1
|
Nakano T, Akamatsu K, Kohzaki M, Tsuda M, Hirayama R, Sassa A, Yasui M, Shoulkamy M, Hiromoto T, Tamada T, Ide H, Shikazono N. Deciphering repair pathways of clustered DNA damage in human TK6 cells: insights from atomic force microscopy direct visualization. Nucleic Acids Res 2025; 53:gkae1077. [PMID: 39797694 PMCID: PMC11724303 DOI: 10.1093/nar/gkae1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs). This study investigated the repair of each type of damage in DNA-repair-deficient human TK6 cells and elucidated the association between each type of clustered DNA damage and the pathway responsible for its repair postirradiation with low linear energy transfer (LET) radiation (X-rays) and high-LET radiation (Fe-ion beams) in cells. We found that base excision repair and, surprisingly, nucleotide excision repair restored simple and complex BDCs. In addition, the number of complex DSBs in wild-type cells increases 1 h postirradiation, which was most likely caused by BDC cleavage initiated with DNA glycosylases. Furthermore, complex DSBs, which are likely associated with lethality, are repaired by homologous recombination with little contribution from nonhomologous-end joining.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, QST Hospital, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Zoology, Faculty of Science, Minia University, El-Minia University Campus, Cairo-Aswan Road, Minia 61519, Egypt
| | - Takeshi Hiromoto
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| |
Collapse
|
2
|
Toprani SM, Scheibler C, Mordukhovich I, McNeely E, Nagel ZD. Cosmic Ionizing Radiation: A DNA Damaging Agent That May Underly Excess Cancer in Flight Crews. Int J Mol Sci 2024; 25:7670. [PMID: 39062911 PMCID: PMC11277465 DOI: 10.3390/ijms25147670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
In the United States, the Federal Aviation Administration has officially classified flight crews (FC) consisting of commercial pilots, cabin crew, or flight attendants as "radiation workers" since 1994 due to the potential for cosmic ionizing radiation (CIR) exposure at cruising altitudes originating from solar activity and galactic sources. Several epidemiological studies have documented elevated incidence and mortality for several cancers in FC, but it has not yet been possible to establish whether this is attributable to CIR. CIR and its constituents are known to cause a myriad of DNA lesions, which can lead to carcinogenesis unless DNA repair mechanisms remove them. But critical knowledge gaps exist with regard to the dosimetry of CIR, the role of other genotoxic exposures among FC, and whether possible biological mechanisms underlying higher cancer rates observed in FC exist. This review summarizes our understanding of the role of DNA damage and repair responses relevant to exposure to CIR in FC. We aimed to stimulate new research directions and provide information that will be useful for guiding regulatory, public health, and medical decision-making to protect and mitigate the risks for those who travel by air.
Collapse
Affiliation(s)
- Sneh M. Toprani
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Christopher Scheibler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Irina Mordukhovich
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Zachary D. Nagel
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| |
Collapse
|
3
|
Izumi T, Rychahou P, Chen L, Smith MH, Valentino J. Copy Number Variation That Influences the Ionizing Radiation Sensitivity of Oral Squamous Cell Carcinoma. Cells 2023; 12:2425. [PMID: 37887269 PMCID: PMC10605269 DOI: 10.3390/cells12202425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Genome instability in cancer cells causes not only point mutations but also structural variations of the genome, including copy number variations (CNVs). It has recently been proposed that CNVs arise in cancer to adapt to a given microenvironment to survive. However, how CNV influences cellular resistance against ionizing radiation remains unknown. PRMT5 (protein arginine methyltransferase 5) and APE1 (apurinic/apyrimidinic endonuclease 1), which enhance repair of DNA double-strand breaks and oxidative DNA damage, are closely localized in the chromosome 14 of the human genome. In this study, the genomics data for the PRMT5 and APE1 genes, including their expression, CNVs, and clinical outcomes, were analyzed using TCGA's data set for oral squamous cell carcinoma patients. The two genes were found to share almost identical CNV values among cancer tissues from oral squamous cell carcinoma (OSCC) patients. Levels of expression of PRMT5 and APE1 in OSCC tissues are highly correlated in cancer but not in normal tissues, suggesting that regulation of PRMT5 and APE1 were overridden by the extent of CNV in the PRMT5-APE1 genome region. High expression levels of PRMT5 and APE1 were both associated with poor survival outcomes after radiation therapy. Simultaneous down-regulation of PRMT5 and APE1 synergistically hampered DNA double-strand break repair and sensitized OSCC cell lines to X-ray irradiation in vitro and in vivo. These results suggest that the extent of CNV in a particular genome region significantly influence the radiation resistance of cancer cells. Profiling CNV in the PRMT5-APE1 genome region may help us to understand the mechanism of the acquired radioresistance of tumor cells, and raises the possibility that simultaneous inhibition of PRMT5 and APE1 may increase the efficacy of radiation therapy.
Collapse
Affiliation(s)
- Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Molly H. Smith
- Oral Pathology, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Cytology Laboratory, University of Kentucky, Lexington, KY 40506, USA
| | - Joseph Valentino
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Otorhinolaryngology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Liu VP, Li WM, Lofroth J, Zeb M, Patrick BO, Bott TM, Lee CH. A specific dispiropiperazine derivative that arrests cell cycle, induces apoptosis, necrosis and DNA damage. Sci Rep 2023; 13:8674. [PMID: 37248333 DOI: 10.1038/s41598-023-35927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Dispiropiperazine compounds are a class of molecules known to confer biological activity, but those that have been studied as cell cycle regulators are few in number. Here, we report the characterization and synthesis of two dispiropiperazine derivatives: the previously synthesized spiro[2',3]-bis(acenaphthene-1'-one)perhydrodipyrrolo-[1,2-a:1,2-d]-pyrazine (SPOPP-3, 1), and its previously undescribed isomer, spiro[2',5']-bis(acenaphthene-1'-one)perhydrodipyrrolo-[1,2-a:1,2-d]-pyrazine (SPOPP-5, 2). SPOPP-3 (1), but not SPOPP-5 (2), was shown to have anti-proliferative activity against a panel of 18 human cancer cell lines with IC50 values ranging from 0.63 to 13 µM. Flow cytometry analysis revealed that SPOPP-3 (1) was able to arrest cell cycle at the G2/M phase in SW480 human cancer cells. Western blot analysis further confirmed the cell cycle arrest is in the M phase. In addition, SPOPP-3 (1) was shown to induce apoptosis, necrosis, and DNA damage as well as disrupt mitotic spindle positioning in SW480 cells. These results warrant further investigation of SPOPP-3 (1) as a novel anti-cancer agent, particularly for its potential ability to sensitize cancer cells for radiation-induced cell death, enhance cancer immunotherapy, overcome apoptosis-related drug resistance and for possible use in synthetic lethality cancer treatments.
Collapse
Affiliation(s)
- Victor P Liu
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Wai-Ming Li
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Jack Lofroth
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Mehreen Zeb
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Tina M Bott
- Department of Physical Sciences, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Chow H Lee
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
5
|
Mechetin GV, Zharkov DO. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel) 2023; 14:127. [PMID: 36672868 PMCID: PMC9859301 DOI: 10.3390/genes14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an approach to the radiotherapy of solid tumors that was first outlined in the 1930s but has attracted considerable attention recently with the advent of a new generation of neutron sources. In BNCT, tumor cells accumulate 10B atoms that react with epithermal neutrons, producing energetic α particles and 7Li atoms that damage the cell's genome. The damage inflicted by BNCT appears not to be easily repairable and is thus lethal for the cell; however, the molecular events underlying the action of BNCT remain largely unaddressed. In this review, the chemistry of DNA damage during BNCT is outlined, the major mechanisms of DNA break sensing and repair are summarized, and the specifics of the repair of BNCT-induced DNA lesions are discussed.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Pidugu LS, Servius HW, Sevdalis SE, Cook ME, Varney KM, Pozharski E, Drohat AC. Characterizing inhibitors of human AP endonuclease 1. PLoS One 2023; 18:e0280526. [PMID: 36652434 PMCID: PMC9847973 DOI: 10.1371/journal.pone.0280526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.
