1
|
Hu Y, Liu JX, Gao YL, Shang J. DSTPCA: Double-Sparse Constrained Tensor Principal Component Analysis Method for Feature Selection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1481-1491. [PMID: 31562100 DOI: 10.1109/tcbb.2019.2943459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The identification of differentially expressed genes plays an increasingly important role biologically. Therefore, the feature selection approach has attracted much attention in the field of bioinformatics. The most popular method of principal component analysis studies two-dimensional data without considering the spatial geometric structure of the data. The recently proposed tensor robust principal component analysis method performs sparse and low-rank decomposition on three-dimensional tensors and effectively preserves the spatial structure. Based on this approach, the L2,1- norm regularization term is introduced into the DSTPCA (Double-Sparse Constrained Tensor Principal Component Analysis) method. The DSTPCA method removes the redundant noise by double sparse constraints on the objective function to obtain sufficiently sparse results. After the regularization norm is introduced into the model, the ADMM (alternating direction method of multipliers) algorithm is used to solve the optimal problem. In the experiment of feature selection, while the more redundant genes were filtered out, the more genes closely associated with disease were screened. Experimental results using different datasets indicate that our method outperforms other methods.
Collapse
|
2
|
Anchoori RK, Jiang R, Peng S, Soong RS, Algethami A, Rudek MA, Anders N, Hung CF, Chen X, Lu X, Kayode O, Dyba M, Walters KJ, Roden RBS. Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS OMEGA 2018; 3:11917-11929. [PMID: 30288466 PMCID: PMC6166221 DOI: 10.1021/acsomega.8b01479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Substitution of the m,p-chloro groups of bis-benzylidinepiperidone RA190 for p-nitro, generating RA183, enhanced covalent drug binding to Cys88 of RPN13. Treatment of cancer cell lines with RA183 inhibited ubiquitin-mediated protein degradation, resulting in rapid accumulation of high-molecular-weight polyubiquitinated proteins, blockade of NFκB signaling, endoplasmic reticulum stress, an unfolded protein response, production of reactive oxygen species, and apoptotic cell death. High-grade ovarian cancer, triple-negative breast cancer, and multiple myeloma cell lines were particularly vulnerable to RA183. RA183 stabilized a tetraubiquitin-linked firefly luciferase reporter protein in cancer cell lines and mice, demonstrating in vitro and in vivo proteasomal inhibition, respectively. However, RA183 was rapidly cleared from plasma, likely reflecting its rapid degradation to the active compound RA9, as seen in human liver microsomes. Intraperitoneal administration of RA183 inhibited proteasome function and orthotopic tumor growth in mice bearing human ovarian cancer model ES2-luc ascites or syngeneic ID8-luc tumor.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Rosie Jiang
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shiwen Peng
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Ruey-shyang Soong
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of General Surgery, Chang Gung
Memorial Hospital at Keelung, Keelung
City, Taiwan 204, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302, ROC
| | - Aliyah Algethami
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Michelle A. Rudek
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Nicole Anders
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Chien-Fu Hung
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xiang Chen
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Xiuxiu Lu
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Olumide Kayode
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Marzena Dyba
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Kylie J. Walters
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Richard B. S. Roden
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
3
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
4
|
Ehlinger A, Walters KJ. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 2013; 52:3618-28. [PMID: 23672618 DOI: 10.1021/bi400417a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes such as cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the past decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from the study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, the RP has a large number of both permanent and transient components with specialized functional roles that are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS.
Collapse
Affiliation(s)
- Aaron Ehlinger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
5
|
Huang Y, Bell LN, Okamura J, Kim MS, Mohney RP, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance. Cell Cycle 2012; 11:3810-27. [PMID: 22951905 DOI: 10.4161/cc.22022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor protein (TP)-p53 family members (TP63, TP63 and TP73) are guardians of the genome and key players in orchestrating the cellular response to cisplatin treatment. Cisplatin-induced phosphorylation of ΔNp63α was shown to have a role in regulating intracellular ΔNp63α protein levels. We previously found that squamous cell carcinoma (SCC) cells exposed to cisplatin displayed the ATM-dependent phosphorylation of ΔNp63α (p-ΔNp63α), which is critical for the transcriptional regulation of specific downstream mRNAs and microRNAs and is likely to underlie the chemoresistance of SCC cells. However, SCC cells expressing non-p-ΔNp63α became more cisplatin-resistant. We also found that p-ΔNp63α forms complexes with a number of proteins involved in cell death response through regulation of cell cycle arrest, apoptosis, autophagy, RNA splicing and chromatin modifications. Here, we showed that p-ΔNp63α induced ARG1, GAPDH, and CPT2 gene transcription in cisplatin-sensitive SCC cells, while non-p-ΔNp63α increased a transcription of CAD, G6PD and FASN genes in cisplatin-resistant SCC cells. We report that the p-ΔNp63α-dependent regulatory mechanisms implicated in the modulation of plethora of pathways, including amino acid, carbohydrate, lipid and nucleotide metabolisms, thereby affect tumor cell response to cisplatin-induced cell death, suggesting that the ATM-dependent ΔNp63α pathway plays a role in the resistance of tumor cells to platinum therapy.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|