1
|
Kitao A. Molecular Simulation to Investigate Open-Close Motion of a Flagellar Export Apparatus Protein FlhA C. Methods Mol Biol 2023; 2646:27-34. [PMID: 36842103 DOI: 10.1007/978-1-0716-3060-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Molecular dynamics (MD) simulation and parallel cascade selection molecular dynamics (PaCS-MD) are widely used to investigate large-amplitude motions of proteins. PaCS-MD is an enhanced conformational sampling method consisting of cycles of parallel unbiased MD simulations combined with a selection of MD snapshots as the initial structures for the next cycle. In addition, free energy calculation can be achieved by the combination of PaCS-MD and the Markov state model (MSM). In this chapter, the protocols to investigate the open-close motion of a flagellar export apparatus protein, FlhAC, by MD and the combination of PaCS-MD and MSM are described.
Collapse
Affiliation(s)
- Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, Japan.
| |
Collapse
|
2
|
Minamino T, Kinoshita M, Morimoto YV, Namba K. Activation mechanism of the bacterial flagellar dual-fuel protein export engine. Biophys Physicobiol 2022; 19:e190046. [PMID: 36567733 PMCID: PMC9751260 DOI: 10.2142/biophysico.bppb-v19.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteria employ the flagellar type III secretion system (fT3SS) to construct flagellum, which acts as a supramolecular motility machine. The fT3SS of Salmonella enterica serovar Typhimurium is composed of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. The transmembrane export gate complex is fueled by proton motive force across the cytoplasmic membrane and is divided into four distinct functional parts: a dual-fuel export engine; a polypeptide channel; a membrane voltage sensor; and a docking platform. ATP hydrolysis by the cytoplasmic ATPase complex converts the export gate complex into a highly efficient proton (H+)/protein antiporter that couples inward-directed H+ flow with outward-directed protein export. When the ATPase ring complex does not work well in a given environment, the export gate complex will remain inactive. However, when the electric potential difference, which is defined as membrane voltage, rises above a certain threshold value, the export gate complex becomes an active H+/protein antiporter to a considerable degree, suggesting that the export gate complex has a voltage-gated activation mechanism. Furthermore, the export gate complex also has a sodium ion (Na+) channel to couple Na+ influx with flagellar protein export. In this article, we review our current understanding of the activation mechanism of the dual-fuel protein export engine of the fT3SS. This review article is an extended version of a Japanese article, Membrane voltage-dependent activation of the transmembrane export gate complex in the bacterial flagellar type III secretion system, published in SEIBUTSU BUTSURI Vol. 62, p165-169 (2022).
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miki Kinoshita
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke V. Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Namba
- Graduate school of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan,RIKEN SPring-8 Center, Suita, Osaka 565-0871, Japan,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Gilzer D, Baum E, Lieske N, Kowal JL, Niemann HH. Crystals of SctV from different species reveal variable symmetry for the cytosolic domain of the type III secretion system export gate. Acta Crystallogr F Struct Biol Commun 2022; 78:386-394. [PMID: 36322424 PMCID: PMC9629515 DOI: 10.1107/s2053230x22009736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Type III secretion systems (T3SSs) are proteinaceous devices employed by Gram-negative bacteria to directly transport proteins into a host cell. Substrate recognition and secretion are strictly regulated by the export apparatus of the so-called injectisome. The export gate SctV engages chaperone-bound substrates of the T3SS in its nonameric cytoplasmic domain. Here, the purification and crystallization of the cytoplasmic domains of SctV from Photorhabdus luminescens (LscVC) and Aeromonas hydrophila (AscVC) are reported. Self-rotation functions revealed that LscVC forms oligomers with either eightfold or ninefold symmetry in two different crystal forms. Similarly, AscVC was found to exhibit tenfold rotational symmetry. These are the first instances of SctV proteins forming non-nonameric oligomers.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Eileen Baum
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Nele Lieske
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Julia L. Kowal
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Conserved GYXLI Motif of FlhA Is Involved in Dynamic Domain Motions of FlhA Required for Flagellar Protein Export. Microbiol Spectr 2022; 10:e0111022. [PMID: 35876582 PMCID: PMC9431611 DOI: 10.1128/spectrum.01110-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Flagellar structural subunits are transported via the flagellar type III secretion system (fT3SS) and assemble at the distal end of the growing flagellar structure. