1
|
Wang Q, Zhao X, Liu Y, Zheng J, Cui H, Wang H, Ding H, Liu H, Ding Z. Characterization and Expression Analysis of Genes from Megalobrama amblycephala Encoding Hemoglobins with Extracellular Microbicidal Activity. Genes (Basel) 2023; 14:1972. [PMID: 37895322 PMCID: PMC10606352 DOI: 10.3390/genes14101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Hemoglobin (Hb) usually comprises two α and two β subunits, forming a tetramer responsible for oxygen transportation and storage. Few studies have elucidated fish hemoglobin immune functions. Megalobrama amblycephala is a freshwater-cultured fish prevalent in China. We identified two M. amblycephala hemoglobin subunits and analyzed their expression patterns and antibacterial activities. The respective full-length cDNA sequences of the M. amblycephala Hb α (MaHbα) and β (MaHbβ) subunits were 588 and 603 bp, encoding 143 and 148 amino acids. MaHbα and MaHbβ were highly homologous to hemoglobins from other fish, displaying typical globin-like domains, most heme-binding sites, and tetramer interface regions highly conserved in teleosts. In phylogenetic analyses, the hemoglobin genes from M. amblycephala and other cypriniformes clustered into one branch, and those from other fishes and mammals clustered into other branches, revealing fish hemoglobin conservation. These M. amblycephala Hb subunits exhibit different expression patterns in various tissues and during development. MaHbα is mainly expressed in the blood and brain, while MaHbβ gene expression is highest in the muscle. MaHbα expression was detectable and abundant post-fertilization, with levels fluctuating during the developmental stages. MaHbβ expression began at 3 dph and gradually increased. Expression of both M. amblycephala Hb subunits was down-regulated in most examined tissues and time points post-Aeromonas hydrophila infection, which might be due to red blood cell (RBC) and hematopoietic organ damage. Synthetic MaHbα and MaHbβ peptides showed excellent antimicrobial activities, which could inhibit survival and growth in five aquatic pathogens. Two M. amblycephala hemoglobin subunits were identified, and their expression patterns and antibacterial activities were analyzed, thereby providing a basis for the understanding of evolution and functions of fish hemoglobins.
Collapse
Affiliation(s)
- Qijun Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Xiaoheng Zhao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunlong Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juan Zheng
- Shaanxi Environmental Survey and Evaluation Center, Xi’an 710054, China;
| | - Hujun Cui
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haotong Wang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Houxu Ding
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhujin Ding
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.Z.); (Y.L.); (H.C.); (H.W.); (H.D.)
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Capozzi F, Sorrentino MC, Granata A, Vergara A, Alberico M, Rossi M, Spagnuolo V, Giordano S. Optimizing Moss and Lichen Transplants as Biomonitors of Airborne Anthropogenic Microfibers. BIOLOGY 2023; 12:1278. [PMID: 37886988 PMCID: PMC10604676 DOI: 10.3390/biology12101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Anthropogenic microfibers (mfs) are synthetic particles composed of cellulose (cotton, rayon, acetate, etc.) or petrochemical-based polymers (i.e., microplastics-MPs) that are less than 5 mm in length. The accumulation of mfs, including MPs, in the moss Hypnum cupressiforme and the lichen Pseudevernia furfuracea was compared in a transplant experiment lasting 6 weeks. We also tested the effects of the bag used for transplants on the accumulation of mfs. Anthropogenic particles trapped by both biomonitors were mostly filamentous (99% mfs), and their number was overall higher in the moss (mean ± s.d. 102 ± 24) than in the lichen (mean ± s.d. 87 ± 17), at parity of sample weight. On average, mfs found in lichen were significantly longer than those found in moss bags, suggesting that lichens are less efficient at retaining smaller mfs. Exposure without the net yielded a higher mfs number accumulation in both species, indicating that "naked" transplants provide greater sensitivity. The calculation of daily fluxes evidenced a loss of mfs in the lichen, suggesting the presence of more stable bonds between moss and mfs. Raman microspectroscopy carried out on about 100 debris confirms the anthropogenic nature of mfs, of which 20% were MPs. Overall results indicate that moss is preferable to lichen in the biomonitoring of airborne mfs especially when exposed naked.