Collapse
Affiliation(s)
- Lakshmi S. Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hardler W. Servius
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Spiridon E. Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mary E. Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- * E-mail: (EP); (ACD)
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (EP); (ACD)
| |
Collapse
|
7
|
Xue Z, Demple B. Knockout and Inhibition of Ape1: Roles of Ape1 in Base Excision DNA Repair and Modulation of Gene Expression. Antioxidants (Basel) 2022; 11:antiox11091817. [PMID: 36139891 PMCID: PMC9495735 DOI: 10.3390/antiox11091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism.
Collapse
Affiliation(s)
- Zhouyiyuan Xue
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Molecular and Cellular Biochemistry Program, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Correspondence: ; Tel.: +1-(631)-444-3978
| |
Collapse
|
8
|
Teng XQ, Qu J, Li GH, Zhuang HH, Qu Q. Small Interfering RNA for Gliomas Treatment: Overcoming Hurdles in Delivery. Front Cell Dev Biol 2022; 10:824299. [PMID: 35874843 PMCID: PMC9304887 DOI: 10.3389/fcell.2022.824299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are central nervous system tumors originating from glial cells, whose incidence and mortality rise in coming years. The current treatment of gliomas is surgery combined with chemotherapy or radiotherapy. However, developing therapeutic resistance is one of the significant challenges. Recent research suggested that small interfering RNA (siRNA) has excellent potential as a therapeutic to silence genes that are significantly involved in the manipulation of gliomas’ malignant phenotypes, including proliferation, invasion, metastasis, therapy resistance, and immune escape. However, it is challenging to deliver the naked siRNA to the action site in the cells of target tissues. Therefore, it is urgent to develop delivery strategies to transport siRNA to achieve the optimal silencing effect of the target gene. However, there is no systematic discussion about siRNAs’ clinical potential and delivery strategies in gliomas. This review mainly discusses siRNAs’ delivery strategies, especially nanotechnology-based delivery systems, as a potential glioma therapy. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Xin-Qi Teng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guo-Hua Li
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiang Qu,
| |
Collapse
|
9
|
DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules 2022; 27:molecules27051540. [PMID: 35268641 PMCID: PMC8911773 DOI: 10.3390/molecules27051540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Charged-particle radiotherapy (CPRT) utilizing low and high linear energy transfer (low-/high-LET) ionizing radiation (IR) is a promising cancer treatment modality having unique physical energy deposition properties. CPRT enables focused delivery of a desired dose to the tumor, thus achieving a better tumor control and reduced normal tissue toxicity. It increases the overall radiation tolerance and the chances of survival for the patient. Further improvements in CPRT are expected from a better understanding of the mechanisms governing the biological effects of IR and their dependence on LET. There is increasing evidence that high-LET IR induces more complex and even clustered DNA double-strand breaks (DSBs) that are extremely consequential to cellular homeostasis, and which represent a considerable threat to genomic integrity. However, from the perspective of cancer management, the same DSB characteristics underpin the expected therapeutic benefit and are central to the rationale guiding current efforts for increased implementation of heavy ions (HI) in radiotherapy. Here, we review the specific cellular DNA damage responses (DDR) elicited by high-LET IR and compare them to those of low-LET IR. We emphasize differences in the forms of DSBs induced and their impact on DDR. Moreover, we analyze how the distinct initial forms of DSBs modulate the interplay between DSB repair pathways through the activation of DNA end resection. We postulate that at complex DSBs and DSB clusters, increased DNA end resection orchestrates an increased engagement of resection-dependent repair pathways. Furthermore, we summarize evidence that after exposure to high-LET IR, error-prone processes outcompete high fidelity homologous recombination (HR) through mechanisms that remain to be elucidated. Finally, we review the high-LET dependence of specific DDR-related post-translational modifications and the induction of apoptosis in cancer cells. We believe that in-depth characterization of the biological effects that are specific to high-LET IR will help to establish predictive and prognostic signatures for use in future individualized therapeutic strategies, and will enhance the prospects for the development of effective countermeasures for improved radiation protection during space travel.
Collapse
|
10
|
Kim DV, Kulishova LM, Torgasheva NA, Melentyev VS, Dianov GL, Medvedev SP, Zakian SM, Zharkov DO. Mild phenotype of knockouts of the major apurinic/apyrimidinic endonuclease APEX1 in a non-cancer human cell line. PLoS One 2021; 16:e0257473. [PMID: 34529719 PMCID: PMC8445474 DOI: 10.1371/journal.pone.0257473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
The major human apurinic/apyrimidinic (AP) site endonuclease, APEX1, is a central player in the base excision DNA repair (BER) pathway and has a role in the regulation of DNA binding by transcription factors. In vertebrates, APEX1 knockouts are embryonic lethal, and only a handful of knockout cell lines are known. To facilitate studies of multiple functions of this protein in human cells, we have used the CRISPR/Cas9 system to knock out the APEX1 gene in a widely used non-cancer hypotriploid HEK 293FT cell line. Two stable knockout lines were obtained, one carrying two single-base deletion alleles and one single-base insertion allele in exon 3, another homozygous in the single-base insertion allele. Both mutations cause a frameshift that leads to premature translation termination before the start of the protein's catalytic domain. Both cell lines totally lacked the APEX1 protein and AP site-cleaving activity, and showed significantly lower levels of the APEX1 transcript. The APEX1-null cells were unable to support BER on uracil- or AP site-containing substrates. Phenotypically, they showed a moderately increased sensitivity to methyl methanesulfonate (MMS; ~2-fold lower EC50 compared with wild-type cells), and their background level of natural AP sites detected by the aldehyde-reactive probe was elevated ~1.5-2-fold. However, the knockout lines retained a nearly wild-type sensitivity to oxidizing agents hydrogen peroxide and potassium bromate. Interestingly, despite the increased MMS cytotoxicity, we observed no additional increase in AP sites in knockout cells upon MMS treatment, which could indicate their conversion into more toxic products in the absence of repair. Overall, the relatively mild cell phenotype in the absence of APEX1-dependent BER suggests that mammalian cells possess mechanisms of tolerance or alternative repair of AP sites. The knockout derivatives of the extensively characterized HEK 293FT cell line may provide a valuable tool for studies of APEX1 in DNA repair and beyond.