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for export substrates and flagellar chaperones and plays an important role in hierarchical protein targeting and export. FlhAC consists of domains D1, D2, D3, and D4 and adopts open and closed conformations. Gly-368 of Salmonella FlhA is located within the highly conserved GYXLI motif and is critical for the dynamic domain motions of FlhAC. However, it remains unclear how it works. Here, we report that periodic conformational changes of the GYXLI motif induce a remodeling of hydrophobic side chain interaction networks in FlhAC and promote the cyclic open-close domain motions of FlhAC. The temperature-sensitive flhA(G368C) mutation stabilized a completely closed conformation at 42°C through strong hydrophobic interactions between Gln-498 of domain D1 and Pro-667 of domain D4 and between Phe-459 of domain D2 and Pro-646 of domain D4, thereby inhibiting flagellar protein export by the fT3SS. Its intragenic suppressor mutations reorganized the hydrophobic interaction networks in the closed FlhAC structure, restoring the protein export activity of the fT3SS to a significant degree. Furthermore, the conformational flexibility of the GYXLI motif was critical for flagellar protein export. We propose that the conserved GYXLI motif acts as a structural switch to induce the dynamic domain motions of FlhAC required for efficient and rapid protein export by the fT3SS. IMPORTANCE Many motile bacteria employ the flagellar type III secretion system (fT3SS) to construct flagella beyond the cytoplasmic membrane. The C-terminal cytoplasmic domain of FlhA (FlhAC), a transmembrane subunit of the fT3SS, provides binding sites for export substrates and flagellar export chaperones to coordinate flagellar protein export with assembly. FlhAC undergoes cyclic open-close domain motions. The highly conserved Gly-368 residue of FlhA is postulated to be critical for dynamic domain motions of FlhAC. However, it remains unknown how it works. Here, we carried out mutational analysis of FlhAC combined with molecular dynamics simulation and provide evidence that the conformational flexibility of FlhAC by Gly-368 is important for remodeling hydrophobic side chain interaction networks in FlhAC to facilitate its cyclic open-close domain motions, allowing the fT3SS to transport flagellar structural subunits for efficient and rapid flagellar assembly.
Collapse
|
5
|
Gilzer D, Schreiner M, Niemann HH. Direct interaction of a chaperone-bound type III secretion substrate with the export gate. Nat Commun 2022; 13:2858. [PMID: 35654781 PMCID: PMC9163089 DOI: 10.1038/s41467-022-30487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Inoue Y, Kinoshita M, Kida M, Takekawa N, Namba K, Imada K, Minamino T. The FlhA linker mediates flagellar protein export switching during flagellar assembly. Commun Biol 2021; 4:646. [PMID: 34059784 PMCID: PMC8166844 DOI: 10.1038/s42003-021-02177-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The flagellar protein export apparatus switches substrate specificity from hook-type to filament-type upon hook assembly completion, thereby initiating filament assembly at the hook tip. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for flagellar chaperones in complex with their cognate filament-type substrates. Interactions of the flexible linker of FlhA (FlhAL) with its nearest FlhAC subunit in the FlhAC ring is required for the substrate specificity switching. To address how FlhAL brings the order to flagellar assembly, we analyzed the flhA(E351A/W354A/D356A) ΔflgM mutant and found that this triple mutation in FlhAL increased the secretion level of hook protein by 5-fold, thereby increasing hook length. The crystal structure of FlhAC(E351A/D356A) showed that FlhAL bound to the chaperone-binding site of its neighboring subunit. We propose that the interaction of FlhAL with the chaperon-binding site of FlhAC suppresses filament-type protein export and facilitates hook-type protein export during hook assembly.
Collapse
Affiliation(s)
- Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Mamoru Kida
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN SPring-8 Center and Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu XJ, Grabe GJ, Holden DW, Nans A, Rosenthal PB, Rouse SL, Beeby M. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213:107729. [PMID: 33774138 PMCID: PMC8223533 DOI: 10.1016/j.jsb.2021.107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
CryoEM of a full-length type III secretion system SctV resolves cytoplasmic but not transmembrane domains. MD simulations show SctV protomers flexibly hinge. Acidification expands the SctV ring by altering interprotomer interactions.
Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A ‘gatekeeper’ complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region’s structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.
Collapse
Affiliation(s)
| | | | - Thomas Calcraft
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Signe Lagercrantz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiu-Jun Yu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Grzegorz J Grabe
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
8
|
Majewski DD, Lyons BJE, Atkinson CE, Strynadka NCJ. Cryo-EM analysis of the SctV cytosolic domain from the enteropathogenic E. coli T3SS injectisome. J Struct Biol 2020; 212:107660. [PMID: 33129970 DOI: 10.1016/j.jsb.2020.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022]
Abstract
The bacterial injectisome and flagella both rely on type III secretion systems for their assembly. The syringe-like injectisome creates a continuous channel between the bacterium and the host cell, through which signal-modulating effector proteins are secreted. The inner membrane pore protein SctV controls the hierarchy of substrate selection and may also be involved in energizing secretion. We present the 4.7 Å cryo-EM structure of the SctV cytosolic domain (SctVC) from the enteropathogenic Escherichia coli injectisome. SctVC forms a nonameric ring with primarily electrostatic interactions between its subunits. Molecular dynamics simulations show that monomeric SctVC maintains a closed conformation, in contrast with previous studies on flagellar homologue FlhA. Comparison with substrate-bound homologues suggest that a conformational change would be required to accommodate binding partners.
