1
|
Allosteric pluripotency: challenges and opportunities. Biochem J 2022; 479:825-838. [PMID: 35403669 DOI: 10.1042/bcj20210528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Allosteric pluripotency arises when the functional response of an allosteric receptor to an allosteric stimulus depends on additional allosteric modulators. Here, we discuss allosteric pluripotency as observed in the prototypical Protein Kinase A (PKA) as well as in other signaling systems, from typical multidomain signaling proteins to bacterial enzymes. We identify key drivers of pluripotent allostery and illustrate how hypothesizing allosteric pluripotency may solve apparent discrepancies currently present in the literature regarding the dual nature of known allosteric modulators. We also outline the implications of allosteric pluripotency for cellular signaling and allosteric drug design, and analyze the challenges and opportunities opened by the pluripotent nature of allostery.
Collapse
|
2
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
3
|
Gonzalez-Ordenes F, Bravo-Moraga F, Gonzalez E, Hernandez-Cabello L, Alzate-Morales J, Guixé V, Castro-Fernandez V. Crystal structure and molecular dynamics simulations of a promiscuous ancestor reveal residues and an epistatic interaction involved in substrate binding and catalysis in the ATP-dependent vitamin kinase family members. Protein Sci 2021; 30:842-854. [PMID: 33555078 DOI: 10.1002/pro.4040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/08/2022]
Abstract
Enzymes with hydroxymethylpyrimidine/phosphomethylpyrimidine kinase activity (HMPPK) are essential in the vitamin B1 (thiamine pyrophosphate) biosynthesis and recycling pathways. In contrast, enzymes with pyridoxal kinase activity (PLK) produce pyridoxal phosphate (vitamin B6), an essential cofactor for various biochemical reactions. In the ATP-dependent vitamin kinases family, the members of PLK/HMPPK-like subfamily have both enzymatic activities. It has been proposed that the promiscuous PLK activity of ancestral HMPPK enzymes could have been the starting point for this activity. In earlier work, we reconstructed the ancestral sequences of this family and characterized the substrate specificity of the common ancestor between PLK/HMPPK-like and HMPPK enzymes (AncC). From these studies, the Gln45Met mutation was proposed as a critical event for the PLK activity emergence. Here, we crystallize and determine the AncC structure by X-ray crystallography and assess the role of the Gln45Met mutation by site-directed mutagenesis. Kinetic characterization of this mutant shows a significant increase in the PL affinity. Through molecular dynamics simulation and MM/PBSA calculations some residues, important for substrate interactions and catalysis, were identified in the wild type and in the mutated ancestor. Interestingly, a strong epistatic interaction responsible for the evolutionary pathway of the PLK activity in PLK/HMPPK-like enzymes was revealed. Also, other putative mutations relevant to PLK activity in modern PLK/HMPPK-like enzymes were identified.
Collapse
Affiliation(s)
| | - Felipe Bravo-Moraga
- Centro de Bioinformatica, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay S/N, Talca, Chile
| | - Evelin Gonzalez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Jans Alzate-Morales
- Centro de Bioinformatica, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay S/N, Talca, Chile
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
4
|
Pateraki C, Skliros D, Flemetakis E, Koutinas A. Succinic acid production from pulp and paper industry waste: A transcriptomic approach. J Biotechnol 2020; 325:250-260. [PMID: 33069778 DOI: 10.1016/j.jbiotec.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
The fermentative production of biobased chemicals and polymers using crude lignocellulose hydrolysates is challenging due to the presence of various inhibitory compounds and multiple sugars. This study evaluates the metabolic response of Actinobacillus succinogenes for the production of succinic acid using spent sulphite liquor (SSL) as feedstock derived from industrial acidic sulphite pulping of Eucalyptus globulus hardwood. A transcriptomic approach led to significant insights on gene regulation of the major metabolic pathways (glycolysis, pentose phosphate pathway, TCA cycle, pyruvate metabolism and oxidative phosphorylation) in batch cultures carried out on SSL and compared with glucose and xylose. Significantly overexpressed genes in SSL compared to glucose and xylose were fructose biphosphate aldolase (> 1.18-fold change) in the catabolism, phosphoenolpyruvate carboxykinase (> 1.59-fold change) and malate dehydrogenase (> 1.49-fold change) in the TCA cycle, citrate lyase (> 1.7-fold change), dihydrolipoamide dehydrogenase (> 0.88-fold change), pyruvate dehydrogenase E2 (> 1.63-fold change) and pyruvate formate lyase (> 0.61-fold change), involved in acetyl-CoA pathways. Finally, C4 tricarboxylic transporters were overexpressed (DCU (> 1.61-fold change) and 0079 (> 4.19-fold change). SSL was responsible for the upregulation of genes involved in the TCA cycle and oxidative phosphorylation, while xylose showed similar results with SSL in the oxidative phosphorylation.