Collapse
Affiliation(s)
- Fiore Capozzi
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.C.); (M.C.S.); (A.G.); (S.G.)
| | - Maria Cristina Sorrentino
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.C.); (M.C.S.); (A.G.); (S.G.)
| | - Angelo Granata
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.C.); (M.C.S.); (A.G.); (S.G.)
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoles, Italy; (A.V.); (M.A.)
| | - Miriam Alberico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoles, Italy; (A.V.); (M.A.)
- Department of Classics, University La Sapienza, 00185 Rome, Italy
| | - Manuela Rossi
- Department of Earth Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Valeria Spagnuolo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.C.); (M.C.S.); (A.G.); (S.G.)
| | - Simonetta Giordano
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.C.); (M.C.S.); (A.G.); (S.G.)
| |
Collapse
|
3
|
Andersen Ø, Rubiolo JA, De Rosa MC, Martinez P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2367-2376. [PMID: 33011865 PMCID: PMC7584550 DOI: 10.1007/s10695-020-00872-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Turbot is an important flatfish widely distributed along the European coasts, whose fishery is centered in the North Sea. The commercial value of the species has boosted a successful aquaculture sector in Europe and China. Body growth is the main target of turbot breeding programs and is also a key trait related to local adaptation to temperature and salinity. Differences in growth rate and optimal growth temperature in turbot have been shown to be associated with a hemoglobin polymorphism reported more than 50 years ago. Here, we identified a Gly16Asp amino acid substitution in the β1 globin subunit by searching for genetic variation in the five functional globin genes within the whole annotated turbot genome. We predicted increased stability of the turbot hemoglobin by the replacement of the conserved Gly with the negative charged Asp residue that is consistent with the higher rate of αβ dimer assembly in the human J-Baltimore Gly16β->Asp mutant than in normal HbA. The turbot Hbβ1-Gly16 variant dominated in the northern populations examined, particularly in the Baltic Sea, while the Asp allele showed elevated frequencies in southern populations and was the prevalent variant in the Adriatic Sea. Body weight did not associate with the Hbβ1 genotypes at farming conditions (i.e., high oxygen levels, feeding ad libitum) after analyzing 90 fish with high growth dispersal from nine turbot families. Nevertheless, all data at hand suggest that the turbot hemoglobin polymorphism has an adaptive significance in the variable wild conditions regarding temperature and oxygen availability.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, PO Box 5010, N-1430, Ås, Norway.
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433, Ås, Norway.
| | - Juan Andrés Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, 00168, Rome, Italy
| | - Paulino Martinez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
4
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
5
|
Balasco N, Vitagliano L, Merlino A, Verde C, Mazzarella L, Vergara A. The unique structural features of carbonmonoxy hemoglobin from the sub-Antarctic fish Eleginops maclovinus. Sci Rep 2019; 9:18987. [PMID: 31831781 PMCID: PMC6908587 DOI: 10.1038/s41598-019-55331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Tetrameric hemoglobins (Hbs) are prototypical systems for the investigations of fundamental properties of proteins. Although the structure of these proteins has been known for nearly sixty years, there are many aspects related to their function/structure that are still obscure. Here, we report the crystal structure of a carbonmonoxy form of the Hb isolated from the sub-Antarctic notothenioid fish Eleginops maclovinus characterised by either rare or unique features. In particular, the distal site of the α chain results to be very unusual since the distal His is displaced from its canonical position. This displacement is coupled with a shortening of the highly conserved E helix and the formation of novel interactions at tertiary structure level. Interestingly, the quaternary structure is closer to the T-deoxy state of Hbs than to the R-state despite the full coordination of all chains. Notably, these peculiar structural features provide a rationale for some spectroscopic properties exhibited by the protein in solution. Finally, this unexpected structural plasticity of the heme distal side has been associated with specific sequence signatures of various Hbs.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy.
