1
|
Hydrogen/deuterium exchange-mass spectrometry of integral membrane proteins in native-like environments: current scenario and the way forward. Essays Biochem 2023; 67:187-200. [PMID: 36876893 PMCID: PMC10070480 DOI: 10.1042/ebc20220173] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/07/2023]
Abstract
Integral membrane proteins (IMPs) perform a range of diverse functions and their dysfunction underlies numerous pathological conditions. Consequently, IMPs constitute most drug targets, and the elucidation of their mechanism of action has become an intense field of research. Historically, IMP studies have relied on their extraction from membranes using detergents, which have the potential to perturbate their structure and dynamics. To circumnavigate this issue, an array of membrane mimetics has been developed that aim to reconstitute IMPs into native-like lipid environments that more accurately represent the biological membrane. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a versatile tool for probing protein dynamics in solution. The continued development of HDX-MS methodology has allowed practitioners to investigate IMPs using increasingly native-like membrane mimetics, and even pushing the study of IMPs into the in vivo cellular environment. Consequently, HDX-MS has come of age and is playing an ever-increasingly important role in the IMP structural biologist toolkit. In the present mini-review, we discuss the evolution of membrane mimetics in the HDX-MS context, focusing on seminal publications and recent innovations that have led to this point. We also discuss state-of-the-art methodological and instrumental advancements that are likely to play a significant role in the generation of high-quality HDX-MS data of IMPs in the future.
Collapse
|
2
|
Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 2023; 205:95-101. [PMID: 36037883 DOI: 10.1016/j.biochi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Transporters regulate trafficking through the biological membrane of living cells and organelles. Therefore, these proteins play an important role in key cellular processes. Obtaining a molecular-level description of the mechanism of transporters is highly desirable to understand and modulate such processes. Different challenges currently complicate this effort, mostly due to transporters' intrinsic properties. They are dynamic and often averse to in vitro characterization. The crossing of the membrane via a transporter depends on both global and local structural changes that will enable substrate binding from one side of the membrane and release on the other. Dedicated approaches are required to monitor these dynamic changes, ideally within the complex membrane environment. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has recently emerged as a powerful biophysical tool to understand transporters' mechanism. This mini-review aims to offer to the reader an overview of the field of HDX-MS applied to transporters. It first summarizes the current workflow for HDX-MS measurements on transporters. It then provides illustrative examples on the molecular insights that are accessible thanks to the technique; following conformational transitions between different states, observing structural changes upon ligand binding and finally understanding the role of lipid-protein interactions.
Collapse
|
3
|
Vávra J, Sergunin A, Stráňava M, Kádek A, Shimizu T, Man P, Martínková M. Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. Methods Mol Biol 2023; 2648:99-122. [PMID: 37039988 DOI: 10.1007/978-1-0716-3080-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Stráňava
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic.
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Martens C, Politis A. A glimpse into the molecular mechanism of integral membrane proteins through hydrogen-deuterium exchange mass spectrometry. Protein Sci 2020; 29:1285-1301. [PMID: 32170968 PMCID: PMC7255514 DOI: 10.1002/pro.3853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
Abstract
Integral membrane proteins (IMPs) control countless fundamental biological processes and constitute the majority of drug targets. For this reason, uncovering their molecular mechanism of action has long been an intense field of research. They are, however, notoriously difficult to work with, mainly due to their localization within the heterogeneous of environment of the biological membrane and the instability once extracted from the lipid bilayer. High‐resolution structures have unveiled many mechanistic aspects of IMPs but also revealed that the elucidation of static pictures has limitations. Hydrogen–deuterium exchange coupled to mass spectrometry (HDX‐MS) has recently emerged as a powerful biophysical tool for interrogating the conformational dynamics of proteins and their interactions with ligands. Its versatility has proven particularly useful to reveal mechanistic aspects of challenging classes of proteins such as IMPs. This review recapitulates the accomplishments of HDX‐MS as it has matured into an essential tool for membrane protein structural biologists.
