1
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
2
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
3
|
Abstract
Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
4
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Xie H, Xiao X, Yi Y, Deng M, Li P, Jian D, Deng Z, Li J. A Negative Feedback Loop in Ultraviolet A-Induced Senescence in Human Dermal Fibroblasts Formed by SPCA1 and MAPK. Front Cell Dev Biol 2021; 8:597993. [PMID: 34239867 PMCID: PMC8259626 DOI: 10.3389/fcell.2020.597993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Secretory pathway calcium ATPase 1 (SPCA1) is a calcium pump localized specifically to the Golgi. Its effects on UVA-induced senescence have never been examined. In our study, expression of SPCA1 was increased in UVA-irradiated human dermal fibroblasts (HDFs) by activating mitogen-activated protein kinase (MAPK) and its downstream transcription factor, c-jun. Dual-luciferase reporter and chromatin immunoprecipitation assays revealed that c-jun regulated SPCA1 by binding to its promoter. Furthermore, downregulating SPCA1 with siRNA transfection aggravated UVA-induced senescence due to an elevation of intracellular calcium concentrations and a subsequent increase in reactive oxygen species (ROS) and MAPK activity. In contrast, overexpression of SPCA1 reduced calcium overload, consequently lowering the ROS level and suppressing MAPK activation. This alleviated the cellular senescence caused by UVA irradiation. These results indicated that SPCA1 might exert a protective effect on UVA-induced senescence in HDFs via forming a negative feedback loop. Specifically, activation of MAPK/c-jun triggered by UVA transcriptionally upregulated SPCA1. In turn, the increased SPCA1 lowered the intracellular Ca2+ level, probably through pumping Ca2+ into the Golgi, leading to a reduction of ROS, eventually decreasing MAPK activity and diminishing UVA-induced senescence.
Collapse
Affiliation(s)
- Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha, China
| | - Yuxin Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingxing Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peihui Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Science and Technology Aid Program, Xinjiang Uygur Autonomous Region, Urumqi, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
8
|
Pratt SJP, Hernández-Ochoa E, Martin SS. Calcium signaling: breast cancer's approach to manipulation of cellular circuitry. Biophys Rev 2020; 12:1343-1359. [PMID: 33569087 PMCID: PMC7755621 DOI: 10.1007/s12551-020-00771-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Stuart S Martin
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| |
Collapse
|
9
|
Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca 2+ Fluxes and Cancer. Mol Cell 2020; 78:1055-1069. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| | - Paolo Pinton
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
10
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
11
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
12
|
Lu C, Ma Z, Cheng X, Wu H, Tuo B, Liu X, Li T. Pathological role of ion channels and transporters in the development and progression of triple-negative breast cancer. Cancer Cell Int 2020; 20:377. [PMID: 32782435 PMCID: PMC7409684 DOI: 10.1186/s12935-020-01464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a common malignancy in women. Among breast cancer types, triple-negative breast cancer (TNBC) tends to affect younger women, is prone to axillary lymph node, lung, and bone metastases; and has a high recurrence rate. Due to a lack of classic biomarkers, the currently available treatments are surgery and chemotherapy; no targeted standard treatment options are available. Therefore, it is urgent to find a novel and effective therapeutic target. As alteration of ion channels and transporters in normal mammary cells may affect cell growth, resulting in the development and progression of TNBC, ion channels and transporters may be promising new therapeutic targets for TNBC. This review summarizes ion channels and transporters related to TNBC and may provide new tumor biomarkers and help in the development of novel targeted therapies.
Collapse
Affiliation(s)
- Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Huichao Wu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China.,Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China.,Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| |
Collapse
|
13
|
Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, Lo YH, Dubreuil M, Olivas M, Kamber RA, Wainberg M, Kostyrko K, Kelly MR, Yousefi M, Simpkins SW, Yao D, Lee K, Kuo CJ, Jackson PK, Sweet-Cordero A, Kundaje A, Gentles AJ, Curtis C, Winslow MM, Bassik MC. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 2020; 580:136-141. [PMID: 32238925 PMCID: PMC7368463 DOI: 10.1038/s41586-020-2099-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.