Collapse
Affiliation(s)
- Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
5
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
6
|
Horvath N, Vilkhovoy M, Wayman JA, Calhoun K, Swartz J, Varner JD. Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli. Metab Eng Commun 2019; 10:e00113. [PMID: 32280586 PMCID: PMC7136494 DOI: 10.1016/j.mec.2019.e00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, we developed a dynamic mathematical model of E. coli cell-free protein synthesis (CFPS). Model parameters were estimated from a dataset consisting of glucose, organic acids, energy species, amino acids, and protein product, chloramphenicol acetyltransferase (CAT) measurements. The model was successfully trained to simulate these measurements, especially those of the central carbon metabolism. We then used the trained model to evaluate the performance, e.g., the yield and rates of protein production. CAT was produced with an energy efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that protein productivity was most sensitive to the oxidative phosphorylation and glycolysis/gluconeogenesis pathways. Amino acid biosynthesis was also important for productivity, while overflow metabolism and TCA cycle affected the overall system state. In addition, translation was more important to productivity than transcription. Finally, CAT production was robust to allosteric control, as were most of the predicted metabolite concentrations; the exceptions to this were the concentrations of succinate and malate, and to a lesser extent pyruvate and acetate, which varied from the measured values when allosteric control was removed. This study is the first to use kinetic modeling to predict dynamic protein production in a cell-free E. coli system, and could provide a foundation for genome scale, dynamic modeling of cell-free E. coli protein synthesis. Protein production is biphasic, powered initially by glucose and later by pyruvate. Protein is produced with an energy efficiency of only 12%. Protein productivity is most sensitive to oxidative phosphorylation and glycolysis. Protein production is robust to allosteric control.
Collapse
Affiliation(s)
- Nicholas Horvath
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Michael Vilkhovoy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph A Wayman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kara Calhoun
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - James Swartz
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - Jeffrey D Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Murillo-López J, Zinovjev K, Pereira H, Caniuguir A, Garratt R, Babul J, Recabarren R, Alzate-Morales J, Caballero J, Tuñón I, Cabrera R. Studying the phosphoryl transfer mechanism of the E. coli phosphofructokinase-2: from X-ray structure to quantum mechanics/molecular mechanics simulations. Chem Sci 2019; 10:2882-2892. [PMID: 30996866 PMCID: PMC6429617 DOI: 10.1039/c9sc00094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Phosphofructokinases catalyze the ATP-dependent phosphorylation of fructose-6-phosphate and they are highly regulated.
Phosphofructokinases (Pfks) catalyze the ATP-dependent phosphorylation of fructose-6-phosphate (F6P) and they are regulated in a wide variety of organisms. Although numerous aspects of the kinetics and regulation have been characterized for Pfks, the knowledge about the mechanism of the phosphoryl transfer reaction and the transition state lags behind. In this work, we describe the X-ray crystal structure of the homodimeric Pfk-2 from E. coli, which contains products in one site and reactants in the other, as well as an additional ATP molecule in the inhibitory allosteric site adjacent to the reactants. This complex was previously predicted when studying the kinetic mechanism of ATP inhibition. After removing the allosteric ATP, molecular dynamic (MD) simulations revealed conformational changes related to domain packing, as well as stable interactions of Lys27 and Asp256 with donor (ATP) and acceptor (fructose-6-) groups, and of Asp166 with Mg2+. The phosphoryl transfer reaction mechanism catalyzed by Pfk-2 was investigated through Quantum Mechanics/Molecular Mechanics (QM/MM) simulations using a combination of the string method and a path-collective variable for the exploration of its free energy surface. The calculated activation free energies showed that a dissociative mechanism, occurring with a metaphosphate intermediate formation followed by a proton transfer to Asp256, is more favorable than an associative one. The structural analysis reveals the role of Asp256 acting as a catalytic base and Lys27 stabilizing the transition state of the dissociative mechanism.