| | - Antonello Merlino
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Alessandro Vergara
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
6
|
Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics 2019; 49:100724. [PMID: 31735579 DOI: 10.1016/j.margen.2019.100724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
7
|
Mania M, Bruschetta G, Avenoso A, D'Ascola A, Scuruchi M, Campo A, Acri G, Campo S. Evidence for embryonic haemoglobins from Sparus aurata under normal and hypoxic conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:943-954. [PMID: 30627834 DOI: 10.1007/s10695-018-0605-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Teleost haemoglobins vary in polymorphisms and primary structure, although display similar functional properties. Key amino acids for Root effect (a reduction in oxygen-carrying capacity and loss of cooperativity with declining pH) are conserved throughout fish evolution. For the first time, we cloned and characterised Sparus aurata L. embryonic globin chains (eα1, eα2, eβ). We also studied haemoglobins (eHbI, eHbII) behaviour in normal and low-oxygen conditions. Several amino acids in fry globins are different in chemical type (e.g. polar → non-polar and vice versa), compared to adult globins. His55α1, crucial for Root effect, is substituted by Ala in fry, presumably enhancing oxygen capture, transport and reducing the dependence of Root effect from pH. Phylogenetic trees demonstrate that eα1 globin diversified more recently than eα2; moreover, eα1, eα2 and eβ globins evolved earlier than adult α and β globins. In low-oxygen conditions, fry haemoglobins display the same behaviour of the adult haemoglobins (probably, embryonic and adult-type I Hbs display a higher oxygen affinity than type II Hbs, operating through a rapid cycle of heme-Fe auto-oxidation/reduction). Therefore, based on our results and on the comparison with adult haemoglobins, we hypothesise that embryonic haemoglobins have evolved to better adapt fry to variable habitats. We studied Sparus aurata for its economical relevance in Mediterranean aquaculture. The information we provide can help understand Sparus aurata behaviour in the wild and in rearing conditions. Further studies with functional assays will deepen the knowledge on the molecular mechanisms of fry haemoglobin physiology.
Collapse
Affiliation(s)
- Manuela Mania
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | | | - Angela Avenoso
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Angela D'Ascola
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Adele Campo
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Giuseppe Acri
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy
| | - Salvatore Campo
- Department of Biochemical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy.
| |
Collapse
|
8
|
Caterino M, Herrmann M, Merlino A, Riccardi C, Montesarchio D, Mroginski MA, Musumeci D, Ruffo F, Paduano L, Hildebrandt P, Kozuch J, Vergara A. On the pH-Modulated Ru-Based Prodrug Activation Mechanism. Inorg Chem 2019; 58:1216-1223. [PMID: 30614697 DOI: 10.1021/acs.inorgchem.8b02667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RuIII-based prodrug AziRu efficiently binds to proteins, but the mechanism of its release is still disputed. Herein, in order to test the hypothesis of a reduction-mediated Ru release from proteins, a Raman-assisted crystallographic study on AziRu binding to a model protein (hen egg white lysozyme), in two different oxidation states, RuII and RuIII, was carried out. Our results indicate Ru reduction, but the Ru release upon reduction is dependent on the reducing agent. To better understand this process, a pH-dependent, spectroelectrochemical surface-enhanced Raman scattering (SERS) study was performed also on AziRu-functionalized Au electrodes as a surrogate and simplest model system of RuII- and RuIII-based drugs. This SERS study provided a p Ka of 6.0 ± 0.4 for aquated AziRu in the RuIII state, which falls in the watershed range of pH values separating most cancer environments from their physiological counterparts. These experiments also indicate a dramatic shift of the redox potential E0 by >600 mV of aquated AziRu toward more positive potentials upon acidification, suggesting a selective AziRu reduction in cancer lumen but not in healthy ones. It is expected that the nature of the ligands (e.g., pyridine vs imidazole, present in well-known RuIII complex NAMI-A) will modulate the p Ka and E0, without affecting the underlying reaction mechanism.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Mona Herrmann