Collapse
Affiliation(s)
- Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire E Atkinson
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; HRMEM Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; HRMEM Facility, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Jensen JL, Yamini S, Rietsch A, Spiller BW. "The structure of the Type III secretion system export gate with CdsO, an ATPase lever arm". PLoS Pathog 2020; 16:e1008923. [PMID: 33048983 PMCID: PMC7584215 DOI: 10.1371/journal.ppat.1008923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/23/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Type III protein secretion systems (T3SS) deliver effector proteins from the Gram-negative bacterial cytoplasm into a eukaryotic host cell through a syringe-like, multi-protein nanomachine. Cytosolic components of T3SS include a portion of the export apparatus, which traverses the inner membrane and features the opening of the secretion channel, and the sorting complex for substrate recognition and for providing the energetics required for protein secretion. Two components critical for efficient effector export are the export gate protein and the ATPase, which are proposed to be linked by the central stalk protein of the ATPase. We present the structure of the soluble export gate homo-nonamer, CdsV, in complex with the central stalk protein, CdsO, of its cognate ATPase, both derived from Chlamydia pneumoniae. This structure defines the interface between these essential T3S proteins and reveals that CdsO engages the periphery of the export gate that may allow the ATPase to catalyze an opening between export gate subunits to allow cargo to enter the export apparatus. We also demonstrate through structure-based mutagenesis of the homologous export gate in Pseudomonas aeruginosa that mutation of this interface disrupts effector secretion. These results provide novel insights into the molecular mechanisms governing active substrate recognition and translocation through a T3SS. Many pathogenic Gram-negative bacteria utilize T3SS to export virulence factors in a well-regulated manner. Most component proteins of the T3SS are highly structurally conserved, capable of recognizing and secreting diverse effectors, which are recruited to the cytoplasmic sorting complex by chaperones. This work describes the molecular architecture of two essential components of a T3SS, identifies the interface between the components, and establishes the necessity of this interaction for effector secretion.
Collapse
Affiliation(s)
- Jaime L. Jensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Shavait Yamini
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Benjamin W. Spiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
10
|
FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus. J Bacteriol 2020; 202:JB.00637-19. [PMID: 31712281 DOI: 10.1128/jb.00637-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
FlhA and FlhB are transmembrane proteins of the flagellar type III protein export apparatus, and their C-terminal cytoplasmic domains (FlhAC and FlhBC) coordinate flagellar protein export with assembly. FlhBC undergoes autocleavage between Asn-269 and Pro-270 in a well-conserved NPTH loop located between FlhBCN and FlhBCC polypeptides and interacts with the C-terminal domain of the FliK ruler when the length of the hook has reached about 55 nm in Salmonella As a result, the flagellar protein export apparatus switches its substrate specificity, thereby terminating hook assembly and initiating filament assembly. The mechanism of export switching remains unclear. Here, we report the role of FlhBC cleavage in the switching mechanism. Photo-cross-linking experiments revealed that the flhB(N269A) and flhB(P270A) mutations did not affect the binding affinity of FlhBC for FliK. Genetic analysis of the flhB(P270A) mutant revealed that the P270A mutation affects a FliK-dependent conformational change of FlhBC, thereby inhibiting the substrate specificity switching. The flhA(A489E) mutation in FlhAC suppressed the flhB(P270A) mutation, suggesting that an interaction between FlhBC and FlhAC is critical for the export switching. We propose that the interaction between FliKC and a cleaved form of FlhBC promotes a conformational change in FlhBC responsible for the termination of hook-type protein export and a structural remodeling of the FlhAC ring responsible for the initiation of filament-type protein export.IMPORTANCE The flagellar type III protein export apparatus coordinates protein export with assembly, which allows the flagellum to be efficiently built at the cell surface. Hook completion is an important morphological checkpoint for the sequential flagellar assembly process. The protein export apparatus switches its substrate specificity from the hook protein to the filament protein upon hook completion. FliK, FlhB, and FlhA are involved in the export-switching process, but the mechanism remains a mystery. By analyzing a slow-cleaving flhB(P270A) mutant, we provide evidence that an interaction between FliK and FlhB induces conformational rearrangements in FlhB, followed by a structural remodeling of the FlhA ring structure that terminates hook assembly and initiates filament formation.
