplasmic Ca2+ mobilization, particularly antigen-mediated Ca2+ release from intracellular stores, is significantly reduced. Furthermore, stimulation-dependent activation of Syk kinase leading to tyrosine phosphorylation and activation of phospholipase Cγ is inhibited by infection. Therefore, we conclude that inhibitory effects of infection are likely due to parasite-mediated inhibition of the tyrosine kinase signaling cascade that results in reduced hydrolysis of phosphatidylinositol 4,5-bisphosphate. Interestingly, inhibition of IgE/FcεRI signaling persists when tachyzoite invasion is arrested via cytochalasin D treatment, suggesting inhibition is mediated by a parasite-derived factor secreted into the cells during the invasion process. Our study provides direct evidence that immune subversion by T. gondii is initiated concurrently with invasion.
Collapse
Affiliation(s)
- Norah L Smith
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kolset SO, Pejler G. Serglycin: a structural and functional chameleon with wide impact on immune cells. THE JOURNAL OF IMMUNOLOGY 2012; 187:4927-33. [PMID: 22049227 DOI: 10.4049/jimmunol.1100806] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the different proteoglycans expressed by mammals, serglycin is in most immune cells the dominating species. A unique property of serglycin is its ability to adopt highly divergent structures, because of glycosylation with variable types of glycosaminoglycans when expressed by different cell types. Recent studies of serglycin-deficient animals have revealed crucial functions for serglycin in a diverse array of immunological processes. However, its exact function varies to a large extent depending on the cellular context of serglycin expression. Based on these findings, serglycin is emerging as a structural and functional chameleon, with radically different properties depending on its exact cellular and immunological context.
Collapse
Affiliation(s)
- Svein O Kolset
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway.
| | | |
Collapse
|
9
|
Bhaskar U, Sterner E, Hickey AM, Onishi A, Zhang F, Dordick JS, Linhardt RJ. Engineering of routes to heparin and related polysaccharides. Appl Microbiol Biotechnol 2011; 93:1-16. [PMID: 22048616 DOI: 10.1007/s00253-011-3641-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
Collapse
Affiliation(s)
- Ujjwal Bhaskar
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | | | |
Collapse
|