Collapse
Affiliation(s)
- Daria V. Kim
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Liliya M. Kulishova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - Vasily S. Melentyev
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Grigory L. Dianov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Suren M. Zakian
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
11
|
McNeill DR, Whitaker AM, Stark WJ, Illuzzi JL, McKinnon PJ, Freudenthal BD, Wilson DM. Functions of the major abasic endonuclease (APE1) in cell viability and genotoxin resistance. Mutagenesis 2021; 35:27-38. [PMID: 31816044 DOI: 10.1093/mutage/gez046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
DNA is susceptible to a range of chemical modifications, with one of the most frequent lesions being apurinic/apyrimidinic (AP) sites. AP sites arise due to damage-induced (e.g. alkylation) or spontaneous hydrolysis of the N-glycosidic bond that links the base to the sugar moiety of the phosphodiester backbone, or through the enzymatic activity of DNA glycosylases, which release inappropriate bases as part of the base excision repair (BER) response. Unrepaired AP sites, which lack instructional information, have the potential to cause mutagenesis or to arrest progressing DNA or RNA polymerases, potentially causing outcomes such as cellular transformation, senescence or death. The predominant enzyme in humans responsible for repairing AP lesions is AP endonuclease 1 (APE1). Besides being a powerful AP endonuclease, APE1 possesses additional DNA repair activities, such as 3'-5' exonuclease, 3'-phophodiesterase and nucleotide incision repair. In addition, APE1 has been shown to stimulate the DNA-binding activity of a number of transcription factors through its 'REF1' function, thereby regulating gene expression. In this article, we review the structural and biochemical features of this multifunctional protein, while reporting on new structures of the APE1 variants Cys65Ala and Lys98Ala. Using a functional complementation approach, we also describe the importance of the repair and REF1 activities in promoting cell survival, including the proposed passing-the-baton coordination in BER. Finally, results are presented indicating a critical role for APE1 nuclease activities in resistance to the genotoxins methyl methanesulphonate and bleomycin, supporting biologically important functions as an AP endonuclease and 3'-phosphodiesterase, respectively.
Collapse
Affiliation(s)
- Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Peter J McKinnon
- Department of Genetics and Tumor Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
12
|
Non-muscle invasive bladder cancer tissues have increased base excision repair capacity. Sci Rep 2020; 10:16371. [PMID: 33004944 PMCID: PMC7529820 DOI: 10.1038/s41598-020-73370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying the development and progression of bladder cancer (BC) are complex and have not been fully elucidated. Alterations in base excision repair (BER) capacity, one of several DNA repair mechanisms assigned to preserving genome integrity, have been reported to influence cancer susceptibility, recurrence, and progression, as well as responses to chemotherapy and radiotherapy. We report herein that non-muscle invasive BC (NMIBC) tissues exhibit increased uracil incision, abasic endonuclease and gap-filling activities, as well as total BER capacity in comparison to normal bladder tissue from the same patient (p < 0.05). No significant difference was detected in 8-oxoG incision activity between cancer and normal tissues. NMIBC tissues have elevated protein levels of uracil DNA glycosylase, 8-oxoguanine DNA glycosylase, AP endonuclease 1 and DNA polymerase β protein. Moreover, the fold increase in total BER and the individual BER enzyme activities were greater in high-grade tissues than in low-grade NMIBC tissues. These findings suggest that enhanced BER activity may play a role in the etiology of NMIBC and that BER proteins could serve as biomarkers in disease prognosis, progression or response to genotoxic therapeutics, such as Bacillus Calmette–Guérin.
Collapse
|
13
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
14
|
Murray V, Hardie ME, Gautam SD. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel) 2019; 11:genes11010008. [PMID: 31861886 PMCID: PMC7016695 DOI: 10.3390/genes11010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
Ionising radiation (IR) is known to induce a wide variety of lesions in DNA. In this review, we compared three different techniques that examined the DNA sequence preference of IR-induced DNA damage at nucleotide resolution. These three techniques were: the linear amplification/polymerase stop assay, the end-labelling procedure, and Illumina next-generation genome-wide sequencing. The DNA sequence preference of IR-induced DNA damage was compared in purified DNA sequences including human genomic DNA. It was found that the DNA sequence preference of IR-induced DNA damage identified by the end-labelling procedure (that mainly detected single-strand breaks) and Illumina next-generation genome-wide sequencing (that mainly detected double-strand breaks) was at C nucleotides, while the linear amplification/polymerase stop assay (that mainly detected base damage) was at G nucleotides. A consensus sequence at the IR-induced DNA damage was found to be 5′-AGGC*C for the end-labelling technique, 5′-GGC*MH (where * is the cleavage site, M is A or C, H is any nucleotide except G) for the genome-wide technique, and 5′-GG* for the linear amplification/polymerase stop procedure. These three different approaches are important because they provide a deeper insight into the mechanism of action of IR-induced DNA damage.
Collapse
Affiliation(s)
- Vincent Murray
- Correspondence: ; Tel.: +61-2-9385-2028; Fax: +61-2-9385-1483
| | | | | |
Collapse
|
15
|
Hardie ME, Murray V. The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay. Int J Radiat Biol 2019; 95:1613-1626. [PMID: 31498026 DOI: 10.1080/09553002.2019.1665216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The aim of this paper was to investigate the sequence preference of ionizing radiation (IR)-induced DNA damage as assessed by a linear amplification/polymerase stop (LA/PS) assay. The LA/PS assay is able to detect a wide range of IR-induced DNA lesions and this technique was utilized to quantitatively determine the preferential sites of gamma irradiation-induced DNA lesions in three different DNA sequences.Materials and methods: This analysis was performed on an automated DNA sequencer with capillary electrophoresis and laser-induced fluorescence detection.Results: The main outcome of this study was that G nucleotides were preferentially found at IR-induced polymerase stop sites. The individual nucleotides at the IR-induced DNA damage sites were analyzed and a consensus sequence of 5'-GG* (where * indicates the damaged nucleotide) was observed. In a separate method of analysis, the dinucleotides and trinucleotides at the IR-induced DNA damage sites were examined and 5'-GG* and 5'-G*G dinucleotides and 5'-GG*G trinucleotides were found to be the most prevalent. The use of the LA/PS assay permits a large number of IR-induced DNA lesions to be detected in the one procedure including: double- and single-strand breaks, apurinic/apyrimidinic sites and base damage.Conclusions: It was concluded that 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-G) and the degradation products of 8-oxoG were possibly the main lesions detected. To our knowledge, this is the first occasion that the DNA sequence preference of IR-induced DNA damage as detected by a LA/PS assay has been reported.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Hognon C, Gebus A, Barone G, Monari A. Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes. Antioxidants (Basel) 2019; 8:antiox8090337. [PMID: 31443537 PMCID: PMC6770428 DOI: 10.3390/antiox8090337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023] Open
Abstract
By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channel and that (ii) the electrostatic interactions of the DNA sequence with the aforementioned cations are fundamental to the maintenance of the global quadruplex structure.
Collapse
Affiliation(s)
- Cecilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Adrien Gebus
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France
| | - Giampaolo Barone
- Department of Biological, Chenical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
17
|
Siberchicot C, Gault N, Déchamps N, Barroca V, Aguzzi A, Roméo PH, Radicella JP, Bravard A, Bernardino-Sgherri J. Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation. Haematologica 2019; 105:1216-1222. [PMID: 31371412 PMCID: PMC7193476 DOI: 10.3324/haematol.2018.205716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.