Collapse
Affiliation(s)
- Chloe Martens
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
6
|
Möller IR, Slivacka M, Hausner J, Nielsen AK, Pospíšilová E, Merkle PS, Lišková R, Polák M, Loland CJ, Kádek A, Man P, Rand KD. Improving the Sequence Coverage of Integral Membrane Proteins during Hydrogen/Deuterium Exchange Mass Spectrometry Experiments. Anal Chem 2019; 91:10970-10978. [DOI: 10.1021/acs.analchem.9b00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ingvar R. Möller
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Marika Slivacka
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Jiří Hausner
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Anne Kathrine Nielsen
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen N DK-2200, Denmark
| | - Eliška Pospíšilová
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Patrick S. Merkle
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Růžena Lišková
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Marek Polák
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Claus J. Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen N DK-2200, Denmark
| | - Alan Kádek
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Kasper D. Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen E DK-2100, Denmark
| |
Collapse
|
7
|
Benhaim M, Lee KK, Guttman M. Tracking Higher Order Protein Structure by Hydrogen-Deuterium Exchange Mass Spectrometry. Protein Pept Lett 2019; 26:16-26. [PMID: 30543159 PMCID: PMC6386625 DOI: 10.2174/0929866526666181212165037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Structural biology has provided a fundamental understanding of protein structure and mechanistic insight into their function. However, high-resolution structures alone are insufficient for a complete understanding of protein behavior. Higher energy conformations, conformational changes, and subtle structural fluctuations that underlie the proper function of proteins are often difficult to probe using traditional structural approaches. Hydrogen/Deuterium Exchange with Mass Spectrometry (HDX-MS) provides a way to probe the accessibility of backbone amide protons under native conditions, which reports on local structural dynamics of solution protein structure that can be used to track complex structural rearrangements that occur in the course of a protein's function. CONCLUSION In the last 20 years the advances in labeling techniques, sample preparation, instrumentation, and data analysis have enabled HDX to gain insights into very complex biological systems. Analysis of challenging targets such as membrane protein complexes is now feasible and the field is paving the way to the analysis of more and more complex systems.
Collapse
Affiliation(s)
- Mark Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
8
|
Gan V. Remembering Eric Forest (1957-2017). From analytical chemistry to the rise of HDXMS for structural biology of complex protein systems. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:978-982. [PMID: 28345278 DOI: 10.1002/rcm.7858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
9
|
Vadas O, Jenkins ML, Dornan GL, Burke JE. Using Hydrogen-Deuterium Exchange Mass Spectrometry to Examine Protein-Membrane Interactions. Methods Enzymol 2016; 583:143-172. [PMID: 28063489 DOI: 10.1016/bs.mie.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many fundamental cellular processes are controlled via assembly of a network of proteins at membrane surfaces. The proper recruitment of proteins to membranes can be controlled by a wide variety of mechanisms, including protein lipidation, protein-protein interactions, posttranslational modifications, and binding to specific lipid species present in membranes. There are, however, only a limited number of analytical techniques that can study the assembly of protein-membrane complexes at the molecular level. A relatively new addition to the set of techniques available to study these protein-membrane systems is the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS experiments measure protein conformational dynamics in their native state, based on the rate of exchange of amide hydrogens with solvent. This review discusses the use of HDX-MS as a tool to identify the interfaces of proteins with membranes and membrane-associated proteins, as well as define conformational changes elicited by membrane recruitment. Specific examples will focus on the use of HDX-MS to examine how large macromolecular protein complexes are recruited and activated on membranes, and how both posttranslational modifications and cancer-linked oncogenic mutations affect these processes.