Collapse
Affiliation(s)
- Juliana Murillo-López
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Kirill Zinovjev
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Humberto Pereira
- Instituto de Física de São Carlos , Universidade de São Paulo , São Paulo , Brazil
| | - Andres Caniuguir
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| | - Richard Garratt
- Instituto de Física de São Carlos , Universidade de São Paulo , São Paulo , Brazil
| | - Jorge Babul
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| | - Rodrigo Recabarren
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM) , Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile .
| | - Iñaki Tuñón
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Ricardo Cabrera
- Departamento de Biología , Facultad de Ciencias , Universidad de Chile , Santiago , Chile .
| |
Collapse
|
8
|
Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 2019; 17:4213-4221. [PMID: 30944616 DOI: 10.3892/ol.2019.10112] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interest in cancer metabolism has increased in recent years. The pentose phosphate pathway (PPP) is a major glucose catabolism pathway that directs glucose flux to its oxidative branch and leads to the production of a reduced form of nicotinamide adenine dinucleotide phosphate and nucleic acid. The PPP serves a vital role in regulating cancer cell growth and involves many enzymes. The aim of the present review was to describe the recent discoveries associated with the deregulatory mechanisms of the PPP and glycolysis in malignant tumors, particularly in hepatocellular carcinoma, breast and lung cancer.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
9
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
10
|
Cevik UA, Saglik BN, Ozkay Y, Canturk Z, Bueno J, Demirci F, Koparal AS. Synthesis of New Fluoro-Benzimidazole Derivatives as an Approach towards the Discovery of Novel Intestinal Antiseptic Drug Candidates. Curr Pharm Des 2018; 23:2276-2286. [PMID: 27908268 PMCID: PMC5543573 DOI: 10.2174/1381612822666161201150131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/10/2016] [Indexed: 11/22/2022]
Abstract
In the present study, nineteen new fluoro-benzimidazole derivatives, including nifuroxazide analogs, were synthesized by microwave-supported reactions and tested against a panel of pathogenic microorganisms consisting of resistant strains. The synthesized compounds were characterized and identified by FT-IR, 1H- and 13C-NMR, mass spectroscopy, and elemental analyses, respectively. In vitro antimicrobial and cytotoxic effects of the synthesized compounds were determined by microdilution and by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. The compound 4-[5(6)-fluoro-1H-benzimidazol-2-yl)-N'-(2-methylbenzylidene)]benzohydrazide (18) showed particularly high inhibitory activity against the gastro-intestinal pathogens, such as Escherichia coli O157:H7, Escherichiacoli ATCC 8739, Escherichia coli ATCC 35218 and Salmonella typhimurium ATCC 13311 standard strains, with minimum inhibitory concentrations (MIC90) ranging from 0.49–0.98 µg/mL. The microbial panel contained a total of ten pathogens including Klebsiella sp., Mycobacterium sp., MRSA, etc., for which the level of inhibitory activity measured was higher than that exhibited by the tested concentrations (MIC > 1000 µg/mL). In vitro cytotoxicity results revealed that the inhibitory concentration (IC50) value (210.23 µg/mL) of compound 18 against CCD 841 CoN cells (human intestinal epithelial cell line) is about 430 times higher than its MIC90 value against the tested Escherichia coli strains. Furthermore, the docking study of compound 18 suggested that its structure is very compatible with the active site pocket of the phosphofructokinase-2 enzyme.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Begum Nurpelin Saglik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, P.O. Box: 26470, Eskisehir, Turkey
| | - Zerrin Canturk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology 26470, Eskisehir, Turkey
| | - Juan Bueno
- Bioprospecting Development and Consulting, Bogota, Colombia
| | - Fatih Demirci
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskisehir, Turkey
| | - Ali Savas Koparal
- Anadolu University, Faculty of Engineering, Department of Environmental Engineering, Eskisehir, Turkey
| |
Collapse
|
11
|
Nguyen TT, Ghirlando R, Venditti V. The oligomerization state of bacterial enzyme I (EI) determines EI's allosteric stimulation or competitive inhibition by α-ketoglutarate. J Biol Chem 2018; 293:2631-2639. [PMID: 29317499 DOI: 10.1074/jbc.ra117.001466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
The bacterial phosphotransferase system (PTS) is a signal transduction pathway that couples phosphoryl transfer to active sugar transport across the cell membrane. The PTS is initiated by phosphorylation of enzyme I (EI) by phosphoenolpyruvate (PEP). The EI phosphorylation state determines the phosphorylation states of all other PTS components and is thought to play a central role in the regulation of several metabolic pathways and to control the biology of bacterial cells at multiple levels, for example, affecting virulence and biofilm formation. Given the pivotal role of EI in bacterial metabolism, an improved understanding of the mechanisms controlling its activity could inform future strategies for bioengineering and antimicrobial design. Here, we report an enzymatic assay, based on Selective Optimized Flip Angle Short Transient (SOFAST) NMR experiments, to investigate the effect of the small-molecule metabolite α-ketoglutarate (αKG) on the kinetics of the EI-catalyzed phosphoryl transfer reaction. We show that at experimental conditions favoring the monomeric form of EI, αKG promotes dimerization and acts as an allosteric stimulator of the enzyme. However, when the oligomerization state of EI is shifted toward the dimeric species, αKG functions as a competitive inhibitor of EI. We developed a kinetic model that fully accounted for the experimental data and indicated that bacterial cells might use the observed interplay between allosteric stimulation and competitive inhibition of EI by αKG to respond to physiological fluctuations in the intracellular environment. We expect that the mechanism for regulating EI activity revealed here is common to several other oligomeric enzymes.