Collapse
Affiliation(s)
- Capucine Siberchicot
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Nathalie Gault
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Nathalie Déchamps
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Vilma Barroca
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Paul-Henri Roméo
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - J Pablo Radicella
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Anne Bravard
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Jacqueline Bernardino-Sgherri
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
18
|
Hardie ME, Gautam SD, Murray V. The genome-wide sequence preference of ionising radiation-induced cleavage in human DNA. Mol Biol Rep 2019; 46:3731-3745. [PMID: 31037547 DOI: 10.1007/s11033-019-04815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
For ionising radiation (IR)-induced cellular toxicity, DNA cleavage is thought to be a crucial step. In this paper, the genome-wide DNA sequence preference of gamma radiation-induced cleavage was investigated in purified human DNA. We utilised Illumina short read technology and over 80 million double-strand breaks (DSBs) were analysed in this study. The frequency of occurrence of individual nucleotides at the 50,000 most frequently cleaved sites was calculated and C nucleotides were found to be most prevalent at the cleavage site, followed by G and T, with A being the least prevalent. 5'-C*C and 5'-CC* dinucleotides (where * is the cleavage site) were found to be the present at the highest frequency at the cleavage site; while it was 5'-CC*C for trinucleotides and 5'-GCC*C and 5'-CC*CC for tetranucleotides. The frequency of occurrence of individual nucleotides at the most frequently cleaved sites was determined and the nucleotides in the sequence 5'-GGC*MH (where M is A or C, H is any nucleotide except G) were found to occur most frequently for DNA that was treated with endonuclease IV (to remove blocking 3'-phosphoglycolate termini); and 5'-GSC*MH (where S is G or C) for non-endonuclease IV-treated DNA. It was concluded that GC-rich sequences were preferentially targeted for cleavage by gamma irradiation. This was the first occasion that an extensive examination of the genome-wide DNA sequence preference of IR-induced DSBs has been performed.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Gerin I, Bury M, Baldin F, Graff J, Van Schaftingen E, Bommer GT. Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines. Biochem J 2019; 476:629-643. [PMID: 30670572 PMCID: PMC6380167 DOI: 10.1042/bcj20180435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Repair of a certain type of oxidative DNA damage leads to the release of phosphoglycolate, which is an inhibitor of triose phosphate isomerase and is predicted to indirectly inhibit phosphoglycerate mutase activity. Thus, we hypothesized that phosphoglycolate might play a role in a metabolic DNA damage response. Here, we determined how phosphoglycolate is formed in cells, elucidated its effects on cellular metabolism and tested whether DNA damage repair might release sufficient phosphoglycolate to provoke metabolic effects. Phosphoglycolate concentrations were below 5 µM in wild-type U2OS and HCT116 cells and remained unchanged when we inactivated phosphoglycolate phosphatase (PGP), the enzyme that is believed to dephosphorylate phosphoglycolate. Treatment of PGP knockout cell lines with glycolate caused an up to 500-fold increase in phosphoglycolate concentrations, which resulted largely from a side activity of pyruvate kinase. This increase was much higher than in glycolate-treated wild-type cells and was accompanied by metabolite changes consistent with an inhibition of phosphoglycerate mutase, most likely due to the removal of the priming phosphorylation of this enzyme. Surprisingly, we found that phosphoglycolate also inhibits succinate dehydrogenase with a Ki value of <10 µM. Thus, phosphoglycolate can lead to profound metabolic disturbances. In contrast, phosphoglycolate concentrations were not significantly changed when we treated PGP knockout cells with Bleomycin or ionizing radiation, which are known to lead to the release of phosphoglycolate by causing DNA damage. Thus, phosphoglycolate concentrations due to DNA damage are too low to cause major metabolic changes in HCT116 and U2OS cells.
Collapse
Affiliation(s)
- Isabelle Gerin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Marina Bury
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Francesca Baldin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Julie Graff
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Emile Van Schaftingen
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Guido T Bommer
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| |
Collapse
|
20
|
Palazzo RP, Jardim LB, Bacellar A, de Oliveira FR, Maraslis FT, Pereira CHJ, da Silva J, Maluf SW. DNA damage and repair in individuals with ataxia-telangiectasia and their parents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:122-126. [DOI: 10.1016/j.mrgentox.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
21
|
Sengupta S, Mantha AK, Song H, Roychoudhury S, Nath S, Ray S, Bhakat KK. Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair. Oncotarget 2018; 7:75197-75209. [PMID: 27655688 PMCID: PMC5342734 DOI: 10.18632/oncotarget.12113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation.
Collapse
Affiliation(s)
- Shiladitya Sengupta
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030 , USA
| | - Anil K Mantha
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Somsubhra Nath
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Molecular Biology Research & Diagnostic Laboratory, Saroj Gupta Cancer Centre & Research Institute, Kolkata 700063, India
| | - Sutapa Ray
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Gautam SD, Hardie ME, Murray V. The Sequence Preference of Gamma-Radiation-Induced Damage in End-Labeled DNA after Heat Treatment. Radiat Res 2017; 189:238-250. [PMID: 29286256 DOI: 10.1667/rr14886.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this work, we examined the DNA sequence preference of gamma-radiation-induced DNA damage in purified DNA sequences after heat treatment. DNA was fluorescently end-labeled and gamma-radiation-induced DNA cleavage was examined using capillary electrophoresis with laser-induced fluorescence detection. Our findings provide evidence that gamma-radiation-induced DNA damage to end-labeled DNA is nonrandom and has a sequence preference. The degree of cleavage was quantified at each nucleotide, and we observed that preferential cleavage occurred at C nucleotides with lesser cleavage at G nucleotides, while being very low at T nucleotides. The differences in percentage cleavage at individual nucleotides ranged up to sixfold. The DNA sequences surrounding the most intense radiation-induced DNA cleavage sites were examined and a consensus sequence 5'-AGGC*C (where C* is the cleavage site) was found. The highest intensity gamma-radiation-induced DNA cleavage sites were found at the dinucleotides, 5'-GG*, 5'-GC*, 5'-C*C and 5'-G*G and at the trinucleotides, 5'-GG*C, 5'-TC*A, 5'-GG*G and 5'-GC*C. These findings have implications for our understanding of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Hong J, Chen Z, Peng D, Zaika A, Revetta F, Washington MK, Belkhiri A, El-Rifai W. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts. Oncotarget 2017; 7:16688-702. [PMID: 26934647 PMCID: PMC4941344 DOI: 10.18632/oncotarget.7696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes.
Collapse
Affiliation(s)
- Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dunfa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Zaika
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Frank Revetta
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Kievit FM, Wang K, Ozawa T, Tarudji AW, Silber JR, Holland EC, Ellenbogen RG, Zhang M. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:2131-2139. [PMID: 28614736 PMCID: PMC6002851 DOI: 10.1016/j.nano.2017.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) remains incurable, and recurrent tumors rarely respond to standard-of-care radiation and chemo-therapies. Therefore, strategies that enhance the effects of these therapies should provide significant benefits to GBM patients. We have developed a nanoparticle delivery vehicle that can stably bind and protect nucleic acids for specific delivery into brain tumor cells. These nanoparticles can deliver therapeutic siRNAs to sensitize GBM cells to radiotherapy and improve GBM treatment via systemic administration. We show that nanoparticle-mediated knockdown of the DNA repair protein apurinic endonuclease 1 (Ape1) sensitizes GBM cells to radiotherapy and extend survival in a genetic mouse model of GBM. Specific knockdown of Ape1 activity by 30% in brain tumor tissue doubled the extended survival achieved with radiotherapy alone. Ape1 is a promising target for increasing the effectiveness of radiotherapy, and nanoparticle-mediated delivery of siRNA is a promising strategy for tumor specific knockdown of Ape1.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States
| | - Tatsuya Ozawa
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA, United States
| | - Aria W Tarudji
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States.