Collapse
Affiliation(s)
- O Vadas
- Pharmaceutical Sciences Section, University of Geneva, Geneva, Switzerland
| | | | - G L Dornan
- University of Victoria, Victoria BC, Canada
| | - J E Burke
- University of Victoria, Victoria BC, Canada.
| |
Collapse
|
10
|
Vit O, Man P, Kadek A, Hausner J, Sklenar J, Harant K, Novak P, Scigelova M, Woffendin G, Petrak J. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J Proteomics 2016; 149:15-22. [DOI: 10.1016/j.jprot.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 03/04/2016] [Indexed: 01/06/2023]
|
11
|
Giladi M, Almagor L, van Dijk L, Hiller R, Man P, Forest E, Khananshvili D. Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger. Sci Rep 2016; 6:20753. [PMID: 26876271 PMCID: PMC4753433 DOI: 10.1038/srep20753] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/07/2016] [Indexed: 01/22/2023] Open
Abstract
In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Lior Almagor
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Liat van Dijk
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eric Forest
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| |
Collapse
|
12
|
Liu QN, Chai XY, Tu J, Xin ZZ, Li CF, Jiang SH, Zhou CL, Tang BP. An adenine nucleotide translocase (ANT) gene from Apostichopus japonicus; molecular cloning and expression analysis in response to lipopolysaccharide (LPS) challenge and thermal stress. FISH & SHELLFISH IMMUNOLOGY 2016; 49:16-23. [PMID: 26706223 DOI: 10.1016/j.fsi.2015.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
The adenine nucleotide translocases (ANTs) play a vital role in energy metabolism via ADP/ATP exchange in eukaryotic cells. Apostichopus japonicus (Echinodermata: Holothuroidea) is an important economic species in China. Here, a cDNA representing an ANT gene of A. japonicus was isolated and characterized from respiratory tree and named AjANT. The full-length AjANT cDNA is 1924 bp, including a 5'-untranslated region (UTR) of 38 bp, 3'-UTR of 980 bp and an open reading frame (ORF) of 906 bp encoding a polypeptide of 301 amino acids. The protein contains three homologous repeat Mito_carr domains (Pfam00153). The deduced AjANT protein sequence has 49-81% in comparison to ANT proteins from other individuals. The predicted tertiary structure of AjANT protein is highly similar to animal ANT proteins. Phylogenetic analysis showed that the AjANT is closely related to Holothuroidea ANT genes. Real-time quantitative reverse transcription-PCR (qPCR) analysis showed that AjANT expression is higher in the respiratory tree than in other examined tissues. After thermal stress or LPS challenge, expression of AjANT was significantly fluctuant compared to the control. These results suggested that changes in the expression of ANT gene might be involved in immune defense and in protecting A. japonicus against thermal stress.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Hot Temperature
- Immunity, Innate/drug effects
- Lipopolysaccharides/pharmacology
- Mitochondrial ADP, ATP Translocases/chemistry
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Stichopus/genetics
- Stichopus/immunology
- Stichopus/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Jie Tu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| |
Collapse
|
13
|
Forest E, Man P. Conformational Dynamics and Interactions of Membrane Proteins by Hydrogen/Deuterium Mass Spectrometry. Methods Mol Biol 2016; 1432:269-79. [PMID: 27485342 DOI: 10.1007/978-1-4939-3637-3_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen/deuterium exchange associated with mass spectrometry has been recently used to characterize the dynamics and the interactions of membrane proteins. Here we describe experimental workflow enabling localization of the regions involved in conformational changes or interactions.
Collapse
Affiliation(s)
- Eric Forest
- Univ. Grenoble Alpes, IBS, Grenoble, France. .,CNRS, IBS, Grenoble, France. .,CEA, IBS, Grenoble, France. .,Institut de Biologie Structurale, CNRS (UMR 5075)/CEA/UGA, EPN Campus, 71 avenue des Martyrs, CS 10090, 38044, Grenoble Cedex 9, France.