Collapse
Affiliation(s)
- Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sarah E Pierce
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gray R Anderson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Dubreuil
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Micah Olivas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kaja Kostyrko
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott W Simpkins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David Yao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Keonil Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Jackson
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Departments of Medicine and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
16
|
O'Grady S, Morgan MP. Calcium transport and signalling in breast cancer: Functional and prognostic significance. Semin Cancer Biol 2019; 72:19-26. [PMID: 31866475 DOI: 10.1016/j.semcancer.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Comprised of a complex network of numerous intertwining pathways, the Ca2+ signalling nexus is an essential mediator of many normal cellular activities. Like many other such functions, the normal physiological activity of Ca2+ signalling is frequently co-opted and reshaped in cases of breast cancer, creating a potent oncogenic drive within the affected cell population. Such modifications can occur within pathways mediating either Ca2+ import (e.g. TRP channels, ORAI-STIM1) or Ca2+ export (e.g. PMCA), indicating that both increases and decreases within cellular Ca2+ levels have the potential to increase the malignant potential of a cell. Increased understanding of these pathways may offer clinical benefit in terms of both prognosis and treatment; patient survival has been linked to expression levels of certain Ca2+ transport proteins, whilst selective targeting of these factors with novel anti-cancer agents has demonstrated a variety of anti-tumour effects in in vitro studies. In addition, the activity of several Ca2+ signalling pathways has been shown to influence chemotherapy response, suggesting that a synergistic approach coupling traditional chemotherapy with Ca2+ targeting agents may also improve patient outcome. As such, targeted modulation of these pathways represents a novel approach in precision medicine and breast cancer therapy.
Collapse
Affiliation(s)
- Shane O'Grady
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Maria P Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
17
|
Makena MR, Rao R. Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 2019; 85:102109. [PMID: 31783287 DOI: 10.1016/j.ceca.2019.102109] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 01/16/2023]
Abstract
An important component of breast milk, calcium also appears as radiographically prominent microcalcifications in breast tissue that are often the earliest sign of malignancy. Ionic Ca2+ is a universal second messenger that controls a wide swathe of effector pathways integral to gene transcription, cell cycle control, differentiation, proliferation, cell migration, and apoptosis. Whereas prolonged elevation in resting Ca2+ levels drives proliferation to initiate and sustain tumor growth, depletion of calcium stores and attenuation of calcium influx pathways underlies tumor chemoresistance and evasion of apoptosis. This paradox of Ca2+ homeostasis highlights the challenge of targeting Ca2+ signaling pathways for breast cancer therapy. Furthermore, breast cancer is a heterogeneous disease classified into distinct subtypes based on tumor origin, stage of invasiveness and hormone receptor status. Classification is important for tailoring treatment, and in predicting clinical outcome or response to chemotherapy. There have been numerous reports of dysregulated expression, localization or activity of Ca2+ channels, regulators and pumps in breast cancer. An important aspect of these alterations is that they are specific to breast cancer subtype, as exemplified by a reciprocal switch in secretory pathway Ca2+-ATPase isoforms SPCA1 and SPCA2 depending on receptor status. In this review, we discuss the current knowledge of subtype specific changes in calcium channels and pumps, with a focus on functional insights that may inform new opportunities for breast cancer therapy.