Collapse
|
11
|
Inoue Y, Ogawa Y, Kinoshita M, Terahara N, Shimada M, Kodera N, Ando T, Namba K, Kitao A, Imada K, Minamino T. Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure 2019; 27:965-976.e6. [PMID: 31031200 DOI: 10.1016/j.str.2019.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Bacteria use a type III protein export apparatus for construction of the flagellum, which consists of the basal body, the hook, and the filament. FlhA forms a homo-nonamer through its C-terminal cytoplasmic domains (FlhAC) and ensures the strict order of flagellar assembly. FlhAC goes through dynamic domain motions during protein export, but it remains unknown how it occurs. Here, we report that the FlhA(G368C) mutation biases FlhAC toward a closed form, thereby reducing the binding affinity of FlhAC for flagellar export chaperones in complex with their cognate filament-type substrates. The G368C mutations also restrict the conformational flexibility of a linker region of FlhA (FlhAL), suppressing FlhAC ring formation. We propose that interactions of FlhAL with its neighboring subunit converts FlhAC in the ring from a closed conformation to an open one, allowing the chaperon/substrate complexes to bind to the FlhAC ring to form the filament at the hook tip.
Collapse
Affiliation(s)
- Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuya Ogawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Shimada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; RIKEN Center for Biosystems Dynamics Research & SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan.
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Molecular Organization and Assembly of the Export Apparatus of Flagellar Type III Secretion Systems. Curr Top Microbiol Immunol 2019; 427:91-107. [PMID: 31172377 DOI: 10.1007/82_2019_170] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial flagellum is a supramolecular motility machine consisting of the basal body, the hook, and the filament. For construction of the flagellum beyond the cellular membranes, a type III protein export apparatus uses ATP and proton-motive force (PMF) across the cytoplasmic membrane as the energy sources to transport flagellar component proteins from the cytoplasm to the distal end of the growing flagellar structure. The protein export apparatus consists of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. In addition, the basal body C ring acts as a sorting platform for the cytoplasmic ATPase complex that efficiently brings export substrates and type III export chaperone-substrate complexes from the cytoplasm to the export gate complex. In this book chapter, we will summarize our current understanding of molecular organization and assembly of the flagellar type III protein export apparatus.
Collapse
|
13
|
Altegoer F, Mukherjee S, Steinchen W, Bedrunka P, Linne U, Kearns DB, Bange G. FliS/flagellin/FliW heterotrimer couples type III secretion and flagellin homeostasis. Sci Rep 2018; 8:11552. [PMID: 30068950 PMCID: PMC6070490 DOI: 10.1038/s41598-018-29884-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Flagellin is amongst the most abundant proteins in flagellated bacterial species and constitutes the major building block of the flagellar filament. The proteins FliW and FliS serve in the post-transcriptional control of flagellin and guide the protein to the flagellar type III secretion system (fT3SS), respectively. Here, we present the high-resolution structure of FliS/flagellin heterodimer and show that FliS and FliW bind to opposing interfaces located at the N- and C-termini of flagellin. The FliS/flagellin/FliW heterotrimer is able to interact with FlhA-C suggesting that FliW and FliS are released during flagellin export. After release, FliW and FliS are recycled to execute a new round of post-transcriptional regulation and targeting. Taken together, our study provides a mechanism explaining how FliW and FliS synchronize the production of flagellin with the capacity of the fT3SS to secrete flagellin.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Sampriti Mukherjee
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Wieland Steinchen
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Patricia Bedrunka
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Uwe Linne
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Daniel B Kearns
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany.
| |
Collapse
|
14
|
Xing Q, Shi K, Portaliou A, Rossi P, Economou A, Kalodimos CG. Structures of chaperone-substrate complexes docked onto the export gate in a type III secretion system. Nat Commun 2018; 9:1773. [PMID: 29720631 PMCID: PMC5932034 DOI: 10.1038/s41467-018-04137-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
The flagellum and the injectisome enable bacterial locomotion and pathogenesis, respectively. These nanomachines assemble and function using a type III secretion system (T3SS). Exported proteins are delivered to the export apparatus by dedicated cytoplasmic chaperones for their transport through the membrane. The structural and mechanistic basis of this process is poorly understood. Here we report the structures of two ternary complexes among flagellar chaperones (FliT and FliS), protein substrates (the filament-capping FliD and flagellin FliC), and the export gate platform protein FlhA. The substrates do not interact directly with FlhA; however, they are required to induce a binding-competent conformation to the chaperone that exposes the recognition motif featuring a highly conserved sequence recognized by FlhA. The structural data reveal the recognition signal in a class of T3SS proteins and provide new insight into the assembly of key protein complexes at the export gate. Bacterial flagella are composed of proteins secreted by a type III secretion system (T3SS), which requires the action of dedicated chaperones. Here, Xing et al. report the structures of two ternary complexes among flagellar chaperones, flagellar protein substrates, and the export gate platform protein.