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , Berlin 10623 , Germany
| | - Antonello Merlino
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Claudia Riccardi
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Maria A Mroginski
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , Berlin 10623 , Germany
| | - Domenica Musumeci
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Francesco Ruffo
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Luigi Paduano
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy
| | - Peter Hildebrandt
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , Berlin 10623 , Germany
| | - Jacek Kozuch
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , Berlin 10623 , Germany
| | - Alessandro Vergara
- Department of Chemical Sciences , University of Naples Federico II , via Cinthia , Naples I-80126 , Italy.,CEINGE, Biotecnologie Avanzate s.c.a.r.l.m. , via G Salvatore , Naples I-80131 , Italy
| |
Collapse
|
9
|
Okonjo KO. Bohr effect and oxygen affinity of carp, eel and human hemoglobin: Quantitative analyses provide rationale for the Root effect. Biophys Chem 2018; 242:45-59. [PMID: 30245351 DOI: 10.1016/j.bpc.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
The functional properties of most fish hemoglobins are more complex than those of human hemoglobin. This complexity arises in the form of the Root effect, in which the oxygen affinity of such fish hemoglobins decreases rapidly with pH relative to that of human hemoglobin. Cooperative ligand binding is also diminished below pH ≈ 6.5. The Bohr effect, determined by acid-base titration, has been reported for the Root effect carp and anodic eel hemoglobins. Unlike for mammalian hemoglobins, the Wyman equation for the Bohr effect fails to account quantitatively for these Bohr data. We present a successful quantitative accounting for these data based on evidence for multiple T states in various fish hemoglobins and on their lack of sixhistidine Bohr groups, with pKoxy > pKdeoxy. On the same bases we also provide a rationale for the higher pH sensitivity of the oxygen affinity of carp compared to human hemoglobin.
Collapse
|
10
|
Vergara A, Caterino M, Merlino A. Raman-markers of X-ray radiation damage of proteins. Int J Biol Macromol 2018; 111:1194-1205. [PMID: 29374529 DOI: 10.1016/j.ijbiomac.2018.01.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/25/2022]
Abstract
Despite their high relevance, the mechanisms of X-ray radiation damage on protein structure yet have to be completely established. Here, we used Raman microspectrophotometry to follow X-ray-induced chemical modifications on the structure of the model protein bovine pancreatic ribonuclease (RNase A). The combination of dose-dependent Raman spectra and ultrahigh resolution (eight structures solved using data collected between 0.85 and 1.17 Å resolution on the same single crystal) allowed direct observation of several radiation damage events, including covalent bond breakages and formation of radicals. Our results are relevant for analytical photodamage detection and provide implications for a detailed understanding of the mechanisms of photoproduct formation.
Collapse
Affiliation(s)
- Alessandro Vergara
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy; CEINGE Biotecnologie Avanzate Scarl, Via G. Salvatore, Napoli, Italy
| | - Marco Caterino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia, Naples I-80126, Italy.
| |
Collapse
|
11
|
Vitagliano L, Mazzarella L, Merlino A, Vergara A. Fine Sampling of the R→T Quaternary-Structure Transition of a Tetrameric Hemoglobin. Chemistry 2016; 23:605-613. [DOI: 10.1002/chem.201603421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Antonello Merlino
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Alessandro Vergara
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
- CEINGE Biotecnologie Avanzate scarlm; Via G. Salvatore Napoli Italy
| |
Collapse
|
12
|
Di Fiore A, Vergara A, Caterino M, Alterio V, Monti SM, Ombouma J, Dumy P, Vullo D, Supuran CT, Winum JY, De Simone G. Hydroxylamine-O-sulfonamide is a versatile lead compound for the development of carbonic anhydrase inhibitors. Chem Commun (Camb) 2015; 51:11519-22. [DOI: 10.1039/c5cc03711e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxylamine-O-sulfonamide has been investigated as CA inhibitor by means of kinetic and structural studies clarifying its mechanism of action.