Collapse
Affiliation(s)
- Monish Ram Makena
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
18
|
The regulatory roles of calcium channels in tumors. Biochem Pharmacol 2019; 169:113603. [DOI: 10.1016/j.bcp.2019.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
|
19
|
So CL, Saunus JM, Roberts-Thomson SJ, Monteith GR. Calcium signalling and breast cancer. Semin Cell Dev Biol 2019; 94:74-83. [DOI: 10.1016/j.semcdb.2018.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|
20
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
21
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
22
|
Jalal N, Wei J, Jiang Y, Pathak JL, Surendranath AR, Chung CY. Low-dose bisphenol A (BPA)-induced DNA damage and tumorigenic events in MCF-10A cells. COGENT MEDICINE 2019. [DOI: 10.1080/2331205x.2019.1616356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Nasir Jalal
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, Nankai district 300072, Peoples Republic of China
| | - Jing Wei
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, Nankai district 300072, Peoples Republic of China
| | - Yaxin Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, Nankai district 300072, Peoples Republic of China
| | - Janak L. Pathak
- Key Lab of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Huangsha Avenue 39, Liwan District, Guangzhou 510140, Peoples Republic of China
| | - Austin R. Surendranath
- Department of Physiology and Biochemistry, Coorg Institute of Dental Sciences, Virajpet, Coorg, 571218, India
| | - Chang Y. Chung
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, Nankai district 300072, Peoples Republic of China
| |
Collapse
|
23
|
Dang DK, Makena MR, Llongueras JP, Prasad H, Ko M, Bandral M, Rao R. A Ca 2+-ATPase Regulates E-cadherin Biogenesis and Epithelial-Mesenchymal Transition in Breast Cancer Cells. Mol Cancer Res 2019; 17:1735-1747. [PMID: 31076498 DOI: 10.1158/1541-7786.mcr-19-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Progression of benign tumors to invasive, metastatic cancer is accompanied by the epithelial-to-mesenchymal transition (EMT), characterized by loss of the cell-adhesion protein E-cadherin. Although silencing mutations and transcriptional repression of the E-cadherin gene have been widely studied, not much is known about posttranslational regulation of E-cadherin in tumors. We show that E-cadherin is tightly coexpressed with the secretory pathway Ca2+-ATPase isoform 2, SPCA2 (ATP2C2), in breast tumors. Loss of SPCA2 impairs surface expression of E-cadherin and elicits mesenchymal gene expression through disruption of cell adhesion in tumorspheres and downstream Hippo-YAP signaling. Conversely, ectopic expression of SPCA2 in triple-negative breast cancer elevates baseline Ca2+ and YAP phosphorylation, enhances posttranslational expression of E-cadherin, and suppresses mesenchymal gene expression. Thus, loss of SPCA2 phenocopies loss of E-cadherin in the Hippo signaling pathway and EMT-MET transitions, consistent with a functional role for SPCA2 in E-cadherin biogenesis. Furthermore, we show that SPCA2 suppresses invasive phenotypes, including cell migration in vitro and tumor metastasis in vivo. Based on these findings, we propose that SPCA2 functions as a key regulator of EMT and may be a potential therapeutic target for treatment of metastatic cancer. IMPLICATIONS: Posttranslational control of E-cadherin and the Hippo pathway by calcium signaling regulates EMT in breast cancer cells.