Collapse
Affiliation(s)
- Qiong Xing
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Athina Portaliou
- Laboratory of Molecular Bacteriology, Department of Microbiology & Immunology, Rega Institute for Medical Research, Katholicke Universiteit Leuven, 3000, Leuven, Belgium
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology & Immunology, Rega Institute for Medical Research, Katholicke Universiteit Leuven, 3000, Leuven, Belgium
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
15
|
Kinoshita M, Aizawa SI, Inoue Y, Namba K, Minamino T. The role of intrinsically disordered C-terminal region of FliK in substrate specificity switching of the bacterial flagellar type III export apparatus. Mol Microbiol 2017; 105:572-588. [PMID: 28557186 DOI: 10.1111/mmi.13718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C-terminal domain of FliK (FliKC ) and the C-terminal cytoplasmic domain of FlhB (FlhBC ) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268-352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353-405). Residues 301-350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC , but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351-370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site-directed photo-cross-linking experiments showed that Val-302 and Ile-304 in the hydrophobic core of FliKT3S4 bind to FlhBC . We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC .
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
17
|
Zilkenat S, Franz-Wachtel M, Stierhof YD, Galán JE, Macek B, Wagner S. Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach. Mol Cell Proteomics 2016; 15:1598-609. [PMID: 26900162 DOI: 10.1074/mcp.m115.056598] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
Precisely knowing the stoichiometry of their components is critical for investigating structure, assembly, and function of macromolecular machines. This has remained a technical challenge in particular for large, hydrophobic membrane-spanning protein complexes. Here, we determined the stoichiometry of a type III secretion system of Salmonella enterica serovar Typhimurium using two complementary protocols of gentle complex purification combined with peptide concatenated standard and synthetic stable isotope-labeled peptide-based mass spectrometry. Bacterial type III secretion systems are cell envelope-spanning effector protein-delivery machines essential for colonization and survival of many Gram-negative pathogens and symbionts. The membrane-embedded core unit of these secretion systems, termed the needle complex, is composed of a base that anchors the machinery to the inner and outer membranes, a hollow filament formed by inner rod and needle subunits that serves as conduit for substrate proteins, and a membrane-embedded export apparatus facilitating substrate translocation. Structural analyses have revealed the stoichiometry of the components of the base, but the stoichiometry of the essential hydrophobic export apparatus components and of the inner rod protein remain unknown. Here, we provide evidence that the export apparatus of type III secretion systems contains five SpaP, one SpaQ, one SpaR, and one SpaS. We confirmed that the previously suggested stoichiometry of nine InvA is valid for assembled needle complexes and describe a loose association of InvA with other needle complex components that may reflect its function. Furthermore, we present evidence that not more than six PrgJ form the inner rod of the needle complex. Providing this structural information will facilitate efforts to obtain an atomic view of type III secretion systems and foster our understanding of the function of these and related flagellar machines. Given that other virulence-associated bacterial secretion systems are similar in their overall buildup and complexity, the presented approach may also enable their stoichiometry elucidation.
Collapse
Affiliation(s)
- Susann Zilkenat
- From the ‡University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- §University of Tübingen, Proteome Center Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- ¶University of Tübingen, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Jorge E Galán
- ‖Yale University School of Medicine, Department of Microbial Pathogenesis, 295 Congress Ave, New Haven, CT
| | - Boris Macek
- §University of Tübingen, Proteome Center Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Samuel Wagner
- From the ‡University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany; **German Center for Infection Research (DZIF), Partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Tharmalingam N, Park M, Lee MH, Woo HJ, Kim HW, Yang JY, Rhee KJ, Kim JB. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro. Am J Transl Res 2016; 8:885-898. [PMID: 27158376 PMCID: PMC4846933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Division of Infectious Diseases, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidence, Rhode Island, United States of America
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Min Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Min Ho Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Hyun Jun Woo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| |
Collapse
|
19
|
Barker CS, Inoue T, Meshcheryakova IV, Kitanobo S, Samatey FA. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA. Mol Microbiol 2016; 100:278-88. [PMID: 26691662 DOI: 10.1111/mmi.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.
Collapse
Affiliation(s)
- Clive S Barker
- Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Tomoharu Inoue
- Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Irina V Meshcheryakova
- Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Seiya Kitanobo
- Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Fadel A Samatey
- Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
20
|
Altegoer F, Bange G. Undiscovered regions on the molecular landscape of flagellar assembly. Curr Opin Microbiol 2015; 28:98-105. [PMID: 26490009 DOI: 10.1016/j.mib.2015.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/10/2023]
Abstract
The bacterial flagellum is a motility structure and one of the most complicated motors in the biosphere. A flagellum consists of several dozens of building blocks in different stoichiometries and extends from the cytoplasm to the extracellular space. Flagellar biogenesis follows a strict spatio-temporal regime that is guided by a plethora of flagellar assembly factors and chaperones. The goal of this review is to summarize our current structural and mechanistic knowledge of this intricate process and to identify the undiscovered regions on the molecular landscape of flagellar assembly.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, C7, 35043 Marburg, Germany.