Collapse
Affiliation(s)
| | - Rodolfo Ghirlando
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Vincenzo Venditti
- From the Department of Chemistry and .,the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 and
| |
Collapse
|
12
|
Riggs JW, Cavales PC, Chapiro SM, Callis J. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:83. [PMID: 28441933 PMCID: PMC5405513 DOI: 10.1186/s12870-017-1031-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/12/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. RESULTS Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs, and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1-7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1-6, between 260 and 480 μM. FRK7 was an outlier with a fructose Km of 12 μM. ATP binding was similar for all FRKs and ranged between 52 and 280 μM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. CONCLUSIONS Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.
Collapse
Affiliation(s)
- John W. Riggs
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Philip C. Cavales
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Sonia M. Chapiro
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
- Present Address: Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- Present Address: Joint Bioenergy Institute, Emeryville, CA 94608 USA
| | - Judy Callis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
13
|
Enhancement of succinate yield by manipulating NADH/NAD + ratio and ATP generation. Appl Microbiol Biotechnol 2017; 101:3153-3161. [PMID: 28108762 DOI: 10.1007/s00253-017-8127-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD+ ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD+ ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD+ ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD+ ratio and ATP level is an efficient strategy for succinate production.
Collapse
|
14
|
Villalobos P, Soto F, Baez M, Babul J. Regulatory network of the allosteric ATP inhibition of E. coli phosphofructokinase-2 studied by hybrid dimers. Biochimie 2016; 128-129:209-16. [PMID: 27591700 DOI: 10.1016/j.biochi.2016.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.
Collapse
Affiliation(s)
- Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Soto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
15
|
ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production. PLoS One 2016; 11:e0157775. [PMID: 27315279 PMCID: PMC4912068 DOI: 10.1371/journal.pone.0157775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
We previously engineered E. coli YL104H to efficiently produce succinate from glucose. Furthermore, the present study proved that YL104H could also co-utilize xylose and glucose for succinate production. However, anaerobic succinate accumulation using xylose as the sole carbon source failed, probably because of an insufficient supply of energy. By analyzing the ATP generation under anaerobic conditions in the presence of glucose or xylose, we indicated that succinate production was affected by the intracellular ATP level, which can be simply regulated by the substrate ratio of xylose to glucose. This finding was confirmed by succinate production using an artificial mixture containing different xylose to glucose ratios. Using xylose mother liquor, a waste containing both glucose and xylose derived from xylitol production, a final succinate titer of 61.66 g/L with an overall productivity of 0.95 g/L/h was achieved, indicating that the regulation of the intracellular ATP level may be a useful and efficient strategy for succinate production and can be extended to other anaerobic processes.