Collapse
Affiliation(s)
- Donna K Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monish Ram Makena
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - José P Llongueras
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myungjun Ko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manuj Bandral
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
24
|
Chen J, Smaardijk S, Mattelaer CA, Pamula F, Vandecaetsbeek I, Vanoevelen J, Wuytack F, Lescrinier E, Eggermont J, Vangheluwe P. An N-terminal Ca 2+-binding motif regulates the secretory pathway Ca 2+/Mn 2+-transport ATPase SPCA1. J Biol Chem 2019; 294:7878-7891. [PMID: 30923126 DOI: 10.1074/jbc.ra118.006250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/23/2019] [Indexed: 11/06/2022] Open
Abstract
The Ca2+/Mn2+ transport ATPases 1a and 2 (SPCA1a/2) are closely related to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and are implicated in breast cancer and Hailey-Hailey skin disease. Here, we purified the human SPCA1a/2 isoforms from a yeast recombinant expression system and compared their biochemical properties after reconstitution. We observed that the purified SPCA1a displays a lower Ca2+ affinity and slightly lower Mn2+ affinity than SPCA2. Remarkably, the turnover rates of SPCA1a in the presence of Mn2+ and SPCA2 incubated with Ca2+ and Mn2+ were comparable, whereas the turnover rate of SPCA1a in Ca2+ was 2-fold higher. Moreover, we noted an unusual biphasic activation curve for the SPCA1a ATPase and autophosphorylation activity, not observed with SPCA2. We also found that the biphasic pattern and low apparent ion affinity of SPCA1a critically depends on ATP concentration. We further show that the specific properties of SPCA1a at least partially depend on an N-terminal EF-hand-like motif, which is present only in the SPCA1a isoform and absent in SPCA2. This motif binds Ca2+, and its mutation lowered the Ca2+ turnover rate relative to that of Mn2+, increased substrate affinity, and reduced the level of biphasic activation of SPCA1a. A biochemical analysis indicated that Ca2+ binding to the N-terminal EF-hand-like motif promotes the activity of SPCA1a by facilitating autophosphorylation. We propose that this regulation may be physiologically relevant in cells with a high Ca2+ load, such as mammary gland cells during lactation, or in cells with a low ATP content, such as keratinocytes.
Collapse
Affiliation(s)
- Jialin Chen
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Susanne Smaardijk
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Charles-Alexandre Mattelaer
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Belgium
| | - Filip Pamula
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Ilse Vandecaetsbeek
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Jo Vanoevelen
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Frank Wuytack
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Eveline Lescrinier
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Belgium
| | - Jan Eggermont
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| | - Peter Vangheluwe
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine and
| |
Collapse
|
25
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
26
|
O'Grady S, Morgan MP. Microcalcifications in breast cancer: From pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2018; 1869:310-320. [PMID: 29684522 DOI: 10.1016/j.bbcan.2018.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023]
Abstract
The implementation of mammographic screening programmes in many countries has been linked to a marked increase in early detection and improved prognosis for breast cancer patients. Breast tumours can be detected by assessing several features in mammographic images but one of the most common are the presence of small deposits of calcium known as microcalcifications, which in many cases may be the only detectable sign of a breast tumour. In addition to their efficacy in the detection of breast cancer, the presence of microcalcifications within a breast tumour may also convey useful prognostic information. Breast tumours with associated calcifications display an increased rate of HER2 overexpression as well as decreased survival, increased risk of recurrence, high tumour grade and increased likelihood of spread to the lymph nodes. Clearly, the presence of microcalcifications in a tumour is a clinically significant finding, suggesting that a detailed understanding of their formation may improve our knowledge of the early stages of breast tumourigenesis, yet there are no reports which attempt to bring together recent basic science research findings and current knowledge of the clinical significance of microcalcifications. This review will summarise the most current understanding of the formation of calcifications within breast tissue and explore their associated clinical features and prognostic value.