Collapse
Affiliation(s)
- Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR
- 80134 Napoli
- Italy
| | - Alessandro Vergara
- Istituto di Biostrutture e Bioimmagini-CNR
- 80134 Napoli
- Italy
- Department of Chemical Sciences
- Napoli
| | | | | | | | - Joanna Ombouma
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- ENSCM
- Université de Montpellier
- Bâtiment de Recherche Max Mousseron
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- ENSCM
- Université de Montpellier
- Bâtiment de Recherche Max Mousseron
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Daniela Vullo
- Università degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- Florence
- Italy
| | - Claudiu T. Supuran
- Università degli Studi di Firenze
- Polo Scientifico
- Laboratorio di Chimica Bioinorganica
- Florence
- Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- ENSCM
- Université de Montpellier
- Bâtiment de Recherche Max Mousseron
- Ecole Nationale Supérieure de Chimie de Montpellier
| | | |
Collapse
|
13
|
Feng J, Liu S, Wang X, Wang R, Zhang J, Jiang Y, Li C, Kaltenboeck L, Li J, Liu Z. Channel catfish hemoglobin genes: Identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:11-22. [DOI: 10.1016/j.cbd.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/28/2023]
|
14
|
Mazzarella L, Merlino A, Vitagliano L, Verde C, di Prisco G, Peisach J, Vergara A. Structural modifications induced by the switch from an endogenous bis-histidyl to an exogenous cyanomet hexa-coordination in a tetrameric haemoglobin. RSC Adv 2014. [DOI: 10.1039/c4ra03317e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two EPR- and structurally-distinct bis-histidyl conformers of the ferric haemoglobin from Trematomus bernacchii react differently with CN−
Collapse
Affiliation(s)
- Lelio Mazzarella
- Dept of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
| | - Antonello Merlino
- Dept of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- Institute of Biostructures and Bioimaging
- CNR
| | | | - Cinzia Verde
- Institute of Biosciences and BioResources
- CNR
- Naples, Italy
- Roma 3 University
- Dept of Biology
| | | | - Jack Peisach
- Dept of Biophysics and Physiology
- Albert Einstein College of Medicine
- New York, USA
| | - Alessandro Vergara
- Dept of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- Institute of Biostructures and Bioimaging
- CNR
| |
Collapse
|
15
|
Vergara A, Russo Krauss I, Montesarchio D, Paduano L, Merlino A. Investigating the Ruthenium Metalation of Proteins: X-ray Structure and Raman Microspectroscopy of the Complex between RNase A and AziRu. Inorg Chem 2013; 52:10714-6. [DOI: 10.1021/ic401494v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Napoli, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Napoli, Italy
| |
Collapse
|
16
|
Reaction of Hg2+ Insertion into Cysteine Pairs Within Bovine Insulin Crystals Followed via Raman Spectroscopy. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0066-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Krauss IR, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14:11643-91. [PMID: 23727935 PMCID: PMC3709751 DOI: 10.3390/ijms140611643] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-81-674-479; Fax: +39-81-674-090
| |
Collapse
|
18
|
Ronda L, Merlino A, Bettati S, Verde C, Balsamo A, Mazzarella L, Mozzarelli A, Vergara A. Role of tertiary structures on the Root effect in fish hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1885-93. [PMID: 23376186 DOI: 10.1016/j.bbapap.2013.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH6.2 and pH8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T-R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Merlino A, Fuchs MR, Pica A, Balsamo A, Dworkowski FSN, Pompidor G, Mazzarella L, Vergara A. Selective X-ray-induced NO photodissociation in haemoglobin crystals: evidence from a Raman-assisted crystallographic study. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:137-40. [DOI: 10.1107/s0907444912042229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/09/2012] [Indexed: 11/10/2022]
|
20
|