| |
Collapse
|
21
|
Fukumura T, Furukawa Y, Kawaguchi T, Saijo-Hamano Y, Namba K, Imada K, Minamino T. Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein-export apparatus. Acta Crystallogr F Struct Biol Commun 2014; 70:1215-8. [PMID: 25195894 PMCID: PMC4157421 DOI: 10.1107/s2053230x14014678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/21/2014] [Indexed: 11/11/2022] Open
Abstract
The bacterial flagellar proteins are transported via a specific export apparatus to the distal end of the growing structure for their self-assembly. FliP is an essential membrane component of the export apparatus. FliP has an N-terminal signal peptide and is predicted to have four transmembrane (TM) helices and a periplasmic domain (FliPP) between TM-2 and TM-3. In this study, FliPP from Thermotoga maritima (TmFliPP) and its selenomethionine derivative (SeMet-TmFliPP) were purified and crystallized. TmFliPP formed a homotetramer in solution. Crystals of TmFliPP and SeMet-TmFliPP were obtained by the hanging-drop vapour-diffusion technique with 2-methyl-2,4-pentanediol as a precipitant. These two crystals grew in the hexagonal space group P6222 or P6422, with unit-cell parameters a = b = 114.9, c = 193.8 Å. X-ray diffraction data were collected from crystals of TmFliPP and SeMet-TmFliPP to 2.4 and 2.8 Å resolution, respectively.
Collapse
Affiliation(s)
- Takuma Fukumura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Kawaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yumiko Saijo-Hamano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Abrusci P, McDowell MA, Lea SM, Johnson S. Building a secreting nanomachine: a structural overview of the T3SS. Curr Opin Struct Biol 2014; 25:111-7. [PMID: 24704748 PMCID: PMC4045390 DOI: 10.1016/j.sbi.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
Abstract
To fulfill complex biological tasks, such as locomotion and protein translocation, bacteria assemble macromolecular nanomachines. One such nanodevice, the type III secretion system (T3SS), has evolved to provide a means of transporting proteins from the bacterial cytoplasm across the periplasmic and extracellular spaces. T3SS can be broadly classified into two highly homologous families: the flagellar T3SS which drive cell motility, and the non-flagellar T3SS (NF-T3SS) that inject effector proteins into eukaryotic host cells, a trait frequently associated with virulence. Although the structures and symmetries of ancillary components of the T3SS have diversified to match requirements of different species adapted to different niches, recent genetic, molecular and structural studies demonstrate that these systems are built by arranging homologous modular protein assemblies.
Collapse
Affiliation(s)
- Patrizia Abrusci
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Melanie A McDowell
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
23
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
24
|
Kinoshita M, Hara N, Imada K, Namba K, Minamino T. Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol Microbiol 2013; 90:1249-61. [PMID: 24325251 DOI: 10.1111/mmi.12430] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2013] [Indexed: 11/29/2022]
Abstract
Assembly of the bacterial flagellar filament is strictly sequential; the junction proteins, FlgK and FlgL, are assembled at the distal end of the hook prior to the FliD cap, which supports assembly of as many as 30 000 FliC molecules into the filament. Export of these proteins requires assistance of flagellar chaperones: FlgN for FlgK and FlgL, FliT for FliD and FliS for FliC. The C-terminal cytoplasmic domain of FlhA (FlhAC ), a membrane component of the export apparatus, provides a binding-site for these chaperone-substrate complexes but it remains unknown how it co-ordinates flagellar protein export. Here, we report that the highly conserved hydrophobic dimple of FlhAC is involved in the export of FlgK, FlgL, FliD and FliC but not in proteins responsible for the structure and assembly of the hook, and that the binding affinity of FlhAC for the FlgN/FlgK complex is slightly higher than that for the FliT/FliD complex and about 14-fold higher than that for the FliS/FliC complex, leading to the proposal that the different binding affinities of FlhAC for these chaperone/substrate complexes may confer an advantage for the efficient formation of the junction and cap structures at the tip of the hook prior to filament formation.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
25
|
Hartmann N, Büttner D. The inner membrane protein HrcV from Xanthomonas spp. is involved in substrate docking during type III secretion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1176-1189. [PMID: 23777429 DOI: 10.1094/mpmi-01-13-0019-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenicity of the gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a membrane-spanning type III secretion (T3S) system, which translocates effector proteins into eukaryotic host cells. In this study, we characterized the T3S system component HrcV, which is a member of the YscV/FlhA family of inner membrane proteins. HrcV consists of eight transmembrane helices and a cytoplasmic region (HrcVC). Mutant and protein-protein interaction studies showed that HrcVC is essential for protein function and binds to T3S substrates, including the early substrate HrpB2, the pilus protein HrpE, and effector proteins. Furthermore, HrcVC interacts with itself and with components and control proteins of the T3S apparatus. The interaction of HrcVC with HrpB2, HrpE, and T3S system components depends on amino acid residues in a conserved motif, designated flagella/hypersensitive response/invasion proteins export pore (FHIPEP), which is located in a cytoplasmic loop between transmembrane helix four and five of HrcV. Mutations in the FHIPEP motif abolish HrcV function but do not affect the interaction of HrcVC with effector proteins.