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
25
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
26
|
Gattuso H, Durand E, Bignon E, Morell C, Georgakilas AG, Dumont E, Chipot C, Dehez F, Monari A. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity. J Phys Chem Lett 2016; 7:3760-3765. [PMID: 27612215 DOI: 10.1021/acs.jpclett.6b01692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine-Nancy , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- CNRS , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
| | - Elodie Durand
- Université de Lorraine-Nancy , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- CNRS , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
| | - Emmanuelle Bignon
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie, F-69342 Lyon, France
- Université de Lyon , Institut des Sciences Analytiques UMR 5280, CNRS, Université de Lyon 1, ENS Lyon 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Christophe Morell
- Université de Lyon , Institut des Sciences Analytiques UMR 5280, CNRS, Université de Lyon 1, ENS Lyon 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Alexandros G Georgakilas
- DNA damage laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA) , Zografou, Athens 15780, Greece
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie, F-69342 Lyon, France
| | - Christophe Chipot
- Université de Lorraine-Nancy , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- CNRS , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street, Urbana, Illinois 61801, United States
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign
| | - François Dehez
- Université de Lorraine-Nancy , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- CNRS , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign
| | - Antonio Monari
- Université de Lorraine-Nancy , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
- CNRS , Theory-Modeling-Simulation SRSMC, 54000 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
27
|
Guerreiro PS, Estácio SG, Antunes F, Fernandes AS, Pinheiro PF, Costa JG, Castro M, Miranda JP, Guedes RC, Oliveira NG. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem Biol Drug Des 2016; 88:915-925. [DOI: 10.1111/cbdd.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Sílvia G. Estácio
- BioISI - Biosystems and Integrative Sciences Institute; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Pedro F. Pinheiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química Estrutural (CQE); Instituto Superior Técnico; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
28
|
Saintigny Y, Chevalier F, Bravard A, Dardillac E, Laurent D, Hem S, Dépagne J, Radicella JP, Lopez BS. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis. Sci Rep 2016; 6:29412. [PMID: 27406380 PMCID: PMC4942696 DOI: 10.1038/srep29412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023] Open
Abstract
Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses.
Collapse
Affiliation(s)
- Yannick Saintigny
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - François Chevalier
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - Anne Bravard
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR967 INSERM/CEA/Universités Paris Diderot et Paris Saclay, Fontenay aux Roses, F-92265, France
| | - Elodie Dardillac
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR 8200 CNRS, Institut de cancérologie Gustave Roussy, Université Paris-Saclay, équipe labélisée par la Ligue bationale contre le Cancer "LIGUE 2014", Villejuif, F-94805, France
| | - David Laurent
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - Sonia Hem
- Plateforme de spectrométrie de masse protéomique - MSPP, Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Univ. Montpellier, 34060 Montpellier, France
| | - Jordane Dépagne
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR967 INSERM/CEA/Universités Paris Diderot et Paris Saclay, Fontenay aux Roses, F-92265, France
| | - Bernard S Lopez
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR 8200 CNRS, Institut de cancérologie Gustave Roussy, Université Paris-Saclay, équipe labélisée par la Ligue bationale contre le Cancer "LIGUE 2014", Villejuif, F-94805, France
| |
Collapse
|
29
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|
30
|
Solovjeva L, Firsanov D, Vasilishina A, Chagin V, Pleskach N, Kropotov A, Svetlova M. DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts. BMC Mol Biol 2015; 16:18. [PMID: 26458748 PMCID: PMC4601148 DOI: 10.1186/s12867-015-0046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background Studies of DNA damage response are critical for the comprehensive understanding of age-related changes in cells, tissues and organisms. Syrian hamster cells halt proliferation and become presenescent after several passages in standard conditions of cultivation due to what is known as «culture stress». Using proliferating young and non-dividing presenescent cells in primary cultures of Syrian hamster fibroblasts, we defined their response to the action of radiomimetic drug bleomycin (BL) that induces DNA double-strand breaks (DSBs). Results The effect of the drug was estimated by immunoblotting and immunofluorescence microscopy using the antibody to phosphorylated histone H2AX (gH2AX), which is generally accepted as a DSB marker. At all stages of the cell cycle, both presenescent and young cells demonstrated variability of the number of gH2AX foci per nucleus. gH2AX focus induction was found to be independent from BL-hydrolase expression. Some differences in DSB repair process between BL-treated young and presenescent Syrian hamster cells were observed: (1) the kinetics of gH2AX focus loss in G0 fibroblasts of young culture was faster than in cells that prematurely stopped dividing; (2) presenescent cells were characterized by a slower recruitment of DSB repair proteins 53BP1, phospho-DNA-PK and phospho-ATM to gH2AX focal sites, while the rate of phosphorylated ATM/ATR substrate accumulation was the same as that in young cells. Conclusions Our results demonstrate an impairment of DSB repair in prematurely aged Syrian hamster fibroblasts in comparison with young fibroblasts, suggesting age-related differences in response to BL therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0046-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Denis Firsanov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia. .,Saint-Petersburg's State Pediatric Medical University, Ministry of Health of Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100, Russia.
| | - Anastasia Vasilishina
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Vadim Chagin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Nadezhda Pleskach
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| |
Collapse
|
31
|
Suresh Kumar MA, Peluso M, Chaudhary P, Dhawan J, Beheshti A, Manickam K, Thapar U, Pena L, Natarajan M, Hlatky L, Demple B, Naidu M. Fractionated Radiation Exposure of Rat Spinal Cords Leads to Latent Neuro-Inflammation in Brain, Cognitive Deficits, and Alterations in Apurinic Endonuclease 1. PLoS One 2015. [PMID: 26208353 PMCID: PMC4514622 DOI: 10.1371/journal.pone.0133016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.
Collapse
Affiliation(s)
- M. A. Suresh Kumar
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Michael Peluso
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queens University, Belfast, United Kingdom
| | - Jasbeer Dhawan
- Department of Psychology, Stony Brook University, Stony Brook, New York, United States of America
| | - Afshin Beheshti
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Krishnan Manickam
- Department of Pathology, UTHSCSA, San Antonio, Texas, United States of America
| | - Upasna Thapar
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Louis Pena
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Mohan Natarajan
- Department of Pathology, UTHSCSA, San Antonio, Texas, United States of America
| | - Lynn Hlatky
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Mamta Naidu
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hsia KT, Liu CJ, Mar K, Lin LH, Lin CS, Cheng MF, Lee HS, Chiu SY. Impact of apurinic/apyrimidinic endonuclease 1/redox factor-1 on treatment response and survival in oral squamous cell carcinoma. Head Neck 2015; 38:550-9. [PMID: 25482590 DOI: 10.1002/hed.23927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox signaling. The purpose of this study was to investigate the relationship between APE1/Ref-1 expression and clinicopathological features, survival, and treatment response in patients with oral squamous cell carcinoma (OSCC) and cell lines. METHODS APE1/Ref-1 expression in OSCC was evaluated by immunohistochemistry, and its relationship to patient outcomes and treatment response was assessed statistically. The effects of stable short hairpin (sh)RNA-mediated knockdown of APE1/Ref-1 on cell survival, migration, and chemoradiation sensitivity were determined in OSCC cell lines. RESULTS APE1/Ref-1 immunostaining was correlated with positive lymph node status, and higher APE1/Ref-1 expression was significantly associated with poor prognosis and reduced treatment response. Consistent with the clinical studies, APE1/Ref-1 expression in OSCC cell lines was implicated in the regulation of migration and cisplatin-induced apoptosis. CONCLUSION Elevated APE1/Ref-1 expression may be used to predict poor survival and may confer chemoresistance in OSCC.