| | - Petr Man
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Vestec, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Burns KM, Sarpe V, Wagenbach M, Wordeman L, Schriemer DC. HX-MS2 for high performance conformational analysis of complex protein states. Protein Sci 2015; 24:1313-24. [PMID: 26009873 DOI: 10.1002/pro.2707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Water-mediated hydrogen exchange (HX) processes involving the protein main chain are sensitive to structural dynamics and molecular interactions. Measuring deuterium uptake in amide bonds provides information on conformational states, structural transitions and binding events. Increasingly, deuterium levels are measured by mass spectrometry (MS) from proteolytically generated peptide fragments of large molecular systems. However, this bottom-up method has limited spectral capacity and requires a burdensome manual validation exercise, both of which restrict analysis of protein systems to generally less than 150 kDa. In this study, we present a bottom-up HX-MS(2) method that improves peptide identification rates, localizes high-quality HX data and simplifies validation. The method combines a new peptide scoring algorithm (WUF, weighted unique fragment) with data-independent acquisition of peptide fragmentation data. Scoring incorporates the validation process and emphasizes identification accuracy. The HX-MS(2) method is illustrated using data from a conformational analysis of microtubules treated with dimeric kinesin MCAK. When compared to a conventional Mascot-driven HX-MS method, HX-MS(2) produces two-fold higher α/β-tubulin sequence depth at a peptide utilization rate of 74%. A Mascot approach delivers a utilization rate of 44%. The WUF score can be constrained by false utilization rate (FUR) calculations to return utilization values exceeding 90% without serious data loss, indicating that automated validation should be possible. The HX-MS(2) data confirm that N-terminal MCAK domains anchor kinesin force generation in kinesin-mediated depolymerization, while the C-terminal tails regulate MCAK-tubulin interactions.
Collapse
Affiliation(s)
- Kyle M Burns
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Mike Wagenbach
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, 98195-7290
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, 98195-7290
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
15
|
Koshy SS, Li X, Eyles SJ, Weis RM, Thompson LK. Hydrogen exchange differences between chemoreceptor signaling complexes localize to functionally important subdomains. Biochemistry 2014; 53:7755-64. [PMID: 25420045 PMCID: PMC4270382 DOI: 10.1021/bi500657v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes.
Collapse
Affiliation(s)
- Seena S Koshy
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §Program in Molecular and Cellular Biology, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
16
|
Yao X, Dürr UHN, Gattin Z, Laukat Y, Narayanan RL, Brückner AK, Meisinger C, Lange A, Becker S, Zweckstetter M. NMR-based detection of hydrogen/deuterium exchange in liposome-embedded membrane proteins. PLoS One 2014; 9:e112374. [PMID: 25375235 PMCID: PMC4223039 DOI: 10.1371/journal.pone.0112374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/05/2014] [Indexed: 11/17/2022] Open
Abstract
Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.
Collapse
Affiliation(s)
- Xuejun Yao
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrich H N Dürr
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Zrinka Gattin
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yvonne Laukat
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Adam Lange
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goöttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, Göttingen, Germany
| |
Collapse
|
17
|
Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins. Biochem J 2014; 460:79-89. [PMID: 24624902 DOI: 10.1042/bj20140107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for almost all organisms. In eukaryotes, it is mainly used in mitochondria for the biosynthesis of iron-sulfur clusters and haem group maturation. Iron is delivered into the mitochondrion by mitoferrins, members of the MCF (mitochondrial carrier family), through an unknown mechanism. In the present study, the yeast homologues of these proteins, Mrs3p (mitochondrial RNA splicing 3) and Mrs4p, were studied by inserting them into liposomes. In this context, they could transport Fe2+ across the proteoliposome membrane, as shown using the iron chelator bathophenanthroline. A series of amino acid-modifying reagents were screened for their effects on Mrs3p-mediated iron transport. The results of the present study suggest that carboxy and imidazole groups are essential for iron transport. This was confirmed by in vivo complementation assays, which demonstrated that three highly conserved histidine residues are important for Mrs3p function. These histidine residues are not conserved in other MCF members and thus they are likely to play a specific role in iron transport. A model describing how these residues help iron to transit smoothly across the carrier cavity is proposed and compared with the structural and biochemical data available for other carriers in this family.
Collapse
|
18
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Koshy SS, Eyles SJ, Weis RM, Thompson LK. Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes. Biochemistry 2013; 52:8833-42. [PMID: 24274333 DOI: 10.1021/bi401261b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (∼2 Å) piston displacement of one helix of the periplasmic and transmembrane domains toward the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) measurements of global exchange of the CF demonstrate that the CF exhibits significantly slower exchange in functional complexes than in solution. Because the exchange rates in functional complexes are comparable to those of other proteins with similar structures, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system.