Collapse
Affiliation(s)
- S O'Grady
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - M P Morgan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
27
|
Tajbakhsh A, Pasdar A, Rezaee M, Fazeli M, Soleimanpour S, Hassanian SM, FarshchiyanYazdi Z, Younesi Rad T, Ferns GA, Avan A. The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J Cell Physiol 2018; 233:5623-5641. [PMID: 29150934 DOI: 10.1002/jcp.26277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Calcium ions (Ca2+ ) act as second messengers in intracellular signaling. Ca2+ pumps, channels, sensors, and calcium binding proteins, regulate the concentrations of intracellular Ca2+ as a key regulator of important cellular processes such as gene expression, proliferation, differentiation, DNA repair, apoptosis, metastasis, and hormone secretion. Intracellular Ca2+ also influences the functions of several organelles, that include: the endoplasmic reticulum, mitochondria, the Golgi, and cell membrane both in normal and breast cancer cells. In breast cancer, the disruption of intracellular: Ca2+ homeostasis may cause tumor progression by affecting key factors/pathways including phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3), calmodulin (CaM), nuclear factor of activated T-cells (NFAT), calpain, calmodulin-dependent protein kinase II (CaMKII), mitogen-activated protein kinase (MAPK), epithelial-mesenchymal transition (EMT), vascular endothelial growth factor (VEGF), poly (ADP-Ribose) polymerase-1 (PARP1), estrogen, and estrogen receptor. Because the foregoing molecules play crucial roles in breast cancer, the factors/pathways influencing intracellular Ca2+ concentrations are putative targets for cancer treatment, using drugs such as Mephebrindole, Tilapia piscidin 4, Nifetepimine, Paricalcitol, and Prednisolone. We have explored the factors/pathways which are related to breast cancer and Ca2+ homeostasis and signaling in this review, and also discussed their potential as biomarkers for breast cancer staging, prognosis, and therapy.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra FarshchiyanYazdi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebe Younesi Rad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Jalal N, Surendranath AR, Pathak JL, Yu S, Chung CY. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep 2017; 5:76-84. [PMID: 29854579 PMCID: PMC5977157 DOI: 10.1016/j.toxrep.2017.12.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022] Open
Abstract
Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. Upon entering the diet, its highest concentration (1-104 ng/g of tissue) has been recorded in the placenta and fetus. This accumulation of BPA can have many health hazards ranging from the easy to repair single strand DNA breaks (SSBs) to error prone double strand DNA breaks (DSBs). Although the Human liver can efficiently metabolize BPA via glucuronidation and sulfation pathways, however the by-product Bisphenol-o-quinone has been shown to act as a DNA adduct. Low doses of BPA have also been shown to interact with various signaling pathways to disrupt normal downstream signaling. Analysis has been made on how BPA could interact with several signaling pathways such as NFκB, JNK, MAPK, ER and AR that eventually lead to disease morphology and even tumorigenesis. The role of low dose BPA is also discussed in dysregulating Ca2+ homeostasis of the cell by inhibiting calcium channels such as SPCA1/2 to suggest a new direction for future research in the realms of BPA induced disease morphology and mutagenicity.
Collapse
Key Words
- BISPHENOL A (BPA) CCID: 6623
- Bisphenol A (BPA)
- Ca2+ homeostasis
- Cancer
- DES, diethyl stilbesterol
- DNA damage
- EFSA, European Food Safety Authority
- ELISA, enzyme linked immunosorbent assay
- FAO/WHO, Food and Agricultural Organization/World Health Organization
- FDA, Food and Drugs Administration
- GC–MS, gas chromatography–mass spectrometry
- HPLC, high-performance liquid chromatography
- IGF1R
- IGF1R, insulin-like growth factor 1 receptor
- LLE, liquid/liquid extraction
- MS, mass spectrometry
- Mutations
- SPCA1 inhibition
- SPCA1, secretory pathway calcium ATPase1
- SPE, solid phase extraction
Collapse
Affiliation(s)
- Nasir Jalal
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, Nankai district, People’s Republic of China
| | | | - Janak L. Pathak
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, Nankai district, People’s Republic of China
| | - Shi Yu
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, Nankai district, People’s Republic of China
| | - Chang Y. Chung
- Department of Cellular and Molecular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, Nankai district, People’s Republic of China
| |
Collapse
|
29
|
Dang D, Prasad H, Rao R. Secretory pathway Ca 2+ -ATPases promote in vitro microcalcifications in breast cancer cells. Mol Carcinog 2017; 56:2474-2485. [PMID: 28618103 DOI: 10.1002/mc.22695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer 2017; 117:513-524. [PMID: 28697173 PMCID: PMC5558686 DOI: 10.1038/bjc.2017.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Demand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann–Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis. Methods: Here, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs. Results: Functional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects. Conclusions: This study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
31
|
Song T, Cao S, Tao S, Liang S, Du W, Liang Y. A Novel Unsupervised Algorithm for Biological Process-based Analysis on Cancer. Sci Rep 2017; 7:4671. [PMID: 28680165 PMCID: PMC5498659 DOI: 10.1038/s41598-017-04961-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 12/04/2022] Open
Abstract
The aberrant alterations of biological functions are well known in tumorigenesis and cancer development. Hence, with advances in high-throughput sequencing technologies, capturing and quantifying the functional alterations in cancers based on expression profiles to explore cancer malignant process is highlighted as one of the important topics among cancer researches. In this article, we propose an algorithm for quantifying biological processes by using gene expression profiles over a sample population, which involves the idea of constructing principal curves to condense information of each biological process by a novel scoring scheme on an individualized manner. After applying our method on several large-scale breast cancer datasets in survival analysis, a subset of these biological processes extracted from corresponding survival model is then found to have significant associations with clinical outcomes. Further analyses of these biological processes enable the study of the interplays between biological processes and cancer phenotypes of interest, provide us valuable insights into cancer biology in biological process level and guide the precision treatment for cancer patients. And notably, prognosis predictions based on our method are consistently superior to the existing state of art methods with the same intention.