Collapse
Affiliation(s)
- Kan-Tai Hsia
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kwei Mar
- Department of Dentistry, Zhongxiao Branch, Taipei City Hospital, Taipei, Taiwan
| | - Li-Han Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Fang Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Histological and Clinical Pathology, Hualien Armed Forced General Hospital, Hualien, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shang-Yi Chiu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
33
|
Montaldi AP, Godoy PRDV, Sakamoto-Hojo ET. APE1/REF-1 down-regulation enhances the cytotoxic effects of temozolomide in a resistant glioblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:19-29. [PMID: 26520369 DOI: 10.1016/j.mrgentox.2015.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023]
Abstract
Temozolomide (TMZ) is widely used for patients with glioblastoma (GBM); however, tumor cells frequently exhibit drug-resistance. Base excision repair (BER) has been identified as a possible mediator of TMZ resistance, and an attractive approach to sensitizing cells to chemotherapy. Human apurinic/apyrimidinic endonuclease/redox factor-1 (APE1) is an essential enzyme with a role in the BER pathway by repairing abasic sites, and it also acts as a reduction factor, maintaining transcription factors in an active reduced state. Thus, we aimed to investigate whether the down-regulation of APE1 expression by siRNA can interfere with the resistance of GBM to TMZ, being evaluated by several cellular and molecular parameters. We demonstrated that APE1 knockdown associated with TMZ treatment efficiently reduced cell proliferation and clonogenic survival of resistant cells (T98G), which appears to be a consequence of increased DNA damage, S-phase arrest, and H2AX phosphorylation, resulting in apoptosis induction. On the contrary, for those assays, the sensitization effects of APE1 silencing plus TMZ treatment did not occur in the TMZ-sensitive cell line (U87MG). Interestingly, TMZ-treatment and APE1 knockdown significantly reduced cell invasion in both cell lines, but TMZ alone did not reduce the invasion capacity of U87MG cells, as observed for T98G. We also found that VEGF expression was down-regulated by TMZ treatment in T98G cells, regardless of APE1 knockdown, but U87MG showed a different response, since APE1 silencing counteracted VEGF induction promoted by TMZ, suggesting that the APE1-redox function may play an indirect role, depending on the cell line. The present results support the contribution of BER in the GBM resistance to TMZ, with a greater effect in TMZ-resistant, compared with TMZ-sensitive cells, emphasizing that APE1 can be a promising target for modifying TMZ tolerance. Furthermore, genetic characteristics of tumor cells should be considered as critical information to select an appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Ana P Montaldi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Paulo R D V Godoy
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil.
| |
Collapse
|
34
|
Poletto M, Malfatti MC, Dorjsuren D, Scognamiglio PL, Marasco D, Vascotto C, Jadhav A, Maloney DJ, Wilson DM, Simeonov A, Tell G. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties. Mol Carcinog 2015; 55:688-704. [PMID: 25865359 DOI: 10.1002/mc.22313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/10/2015] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation. This protein-protein interaction modulates subcellular localization and endonuclease activity of APE1. Moreover, we reported a correlation between APE1 and NPM1 expression levels in ovarian cancer, with NPM1 overexpression being a marker of poor prognosis. These observations suggest that tumors that display an augmented APE1/NPM1 association may exhibit increased aggressiveness and resistance. Therefore, targeting the APE1/NPM1 interaction might represent an innovative strategy for the development of anticancer drugs, as tumor cells relying on higher levels of APE1 and NPM1 for proliferation and survival may be more sensitive than untransformed cells. We set up a chemiluminescence-based high-throughput screening assay in order to find small molecules able to interfere with the APE1/NPM1 interaction. This screening led to the identification of a set of bioactive compounds that impair the APE1/NPM1 association in living cells. Interestingly, some of these molecules display anti-proliferative activity and sensitize cells to therapeutically relevant genotoxins. Given the prognostic significance of APE1 and NPM1, these compounds might prove effective in the treatment of tumors that show abundant levels of both proteins, such as ovarian or hepatic carcinomas.
Collapse
Affiliation(s)
- Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Matilde C Malfatti
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pasqualina L Scognamiglio
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
35
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
36
|
Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, Silber JR, Zhang M. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation. Mol Oncol 2015; 9:1071-80. [PMID: 25681012 DOI: 10.1016/j.molonc.2015.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) and ependymoma (EP) are the most common pediatric brain tumors, afflicting 3000 children annually. Radiotherapy (RT) is an integral component in the treatment of these tumors; however, the improvement in survival is often accompanied by radiation-induced adverse developmental and psychosocial sequelae. Therefore, there is an urgent need to develop strategies that can increase the sensitivity of brain tumors cells to RT while sparing adjacent healthy brain tissue. Apurinic endonuclease 1 (Ape1), an enzyme in the base excision repair pathway, has been implicated in radiation resistance in cancer. Pharmacological and specificity limitations inherent to small molecule inhibitors of Ape1 have hindered their clinical development. Here we report on a nanoparticle (NP) based siRNA delivery vehicle for knocking down Ape1 expression and sensitizing pediatric brain tumor cells to RT. The NP comprises a superparamagnetic iron oxide core coated with a biocompatible, biodegradable coating of chitosan, polyethylene glycol (PEG), and polyethyleneimine (PEI) that is able to bind and protect siRNA from degradation and to deliver siRNA to the perinuclear region of target cells. NPs loaded with siRNA against Ape1 (NP:siApe1) knocked down Ape1 expression over 75% in MB and EP cells, and reduced Ape1 activity by 80%. This reduction in Ape1 activity correlated with increased DNA damage post-irradiation, which resulted in decreased cell survival in clonogenic assays. The sensitization was specific to therapies generating abasic lesions as evidenced by NP:siRNA not increasing sensitivity to paclitaxel, a microtubule disrupting agent. Our results indicate NP-mediated delivery of siApe1 is a promising strategy for circumventing pediatric brain tumor resistance to RT.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Li F, Cheng Y, Iliakis G. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU. Int J Radiat Biol 2015; 91:312-20. [PMID: 25510257 DOI: 10.3109/09553002.2014.996260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiosensitization by bromodeoxyuridine (BrdU) is commonly attributed to an increase in the yield of double-strand breaks (DSB) in the DNA and an associated decrease in the reparability of these lesions. Radiation chemistry provides a mechanism for the increased yield of DSB through the generation, after bromine loss, of a highly reactive uracilyl radical that attacks the sugar moiety of the nucleotide to produce a single-strand break (SSB). The effects underpinning DSB repair inhibition remain, in contrast, incompletely characterized. A possible source of reduced reparability is a change in the nature or complexity of the DSB in BrdU-substituted DNA. Recent studies show that DSB-complexity or DSB-nature may also be affected by the presence within the cluster of thermally labile sugar lesions (TLSL) that break the DNA backbone only if they chemically evolve to SSB, a process thought to occur within the first hour post-irradiation. Since BrdU radiosensitization might be associated with increased yields and reduced reparability of DSB, we investigated whether BrdU underpins these effects by shifting the balance in the generation of TLSL. METHODS AND MATERIALS We employed asymmetric-field-inversion gel electrophoresis (AFIGE), a pulsed-field gel electrophoresis (PFGE) method to quantitate DSB in a battery of five cells lines grown in the presence of different concentrations of BrdU. We measured specifically the yields of promptly forming DSB (prDSB) using low temperature lysis protocols, and the yields of total DSB (tDSB = prDSB + tlDSB; tlDSB form after evolution to SSB of TLSL) using high temperature lysis protocols. RESULTS We report that incorporation of BrdU generates similar increases in the formation of tlDSB and prDSB, but variations are noted among the different cell lines tested. CONCLUSIONS The similar increase in the yields of tlDSB and prDSB in BrdU substituted DNA showed that shifts in the yields of these forms of lesions could not be invoked to explain BrdU radiosensitization.