Collapse
Affiliation(s)
- Seena S Koshy
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §Program in Molecular and Cellular Biology, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
20
|
The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast. PLoS One 2013; 8:e74187. [PMID: 24073201 PMCID: PMC3779231 DOI: 10.1371/journal.pone.0074187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.
Collapse
|
21
|
Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:146860. [PMID: 23970947 PMCID: PMC3732615 DOI: 10.1155/2013/146860] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022]
Abstract
Mitochondria are intracellular organelles involved in ATP synthesis, apoptosis, calcium signaling, metabolism, and the synthesis of critical metabolic cofactors. Mitochondrial dysfunction is associated with age-related degenerative diseases. How mitochondrial dysfunction causes cell degeneration is not well understood. Recent studies have shown that mutations in the adenine nucleotide translocase (Ant) cause aging-dependent degenerative cell death (DCD) in yeast, which is sequentially manifested by inner membrane stress, mitochondrial DNA (mtDNA) loss, and progressive loss of cell viability. Ant is an abundant protein primarily involved in ADP/ATP exchange across the mitochondrial inner membrane. It also mediates basal proton leak and regulates the mitochondrial permeability transition pore. Missense mutations in the human Ant1 cause several degenerative diseases which are commonly manifested by fractional mtDNA deletions. Multiple models have been proposed to explain the Ant1-induced pathogenesis. Studies from yeast have suggested that in addition to altered nucleotide transport properties, the mutant proteins cause a global stress on the inner membrane. The mutant proteins likely interfere with general mitochondrial biogenesis in a dominant-negative manner, which secondarily destabilizes mtDNA. More recent work revealed that the Ant-induced DCD is suppressed by reduced cytosolic protein synthesis. This finding suggests a proteostatic crosstalk between mitochondria and the cytosol, which may play an important role for cell survival during aging.
Collapse
|
22
|
Rey M, Forest E, Pelosi L. Exploring the conformational dynamics of the bovine ADP/ATP carrier in mitochondria. Biochemistry 2012; 51:9727-35. [PMID: 23136955 DOI: 10.1021/bi300759x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mitochondrial ADP/ATP carrier catalyzes the transport of ADP and ATP across the mitochondrial inner membrane by switching between two different conformations. They can be blocked by two inhibitors: carboxyatractyloside (CATR) and bongkrekic acid (BA). Our understanding of the ADP/ATP transport process is largely based on analysis of structural differences between the individual inhibited states. The X-ray crystallographic three-dimensional structure of bovine ADP/ATP carrier isoform 1 (bAnc1p) complexed with CATR was determined, but the structure of the BA-carrier complex remains unknown. We recently investigated the conformational dynamics of bAnc1p in detergent solution using hydrogen/deuterium exchange and mass spectrometry (HDX-MS). This study shed light on some features of ADP/ATP translocation, but the mechanism itself and the organization of bAnc1p in the membrane required further investigation. This paper describes the first study of bAnc1p in the mitochondria on the whole-protein scale using HDX-MS. Membrane-embedded bAnc1p was deuterated and purified under HDX-MS-compatible conditions. Our results for the carrier in the mitochondrial inner membrane differed from those published for the carrier in a detergent solution. These differences were mainly in the upper half of the cavity that globally showed a limited H/D exchange whatever the complex analyzed and at the level of the matrix loops that were less accessible to the solvent in the BA-carrier complex than in the CATR-carrier complex. They are discussed with respect to published data for bAnc1p and have provided new insights into the conformation of the matrix loops of the bovine carrier in complex with BA in mitochondria.