Balsamo A, Sannino F, Merlino A, Parrilli E, Tutino ML, Mazzarella L, Vergara A. Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins. Biochimie 2012; 94:953-60. [DOI: 10.1016/j.biochi.2011.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
21
|
Esposito L, Ruggiero A, Masullo M, Ruocco MR, Lamberti A, Arcari P, Zagari A, Vitagliano L. Crystallographic and spectroscopic characterizations of Sulfolobus solfataricus TrxA1 provide insights into the determinants of thioredoxin fold stability. J Struct Biol 2012; 177:506-12. [DOI: 10.1016/j.jsb.2011.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/20/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
|
22
|
Song C, Psakis G, Lang C, Mailliet J, Zaanen J, Gärtner W, Hughes J, Matysik J. On the Collective Nature of Phytochrome Photoactivation. Biochemistry 2011; 50:10987-9. [DOI: 10.1021/bi201504a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch
Onderzoek, Universiteit Leiden, P.O. Box
9502, 2300 RA Leiden, The Netherlands
| | - Georgios Psakis
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße
3, D-35390 Giessen, Germany
| | - Christina Lang
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße
3, D-35390 Giessen, Germany
| | - Jo Mailliet
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße
3, D-35390 Giessen, Germany
| | - Jan Zaanen
- Instituut-Lorentz for Theoretical
Physics, Universiteit Leiden, P.O. Box
9506, 2300 RA Leiden, The Netherlands
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße
34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jon Hughes
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße
3, D-35390 Giessen, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch
Onderzoek, Universiteit Leiden, P.O. Box
9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
23
|
Bonaventura C, Henkens R, Friedman J, Siburt CJP, Kraiter D, Crumbliss AL. Steric factors moderate conformational fluidity and contribute to the high proton sensitivity of Root effect hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1261-8. [PMID: 21745602 PMCID: PMC3167225 DOI: 10.1016/j.bbapap.2011.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/06/2011] [Accepted: 06/24/2011] [Indexed: 11/17/2022]
Abstract
The structural basis of the extreme pH dependence of oxygen binding to Root effect Hbs is a long-standing puzzle in the field of protein chemistry. A previously unappreciated role of steric factors in the Root effect was revealed by a comparison of pH effects on oxygenation and oxidation processes in human Hb relative to Spot (Leiostomus xanthurus) and Carp (Cyprinodon carpio) Hbs. The Root effect confers five-fold increased pH sensitivity to oxygenation of Spot and Carp Hbs relative to Hb A(0) in the absence of anionic effectors, and even larger relative elevations of pH sensitivity of oxygenation in the presence of 0.2M phosphate. Remarkably, the Root effect was not evident in the oxidation of the Root effect Hbs. This finding rules out pH-dependent alterations in the thermodynamic properties of the heme iron, measured in the anaerobic oxidation reaction, as the basis of the Root effect. The alternative explanation supported by these results is that the elevated pH sensitivity of oxygenation of Root effect Hbs is attributable to globin-dependent steric effects that alter oxygen affinity by constraining conformational fluidity, but which have little influence on electron exchange via the heme edge. This elegant mode of allosteric control can regulate oxygen affinity within a given quaternary state, in addition to modifying the T-R equilibrium. Evolution of Hb sequences that result in proton-linked steric barriers to heme oxygenation could provide a general mechanism to account for the appearance of the Root effect in the structurally diverse Hbs of many species.
Collapse
|
24
|
Boechi L, Martì MA, Vergara A, Sica F, Mazzarella L, Estrin DA, Merlino A. Protonation of histidine 55 affects the oxygen access to heme in the alpha chain of the hemoglobin from the Antarctic fish Trematomus bernacchii. IUBMB Life 2011; 63:175-82. [DOI: 10.1002/iub.436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|