Collapse
Affiliation(s)
- Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | | | | |
Collapse
|
38
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
39
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
40
|
Wang H, Wang X, Chen G, Zhang X, Tang X, Park D, Cucinotta FA, Yu DS, Deng X, Dynan WS, Doetsch PW, Wang Y. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. J Biol Chem 2014; 289:30635-30644. [PMID: 25210033 DOI: 10.1074/jbc.m114.604959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Guangnan Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Xiaobing Tang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Nevada 89154
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Paul W Doetsch
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 and.
| |
Collapse
|
41
|
Strande NT, Carvajal-Garcia J, Hallett RA, Waters CA, Roberts SA, Strom C, Kuhlman B, Ramsden DA. Requirements for 5'dRP/AP lyase activity in Ku. Nucleic Acids Res 2014; 42:11136-43. [PMID: 25200085 PMCID: PMC4176175 DOI: 10.1093/nar/gku796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-homologous end joining (NHEJ) pathway is used in diverse species to repair chromosome breaks, and is defined in part by a requirement for Ku. We previously demonstrated mammalian Ku has intrinsic 5′ deoxyribosephosphate (5′dRP) and apurinic/apyrimidinic (AP) lyase activity, and showed this activity is important for excising abasic site damage from ends. Here we employ systematic mutagenesis to clarify the protein requirements for this activity. We identify lysine 31 in the 70 kD subunit (Ku70 K31) as the primary candidate nucleophile required for catalysis, but additional mutation of Ku70 K160 and six other lysines within Ku80 were required to eliminate all activity. Ku from Saccharomyces cerevisiae also possesses 5′dRP/AP lyase activity, and robust activity was also reliant on lysines in Ku70 analogous to K31 and K160. By comparison, these lysines are not conserved in Xenopus laevis Ku, and Ku from this species has negligible activity. A role for residues flanking Ku70 K31 in expanding the range of abasic site contexts that can be used as substrate was also identified. Our results suggest an active site well located to provide the substrate specificity required for its biological role.
Collapse
Affiliation(s)
- Natasha T Strande
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryan A Hallett
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Crystal A Waters
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christina Strom
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Brian Kuhlman
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Wang Z, Ayoub E, Mazouzi A, Grin I, Ishchenko AA, Fan J, Yang X, Harihar T, Saparbaev M, Ramotar D. Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3'-diesterase-deficient strain. DNA Repair (Amst) 2014; 22:53-66. [PMID: 25108836 DOI: 10.1016/j.dnarep.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/17/2014] [Indexed: 12/22/2022]
Abstract
Human APE1 is an essential enzyme performing functions in DNA repair and transcription. It possesses four distinct repair activities acting on a variety of base and sugar derived DNA lesions. APE1 has seven cysteine residues and Cys65, and to a lesser extent Cys93 and Cys99, is uniquely involved in maintaining a subset of transcription factors in the reduced and active state. Four of the cysteines Cys93, 99, 208 and 310 of APE1 are located proximal to its active site residues Glu96, Asp210 and His309 involved in processing damaged DNA, raising the possibility that missense mutation of these cysteines could alter the enzyme DNA repair functions. An earlier report documented that serine substitution of the individual cysteine residues did not affect APE1 ability to cleave an abasic site oligonucleotide substrate in vitro, except for Cys99Ser, although any consequences of these variants in the repair of in vivo DNA lesions were not tested. Herein, we mutated all seven cysteines of APE1, either singly or in combination, to alanine and show that none of the resulting variants interfered with the enzyme DNA repair functions. Cross-specie complementation analysis reveals that these APE1 cysteine variants fully rescued the yeast DNA repair deficient strain YW778, lacking AP endonucleases and 3'-diesterases, from toxicities caused by DNA damaging agents. Moreover, the elevated spontaneous mutations arising in strain YW778 from the lack of the DNA repair activities were completely suppressed by the APE1 cysteine variants. These findings suggest that the cysteine residues of APE1 are unlikely to play a role in the DNA repair functions of the enzyme in vivo. We also examine other APE1 missense mutations and provide the first evidence that the variant Asp308Ala with normal AP endonuclease, but devoid of 3'→5' exonuclease, displays hypersensitivity to the anticancer drug bleomycin, and not to other agents, suggesting that it has a defect in processing unique DNA lesions. Molecular modeling reveals that Asp308Ala cannot make proper contact with Mg(2+) and may alter the enzyme ability to cleave or disassociate from specific DNA lesions.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4
| | - Emily Ayoub
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4
| | - Abdelghani Mazouzi
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4
| | - Inga Grin
- Groupe Réparation de l'ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave-Roussy Cancer Center, F-94805 Villejuif Cedex, France; SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave. , Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Groupe Réparation de l'ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave-Roussy Cancer Center, F-94805 Villejuif Cedex, France
| | - Jinjiang Fan
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Xiaoming Yang
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4
| | - Taramatti Harihar
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4
| | - Murat Saparbaev
- Groupe Réparation de l'ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave-Roussy Cancer Center, F-94805 Villejuif Cedex, France
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal 5415 Boul. de l' Assomption, Montréal, Québec, Canada H1T 2M4.
| |
Collapse
|
43
|
Lou D, Zhu L, Ding H, Dai HY, Zou GM. Aberrant expression of redox protein Ape1 in colon cancer stem cells. Oncol Lett 2014; 7:1078-1082. [PMID: 24944672 PMCID: PMC3961307 DOI: 10.3892/ol.2014.1864] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022] Open
Abstract
Ape1 is an important redox protein, essential for specific cytokine-induced signal transduction. Ape1 signaling is also important in regulating the growth of cancer cells, including colon cancer cells. The present study investigated whether Ape1 signaling plays a role in the regulation of colon cancer stem cell (CCSC) growth. The results showed that Ape1 was aberrantly expressed in CCSCs, as determined by quantitative (q)PCR assay. A laser confocal microscopy assay demonstrated that the Ape1 protein was mainly distributed in the nuclei, but not the cytoplasm, of the CSCs. Treatment of CCSCs with Ape1 redox inhibitor (E3330) significantly affected growth in vitro. In colon cancer xenograft mice, in vivo administration of E3330 enhanced tumor responses to the chemotherapeutic drug, 5-fluorouracil (5-FU). Furthermore, the combination of E3330 and 5-FU evidently increased the cytotoxicity of 5-FU in CSC growth. In the qPCR assay, the CCSCs were demonstrated to express the dominant ATP-binding cassette sub-family G member 2 (ABC-G2), but not the multidrug resistance 1, genes. Thus, we hypothesized that drug resistance in CCSCs is mediated by ABC-G2. Since CSCs are involved in cancer metastasis, the Ape1 inhibitor may be a potential agent in the inhibition of colon cancer growth and metastasis.