Collapse
|
26
|
Abrusci P, Vergara–Irigaray M, Johnson S, Beeby MD, Hendrixson D, Roversi P, Friede ME, Deane JE, Jensen GJ, Tang CM, Lea SM. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 2013; 20:99-104. [PMID: 23222644 PMCID: PMC3537844 DOI: 10.1038/nsmb.2452] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines designed to export specifically targeted proteins from the bacterial cytoplasm. Secretion through T3SS is governed by a subset of inner membrane proteins termed the 'export apparatus'. We show that a key member of the Shigella flexneri export apparatus, MxiA, assembles into a ring essential for secretion in vivo. The ring-forming interfaces are well-conserved in both nonflagellar and flagellar homologs, implying that the ring is an evolutionarily conserved feature in these systems. Electron cryo-tomography revealed a T3SS-associated cytoplasmic torus of size and shape corresponding to those of the MxiA ring aligned to the secretion channel located between the secretion pore and the ATPase complex. This defines the molecular architecture of the dominant component of the export apparatus and allows us to propose a model for the molecular mechanisms controlling secretion.
Collapse
Affiliation(s)
- Patrizia Abrusci
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Marta Vergara–Irigaray
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Morgan D Beeby
- Department of Biology, California Institute of Technology, Pasadena, California, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - David Hendrixson
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Pietro Roversi
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Miriam E Friede
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Janet E Deane
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Grant J Jensen
- Department of Biology, California Institute of Technology, Pasadena, California, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
27
|
Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 2012; 195:466-73. [PMID: 23161028 DOI: 10.1128/jb.01711-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soluble protein, FliJ, along with a membrane protein, FlhA, plays a role in the energy coupling mechanism for bacterial flagellar protein export. The water-soluble FliH(X)-FliI(6) ATPase ring complex allows FliJ to efficiently interact with FlhA. However, the FlhA binding site of FliJ remains unknown. Here, we carried out genetic analysis of a region formed by well-conserved residues-Gln38, Leu42, Tyr45, Tyr49, Phe72, Leu76, Ala79, and His83-of FliJ. A structural model of the FliI(6)-FliJ ring complex suggests that they extend out of the FliI(6) ring. Glutathione S-transferase (GST)-FliJ inhibited the motility of and flagellar protein export by both wild-type cells and a fliH-fliI flhB(P28T) bypass mutant. Pulldown assays revealed that the reduced export activity of the export apparatus results from the binding of GST-FliJ to FlhA. The F72A and L76A mutations of FliJ significantly reduced the binding affinity of FliJ for FlhA, thereby suppressing the inhibitory effect of GST-FliJ on the protein export. The F72A and L76A mutations were tolerated in the presence of FliH and FliI but considerably reduced motility in their absence. These two mutations affected neither the interaction with FliI nor the FliI ATPase activity. These results suggest that FliJ(F72A) and FliJ(L76A) require the support of FliH and FliI to exert their export function. Therefore, we propose that the well-conserved surface of FliJ is involved in the interaction with FlhA.
Collapse
|
28
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
29
|
Diepold A, Wiesand U, Amstutz M, Cornelis GR. Assembly of theYersiniainjectisome: the missing pieces. Mol Microbiol 2012; 85:878-92. [DOI: 10.1111/j.1365-2958.2012.08146.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Shimada M, Saijo-Hamano Y, Furukawa Y, Minamino T, Imada K, Namba K. Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. J Mol Biol 2011; 415:855-65. [PMID: 22178139 DOI: 10.1016/j.jmb.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
The flagellar axial component proteins are exported to the distal end of the growing flagellum for self-assembly by the flagellar type III export apparatus. FlhA is a key membrane protein of the export apparatus, and its C-terminal cytoplasmic domain (FlhA(C)) is a part of an assembly platform for the three soluble export components, FliH, FliI, and FliJ, as well as export substrates and chaperone-substrate complexes. FlhA(C) is composed of a flexible linker region and four compact domains (A(C)D1-A(C)D4). At 42 °C, a temperature-sensitive (TS) G368C mutation in FlhA(C) blocks the export process after the FliH-FliI-FliJ-substrate complex binds to the assembly platform, but it remains unknown how it does so. In this study, we analyzed a TS mutant variant, FlhA(C)(G368C), and its pseudorevertant variants FlhA(C)(G368C/L359F), FlhA(C)(G368C/G364R), FlhA(C)(G368C/R370S), and FlhA(C)(G368C/P550S) using far-ultraviolet circular dichroism. Whereas the denaturation of the wild-type FlhA(C) occurs in a single step, FlhA(C)(G368C) and its pseudorevertant variants showed thermal transitions, at least, in two steps. The first transition of FlhA(C)(G368C) can further be divided into reversible and following irreversible transitions, which correspond to the denaturation of A(C)D2 and A(C)D1, respectively. We show the relation between the reversible transition and the TS defect in the exporting function of FlhA(C)(G368C) and that the loss of function is caused by denaturation of A(C)D2. We suggest that A(C)D2 is directly involved in the translocation of export substrates.