Collapse
Affiliation(s)
- Martial Rey
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Laboratoire de Biologie à Grande Echelle (BGE), Grenoble F-38054, France
| | | | | |
Collapse
|
23
|
Babot M, Blancard C, Zeman I, Lauquin GJM, Trézéguet V. Mitochondrial ADP/ATP carrier: preventing conformational changes by point mutations inactivates nucleotide transport activity. Biochemistry 2012; 51:7348-56. [PMID: 22928843 DOI: 10.1021/bi300978z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mitochondrial ADP/ATP carrier (Ancp) is a paradigm of the mitochondrial carrier family (MCF); its members allow metabolic fluxes between mitochondria and the cytosol. The members of the MCF share numerous structural and functional characteristics. Ancp is very specifically inhibited by two classes of compounds, which stabilize the carrier in two different conformations involved in nucleotide transport. Resolution of the atomic structure of the bovine Ancp, in complex with one of its specific inhibitors, is that of the carrier open toward the intermembrane space. To gain insights into the interconversion from one conformation to the other, we introduced point mutations in the yeast carrier at positions Cys73 in the first matrix loop and Tyr97 and Gly298 in transmembrane helices 2 and 6. We demonstrate in this paper that they impair stabilization of the carrier in one conformation or the other, resulting in an almost complete inactivation of nucleotide transport in both cases. The results are discussed on the basis of the atomic structure of the conformation open to the cytosol. These mutant proteins could afford convenient tools for undertaking structural studies of both conformations of the yeast carrier.
Collapse
Affiliation(s)
- Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire, Univ. de Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | | | | | | |
Collapse
|
24
|
Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 2012; 109:10832-6. [PMID: 22711831 DOI: 10.1073/pnas.1204067109] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The study of membrane proteins remains a challenging task, and approaches to unravel their dynamics are scarce. Here, we applied hydrogen/deuterium exchange (HDX) coupled to mass spectrometry to probe the motions of a bacterial multidrug ATP-binding cassette (ABC) transporter, BmrA, in the inward-facing (resting state) and outward-facing (ATP-bound) conformations. Trypsin digestion and global or local HDX support the transition between inward- and outward-facing conformations during the catalytic cycle of BmrA. However, in the resting state, peptides from the two intracellular domains, especially ICD2, show a much faster HDX than in the closed state. This shows that these two subdomains are very flexible in this conformation. Additionally, molecular dynamics simulations suggest a large fluctuation of the Cα positions from ICD2 residues in the inward-facing conformation of a related transporter, MsbA. These results highlight the unexpected flexibility of ABC exporters in the resting state and underline the power of HDX coupled to mass spectrometry to explore conformational changes and dynamics of large membrane proteins.
Collapse
|
25
|
Pan Y, Ruan X, Valvano MA, Konermann L. Validation of membrane protein topology models by oxidative labeling and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:889-898. [PMID: 22410873 DOI: 10.1007/s13361-012-0342-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
26
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
27
|
Babot M, Blancard C, Pelosi L, Lauquin GJM, Trézéguet V. The transmembrane prolines of the mitochondrial ADP/ATP carrier are involved in nucleotide binding and transport and its biogenesis. J Biol Chem 2012; 287:10368-10378. [PMID: 22334686 DOI: 10.1074/jbc.m111.320697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial ADP/ATP carrier (Ancp) is a paradigm of the mitochondrial carrier family, which allows cross-talk between mitochondria, where cell energy is mainly produced, and cytosol, where cell energy is mainly consumed. The members of this family share numerous structural and functional characteristics. Resolution of the atomic structure of the bovine Ancp, in a complex with one of its specific inhibitors, revealed interesting features and suggested the involvement of some particular residues in the movements of the protein to perform translocation of nucleotides from one side of the membrane to the other. They correspond to three prolines located in the odd-numbered transmembrane helices (TMH), Pro-27, Pro-132, and Pro-229. The corresponding residues of the yeast Ancp (Pro-43, Ser-147, and Pro-247) were mutated into alanine or leucine, one at a time and analysis of the various mutants evidenced a crucial role of Pro-43 and Pro-247 during nucleotide transport. Beside, replacement of Ser-147 with proline does not inactivate Ancp and this is discussed in view of the conservation of the three prolines at equivalent positions in the Ancp sequences. These prolines belong to the signature sequences of the mitochondrial carriers and we propose they play a dual role in the mitochondrial ADP/ATP carrier function and biogenesis. Unexpectedly their mutations cause more general effects on mitochondrial biogenesis and morphology, as evidenced by measurements of respiratory rates, cytochrome contents, and also clearly highlighted by fluorescence microscopy.