Collapse
Affiliation(s)
- Debao Lou
- Department of Pharmacy, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Lina Zhu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Huawei Ding
- Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Hai-Yan Dai
- Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Gang-Ming Zou
- Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, P.R. China ; Shanghai Institute for Pediatrics Research, Xin Hua Hospital, Shanghai Jiao Tong University Shanghai of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
45
|
Xie J, Zhang L, Li M, Du J, Zhou L, Yang S, Zeng L, Li Z, Wang G, Wang D. Functional analysis of the involvement of apurinic/apyrimidinic endonuclease 1 in the resistance to melphalan in multiple myeloma. BMC Cancer 2014; 14:11. [PMID: 24400589 PMCID: PMC3900260 DOI: 10.1186/1471-2407-14-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Melphalan resistance has been considered one of the major obstacles to improve outcomes in multiple myeloma (MM) therapy; unfortunately, the mechanistic details of this resistance remain unclear. Melphalan is a highly effective alkylating agent which causes many types of DNA lesions, including DNA base alkylation damage that is repaired by base excision repair (BER). We postulated that human apurinic/apyrimidinic endonuclease 1 (APE1), an essential BER enzyme, plays a vital role in acquired melphalan resistance. However, because APE1 is a multifunctional protein with redox activity and acetylation modification in addition to its major repair activity, the particular APE1 function that may play a more important role in melphalan resistance is unknown. Methods Two MM cell lines, RPMI-8226 and U266 were used to measure the difference in APE1 levels in melphalan-resistant and sensitive derivatives. APE1 functional mutants for DNA repair, redox and acetylation were employed to investigate the roles of individual APE1 activities in acquired melphalan resistance. Results Our results indicate that APE1 is overexpressed in both MM melphalan-resistant cells. Knocking down APE1 sensitizes the melphalan resistant MM cells to melphalan treatment. The exogenous expression of DNA repair mutant H309N and acetylation mutant K6R/K7R of APE1 failed to restore the melphalan resistance of the APE1 knockdown RPMI-8226 cells. The AP endonuclease activity and multidrug resistance protein 1 (MDR1) regulatory activity may play roles in the melphalan resistance of MM cells. Conclusions The present study has identified that the DNA repair functions and the acetylation modification of APE1 are involved in melphalan resistance of MM cells and has also shed light on future therapeutic strategies targeting specific APE1 functions by small molecule inhibitors.
Collapse
Affiliation(s)
- Jiayin Xie
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P,R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akopiants K, Mohapatra S, Menon V, Zhou T, Valerie K, Povirk LF. Tracking the processing of damaged DNA double-strand break ends by ligation-mediated PCR: increased persistence of 3'-phosphoglycolate termini in SCAN1 cells. Nucleic Acids Res 2013; 42:3125-37. [PMID: 24371269 PMCID: PMC3950721 DOI: 10.1093/nar/gkt1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To track the processing of damaged DNA double-strand break (DSB) ends in vivo, a method was devised for quantitative measurement of 3′-phosphoglycolate (PG) termini on DSBs induced by the non-protein chromophore of neocarzinostatin (NCS-C) in the human Alu repeat. Following exposure of cells to NCS-C, DNA was isolated, and labile lesions were chemically stabilized. All 3′-phosphate and 3′-hydroxyl ends were enzymatically capped with dideoxy termini, whereas 3′-PG ends were rendered ligatable, linked to an anchor, and quantified by real-time Taqman polymerase chain reaction. Using this assay and variations thereof, 3′-PG and 3′-phosphate termini on 1-base 3′ overhangs of NCS-C-induced DSBs were readily detected in DNA from the treated lymphoblastoid cells, and both were largely eliminated from cellular DNA within 1 h. However, the 3′-PG termini were processed more slowly than 3′-phosphate termini, and were more persistent in tyrosyl-DNA phosphodiesterase 1-mutant SCAN1 than in normal cells, suggesting a significant role for tyrosyl-DNA phosphodiesterase 1 in removing 3′-PG blocking groups for DSB repair. DSBs with 3′-hydroxyl termini, which are not directly induced by NCS-C, were formed rapidly in cells, and largely eliminated by further processing within 1 h, both in Alu repeats and in heterochromatic α-satellite DNA. Moreover, absence of DNA-PK in M059J cells appeared to accelerate resolution of 3′-PG ends.
Collapse
Affiliation(s)
- Konstantin Akopiants
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA and Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
47
|
Manvilla BA, Pozharski E, Toth EA, Drohat AC. Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2+ cofactor. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2555-62. [PMID: 24311596 PMCID: PMC3852660 DOI: 10.1107/s0907444913027042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) mediates the repair of abasic sites and other DNA lesions and is essential for base-excision repair and strand-break repair pathways. APE1 hydrolyzes the phosphodiester bond at abasic sites, producing 5'-deoxyribose phosphate and the 3'-OH primer needed for repair synthesis. It also has additional repair activities, including the removal of 3'-blocking groups. APE1 is a powerful enzyme that absolutely requires Mg2+, but the stoichiometry and catalytic function of the divalent cation remain unresolved for APE1 and for other enzymes in the DNase I superfamily. Previously reported structures of DNA-free APE1 contained either Sm3+ or Pb2+ in the active site. However, these are poor surrogates for Mg2+ because Sm3+ is not a cofactor and Pb2+ inhibits APE1, and their coordination geometry is expected to differ from that of Mg2+. A crystal structure of human APE1 was solved at 1.92 Å resolution with a single Mg2+ ion in the active site. The structure reveals ideal octahedral coordination of Mg2+ via two carboxylate groups and four water molecules. One residue that coordinates Mg2+ directly and two that bind inner-sphere water molecules are strictly conserved in the DNase I superfamily. This structure, together with a recent structure of the enzyme-product complex, inform on the stoichiometry and the role of Mg2+ in APE1-catalyzed reactions.
Collapse
Affiliation(s)
- Brittney A. Manvilla
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Edwin Pozharski
- Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
49
|
Chang IY, Kim JN, Maeng YH, Yoon SP. Apurinic/apyrimidinic endonuclease 1, the sensitive marker for DNA deterioration in dextran sulfate sodium-induced acute colitis. Redox Rep 2013; 18:165-73. [PMID: 23883737 DOI: 10.1179/1351000213y.0000000056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mutations in mismatch repair (MMR) genes are commonly associated with the development of colorectal cancer. Additionally, base excision repair, which involves apurinic/apyrimidinic endonuclease 1 (APE1), recognizes and eliminates oxidative DNA damage. Here, we investigated the possible roles of APE1 in dextran sulfate sodium (DSS)-induced acute colitis using the young rat model. Four-week-old Sprague-Dawley rats were administered 2% DSS in drinking water for 1 week. MMR and APE1 expression levels were assessed by western blotting and immunohistochemistry. Following DSS treatment, growth of young rats failed and the animals had loose stools. Together with the histological changes associated with acute colitis, APE1 and MSH2 levels increased significantly at 3 and 5 days after DSS treatment, respectively. The difference between APE1 and MSH2 expression was significant. DSS-induced DNA damage and subsequent repair activity were evaluated by staining for 8-hydroxy-deoxyguanosine (8-OHdG) and APE1, respectively; 8-OHdG immunoreactivity increased throughout the colonic mucosa, while APE1 levels in the surface epithelium increased at an earlier timepoint. Taken together, our data suggest that changes in APE1 expression after DSS treatment occurred earlier and were more widespread than changes in MMR expression, suggesting that APE1 is more sensitive for prediction of DNA deterioration in DSS-induced colitis.
Collapse
Affiliation(s)
- In-Youb Chang
- Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Gurkan-Cavusoglu E, Avadhani S, Liu L, Kinsella TJ, Loparo KA. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics. IET Syst Biol 2013; 7:27-37. [PMID: 23847811 DOI: 10.1049/iet-syb.2011.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair.
Collapse
Affiliation(s)
- Evren Gurkan-Cavusoglu
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7071, USA.
| | | | | | | | | |
Collapse
|