Collapse
Affiliation(s)
- Masafumi Shimada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Diepold A, Wiesand U, Cornelis GR. The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 2011; 82:502-14. [DOI: 10.1111/j.1365-2958.2011.07830.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Hara N, Namba K, Minamino T. Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA. PLoS One 2011; 6:e22417. [PMID: 21811603 PMCID: PMC3139655 DOI: 10.1371/journal.pone.0022417] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate.
Collapse
Affiliation(s)
- Noritaka Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
33
|
Grochulski P, Fodje MN, Gorin J, Labiuk SL, Berg R. Beamline 08ID-1, the prime beamline of the Canadian Macromolecular Crystallography Facility. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:681-684. [PMID: 21685687 DOI: 10.1107/s0909049511019431] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
Beamline 08ID-1 is the prime macromolecular crystallography beamline at the Canadian Light Source. Based on a small-gap in-vacuum undulator, it is designed for challenging projects like small crystals and crystals with large cell dimensions. Beamline 08ID-1, together with a second bending-magnet beamline, constitute the Canadian Macromolecular Crystallography Facility (CMCF). This paper presents an overall description of the 08ID-1 beamline, including its specifications, beamline software and recent scientific highlights. The end-station of the beamline is equipped with a CCD X-ray detector, on-axis crystal visualization system, a single-axis goniometer and a sample automounter allowing remote access to the beamline. The general user program is guaranteed up to 55% of the useful beam time and is run under a peer-review proposal system. The CMCF staff provide `Mail-in' crystallography service to the users with the highest-scored proposals.
Collapse
Affiliation(s)
- Pawel Grochulski
- Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
34
|
Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ. Structural diversity of bacterial flagellar motors. EMBO J 2011; 30:2972-81. [PMID: 21673657 DOI: 10.1038/emboj.2011.186] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/17/2011] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellum is one of nature's most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C-ring was confirmed by imaging a deletion strain. The combination of conserved and specially-adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species.
Collapse
Affiliation(s)
- Songye Chen
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Worrall LJ, Lameignere E, Strynadka NCJ. Structural overview of the bacterial injectisome. Curr Opin Microbiol 2010; 14:3-8. [PMID: 21112241 DOI: 10.1016/j.mib.2010.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 12/30/2022]
Abstract
The bacterial injectisome is a specialized protein-export system utilized by many pathogenic Gram-negative bacteria for the delivery of virulence proteins into the hosts they infect. This needle-like molecular nanomachine comprises >20 proteins creating a continuous passage from bacterial to host cytoplasm. The last few years have witnessed significant progress in our understanding of the structure of the injectisome with important contributions from X-ray crystallography, NMR and EM. This review will present the current state of the structure of the injectisome with particular focus on the molecular structures of individual components and how these assemble together in a functioning T3SS.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
36
|
Barker CS, Meshcheryakova IV, Kostyukova AS, Samatey FA. FliO regulation of FliP in the formation of the Salmonella enterica flagellum. PLoS Genet 2010; 6:e1001143. [PMID: 20941389 PMCID: PMC2947984 DOI: 10.1371/journal.pgen.1001143] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 08/26/2010] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO43–125 or FliO1–95 was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO43–125, should contain beta-structure and alpha-helices. FliO43–125-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners. The propeller-like flagella, which some bacteria use to swim, possess a specialized secretion apparatus, which is imbedded in the cell membrane for their formation. The components are highly conserved among flagella systems and also to the Type III secretion apparatus used by some bacteria in conjunction with virulence-associated needle complexes. The ubiquity of these secretion apparatuses and their function as intricate nanomachines has made them fascinating for biologists. The most studied flagellar system is that of Salmonella enterica, which consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. Among these proteins, FliO shows a sporadic distribution in bacteria, and its function is unknown, suggesting it might have a specialized role to play where it is present. In this study, we show that FliO has an important role in maintaining stability of FliP, which is a highly conserved member of the secretion apparatus. We have characterized the important regions of FliO through mutagenesis. We have shown that it is possible to bypass the effect of not producing the FliO protein, by encoding mutations within FliP or by overexpressing the cytoplasmic domain of FliO only.
Collapse
Affiliation(s)
- Clive S. Barker
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Irina V. Meshcheryakova
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Alla S. Kostyukova
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Fadel A. Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- * E-mail:
| |
Collapse
|