Collapse
Affiliation(s)
- Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire, Université de Bordeaux, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France and
| | - Corinne Blancard
- Laboratoire de Physiologie Moléculaire et Cellulaire, Université de Bordeaux, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France and
| | - Ludovic Pelosi
- Université Joseph Fourier, Equipe Dynamique des Organelles et Plasticité Cellulaire, Laboratoire de Biologie à Grande Echelle (BGE), iRTSV-CEA de Grenoble, 17 rue des Martyrs, F-38054 Grenoble cedex 9, France
| | - Guy J-M Lauquin
- Laboratoire de Physiologie Moléculaire et Cellulaire, Université de Bordeaux, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France and
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire, Université de Bordeaux, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France and.
| |
Collapse
|
28
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|
29
|
Man P, Montagner C, Vitrac H, Kavan D, Pichard S, Gillet D, Forest E, Forge V. Accessibility Changes within Diphtheria Toxin T Domain upon Membrane Penetration Probed by Hydrogen Exchange and Mass Spectrometry. J Mol Biol 2011; 414:123-34. [DOI: 10.1016/j.jmb.2011.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/26/2011] [Indexed: 01/25/2023]
|
30
|
Mapping multiple potential ATP binding sites on the matrix side of the bovine ADP/ATP carrier by the combined use of MD simulation and docking. J Mol Model 2011; 18:2377-86. [PMID: 21989959 DOI: 10.1007/s00894-011-1255-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed.
Collapse
|
31
|
Thomas A, Rey M, Aubry L, Pelosi L. A hybrid model to study pathological mutations of the human ADP/ATP carriers. Biochimie 2011; 93:1415-23. [DOI: 10.1016/j.biochi.2011.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
|
32
|
Clémençon B, Rey M, Trézéguet V, Forest E, Pelosi L. Yeast ADP/ATP carrier isoform 2: conformational dynamics and role of the RRRMMM signature sequence methionines. J Biol Chem 2011; 286:36119-36131. [PMID: 21868387 DOI: 10.1074/jbc.m111.277376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure.
Collapse
Affiliation(s)
- Benjamin Clémençon
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38054, France
| | - Martial Rey
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38054, France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire, UMR 5095 CNRS, Institut de Biochimie et Génétique Cellulaires, 1 rue Camille Saint-Saëns, F-33077 Bordeaux, France; Université Victor Segalen, Bordeaux, F-33076, France
| | - Eric Forest
- Université Joseph Fourier, Grenoble, F-38000, France; CEA, DSV, Institut de Biologie Structurale, Grenoble, F-38054, France; Laboratoire de Spectrométrie de Masse des Protéines, UMR 5075 CNRS, Grenoble, F-38027, France.
| | - Ludovic Pelosi
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, F-38054, France; Université Joseph Fourier, Grenoble, F-38000, France.
| |
Collapse
|
33
|
Konràd C, Kiss G, Töröcsik B, Lábár JL, Gerencser AA, Mándi M, Adam-Vizi V, Chinopoulos C. A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration. FEBS J 2011; 278:822-36. [PMID: 21205213 DOI: 10.1111/j.1742-4658.2010.08001.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.
Collapse
Affiliation(s)
- Csaba Konràd
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shaw BF, Arthanari H, Narovlyansky M, Durazo A, Frueh DP, Pollastri MP, Lee A, Bilgicer B, Gygi SP, Wagner G, Whitesides GM. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability. J Am Chem Soc 2010; 132:17411-25. [PMID: 21090618 DOI: 10.1021/ja9067035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects of non-isoelectric perturbations to proteins (i.e., phosphorylation, acetylation, or the binding of the protein to an oligonucleotide or to another charged ligand or protein).
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|