Collapse
|
16
|
Ramírez-Sarmiento CA, Baez M, Zamora RA, Balasubramaniam D, Babul J, Komives EA, Guixé V. The folding unit of phosphofructokinase-2 as defined by the biophysical properties of a monomeric mutant. Biophys J 2016; 108:2350-61. [PMID: 25954892 DOI: 10.1016/j.bpj.2015.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022] Open
Abstract
Escherichia coli phosphofructokinase-2 (Pfk-2) is an obligate homodimer that follows a highly cooperative three-state folding mechanism N2 ↔ 2I ↔ 2U. The strong coupling between dissociation and unfolding is a consequence of the structural features of its interface: a bimolecular domain formed by intertwining of the small domain of each subunit into a flattened β-barrel. Although isolated monomers of E. coli Pfk-2 have been observed by modification of the environment (changes in temperature, addition of chaotropic agents), no isolated subunits in native conditions have been obtained. Based on in silico estimations of the change in free energy and the local energetic frustration upon binding, we engineered a single-point mutant to destabilize the interface of Pfk-2. This mutant, L93A, is an inactive monomer at protein concentrations below 30 μM, as determined by analytical ultracentrifugation, dynamic light scattering, size exclusion chromatography, small-angle x-ray scattering, and enzyme kinetics. Active dimer formation can be induced by increasing the protein concentration and by addition of its substrate fructose-6-phosphate. Chemical and thermal unfolding of the L93A monomer followed by circular dichroism and dynamic light scattering suggest that it unfolds noncooperatively and that the isolated subunit is partially unstructured and marginally stable. The detailed structural features of the L93A monomer and the F6P-induced dimer were ascertained by high-resolution hydrogen/deuterium exchange mass spectrometry. Our results show that the isolated subunit has overall higher solvent accessibility than the native dimer, with the exception of residues 240-309. These residues correspond to most of the β-meander module and show the same extent of deuterium uptake as the native dimer. Our results support the idea that the hydrophobic core of the isolated monomer of Pfk-2 is solvent-penetrated in native conditions and that the β-meander module is not affected by monomerizing mutations.
Collapse
Affiliation(s)
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Santiago, Chile
| | - Ricardo A Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Deepa Balasubramaniam
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California.
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
17
|
Senyilmaz D, Teleman AA. Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000PRIME REPORTS 2015; 7:41. [PMID: 26097714 PMCID: PMC4447048 DOI: 10.12703/p7-41] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared with normal cells, cancer cells show alterations in many cellular processes, including energy metabolism. Studies on cancer metabolism started with Otto Warburg's observation at the beginning of the last century. According to Warburg, cancer cells rely on glycolysis more than mitochondrial respiration for energy production. Considering that glycolysis yields much less energy compared with mitochondrial respiration, Warburg hypothesized that mitochondria must be dysfunctional and this is the initiating factor for cancer formation. However, this hypothesis did not convince every scientist in the field. Some believed the opposite: the reduction in mitochondrial activity is a result of increased glycolysis. This discrepancy of opinions is ongoing. In this review, we will discuss the alterations in glycolysis, pyruvate metabolism, and the Krebs cycle in cancer cells and focus on cause and consequence.
Collapse
|
18
|
Liu Y, Nishimoto M, Kitaoka M. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases. Carbohydr Res 2015; 401:1-4. [DOI: 10.1016/j.carres.2014.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/24/2022]
|
19
|
Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson TM, Bachmann BO. Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 2014; 10:392-9. [PMID: 24657930 PMCID: PMC4017637 DOI: 10.1038/nchembio.1494] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/24/2014] [Indexed: 01/02/2023]
Abstract
Concatenation of engineered biocatalysts into multistep pathways dramatically increases their utility, but development of generalizable assembly methods remains a significant challenge. Herein we evaluate ‘bioretrosynthesis’, which is an application of the retrograde evolution hypothesis, for biosynthetic pathway construction. To test bioretrosynthesis, we engineered a pathway for synthesis of the antiretroviral nucleoside analog didanosine (2,3-dideoxyinosine). Applying both directed evolution and structure-based approaches, we began pathway construction with a retro-extension from an engineered purine nucleoside phosphorylase and evolved 1,5-phosphopentomutase to accept the substrate 2,3-dideoxyribose 5-phosphate with a 700-fold change in substrate selectivity and 3-fold increased turnover in cell lysate. A subsequent retrograde pathway extension, via ribokinase engineering, resulted in a didanosine pathway with a 9,500-fold change in nucleoside production selectivity and 50-fold increase in didanosine production. Unexpectedly, the result of this bioretrosynthetic step was not a retro-extension from phosphopentomutase, but rather the discovery of a fortuitous pathway-shortening bypass via the engineered ribokinase.
Collapse
Affiliation(s)
- William R Birmingham
- 1] Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2]
| | - Chrystal A Starbird
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy D Panosian
- 1] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2]
| | - David P Nannemann
- 1] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA. [2]
| | - T M Iverson
- 1] Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian O Bachmann
- 1] Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Baez M, Cabrera R, Pereira HM, Blanco A, Villalobos P, Ramírez-Sarmiento CA, Caniuguir A, Guixé V, Garratt RC, Babul J. A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2. Biophys J 2014; 105:185-93. [PMID: 23823238 DOI: 10.1016/j.bpj.2013.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The presence of a regulatory site for monovalent cations that affects the conformation of the MgATP-binding pocket leading to enzyme activation has been demonstrated for ribokinases. This site is selective toward the ionic radius of the monovalent cation, accepting those larger than Na(+). Phosphofructokinase-2 (Pfk-2) from Escherichia coli is homologous to ribokinase, but unlike other ribokinase family members, presents an additional site for the nucleotide that negatively regulates its enzymatic activity. In this work, we show the effect of monovalent cations on the kinetic parameters of Pfk-2 together with its three-dimensional structure determined by x-ray diffraction in the presence of K(+) or Cs(+). Kinetic characterization of the enzyme shows that K(+) and Na(+) alter neither the kcat nor the KM values for fructose-6-P or MgATP. However, the presence of K(+) (but not Na(+)) enhances the allosteric inhibition induced by MgATP. Moreover, binding experiments show that K(+) (but not Na(+)) increases the affinity of MgATP in a saturable fashion. In agreement with the biochemical data, the crystal structure of Pfk-2 obtained in the presence of MgATP shows a cation-binding site at the conserved position predicted for the ribokinase family of proteins. This site is adjacent to the MgATP allosteric binding site and is only observed in the presence of Cs(+) or K(+). These results indicate that binding of the monovalent metal ions indirectly influences the allosteric site of Pfk-2 by increasing its affinity for MgATP with no alteration in the conformation of residues present at the catalytic site.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tiwari S, Chandavarkar A, Suraishkumar G. Robust productivity in industrial fermentations: Regulation of phosphofructokinase activity through easily measurable, critical nutrient ratio. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Substrate-induced change in the quaternary structure of type 2 isopentenyl diphosphate isomerase from Sulfolobus shibatae. J Bacteriol 2012; 194:3216-24. [PMID: 22505674 DOI: 10.1128/jb.00068-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 isopentenyl diphosphate isomerase catalyzes the interconversion between two active units for isoprenoid biosynthesis, i.e., isopentenyl diphosphate and dimethylallyl diphosphate, in almost all archaea and in some bacteria, including human pathogens. The enzyme is a good target for discovery of antibiotics because it is essential for the organisms that use only the mevalonate pathway to produce the active isoprene units and because humans possess a nonhomologous isozyme, type 1 isopentenyl diphosphate isomerase. However, type 2 enzymes were reportedly inhibited by mechanism-based drugs for the type 1 enzyme due to their surprisingly similar reaction mechanisms. Thus, a different approach is now required to develop new inhibitors specific to the type 2 enzyme. X-ray crystallography and gel filtration chromatography revealed that the enzyme from a thermoacidophilic archaeon, Sulfolobus shibatae, is in the octameric state at a high concentration. Interestingly, a part of the regions that are involved in the substrate binding in the previously reported tetrameric structures is integral to the formation of the tetramer-tetramer interface in the substrate-free octameric structure. Site-directed mutagenesis at such regions resulted in stabilization of the tetramer. Small-angle X-ray scattering, tryptophan fluorescence, and dynamic light scattering analyses showed that substrate binding causes the dissociation of an octamer into tetramers. This property, i.e., incompatibility between octamer formation and substrate binding, might provide clues to develop new specific inhibitors of the archaeal enzyme.
Collapse
|
23
|
Mosser R, Reddy MCM, Bruning JB, Sacchettini JC, Reinhart GD. Structure of the apo form of Bacillus stearothermophilus phosphofructokinase. Biochemistry 2012; 51:769-75. [PMID: 22212099 DOI: 10.1021/bi201548p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 Å resolution (Protein Data Bank entry 3U39 ). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.
Collapse
Affiliation(s)
- Rockann Mosser
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, Texas 77843-2128, United States
| | | | | | | | | |
Collapse
|
24
|
Kennedy AJ, Mathews TP, Kharel Y, Field SD, Moyer ML, East JE, Houck JD, Lynch KR, Macdonald TL. Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. J Med Chem 2011; 54:3524-48. [PMID: 21495716 DOI: 10.1021/jm2001053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P, and thus, SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations.
Collapse
Affiliation(s)
- Andrew J Kennedy
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|