Collapse
Affiliation(s)
- Tianci Song
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| | - Sha Cao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Sheng Tao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Sen Liang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Wei Du
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Yanchun Liang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
- Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
32
|
Abstract
The calcium signal is a powerful and multifaceted tool by which cells can achieve specific outcomes. Cellular machinery important in tumour progression is often driven or influenced by changes in calcium ions; in some cases this regulation occurs within spatially defined regions. Over the past decade there has been a deeper understanding of how calcium signalling is remodelled in some cancers and the consequences of calcium signalling on key events such as proliferation, invasion and sensitivity to cell death. Specific calcium signalling pathways have also now been identified as playing important roles in the establishment and maintenance of multidrug resistance and the tumour microenvironment.
Collapse
Affiliation(s)
- Gregory R Monteith
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Natalia Prevarskaya
- Institut National de la Santé et de la Recherche Médicale U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le cancer, and Universite de Lille 1, Villeneuve d'Ascq, F-59650, France
| | - Sarah J Roberts-Thomson
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
33
|
Azimi I, Milevskiy MJG, Kaemmerer E, Turner D, Yapa KTDS, Brown MA, Thompson EW, Roberts-Thomson SJ, Monteith GR. TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells. J Cell Sci 2017; 130:2292-2305. [PMID: 28559303 DOI: 10.1242/jcs.196659] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a feature of the tumour microenvironment that promotes invasiveness, resistance to chemotherapeutics and cell survival. Our studies identify the transient receptor potential canonical-1 (TRPC1) ion channel as a key component of responses to hypoxia in breast cancer cells. This regulation includes control of specific epithelial to mesenchymal transition (EMT) events and hypoxia-mediated activation of signalling pathways such as activation of the EGFR, STAT3 and the autophagy marker LC3B, through hypoxia-inducible factor-1α (HIF1α)-dependent and -independent mechanisms. TRPC1 regulated HIF1α levels in PTEN-deficient MDA-MB-468 and HCC1569 breast cancer cell lines. This regulation arises from effects on the constitutive translation of HIF1α under normoxic conditions via an Akt-dependent pathway. In further support of the role of TRPC1 in EMT, its expression is closely associated with EMT- and metastasis-related genes in breast tumours, and is enhanced in basal B breast cancer cell lines. TRPC1 expression is also significantly prognostic for basal breast cancers, particularly those classified as lymph node positive. The defined roles of TRPC1 identified here could be therapeutically exploited for the control of oncogenic pathways in breast cancer cells.
Collapse
Affiliation(s)
- Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Michael J G Milevskiy
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Elke Kaemmerer
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Dane Turner
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Kunsala T D S Yapa
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Melissa A Brown
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Erik W Thompson
- Translational Research Institute, Brisbane, Queensland, 4102, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.,University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, Victoria, 3065, Australia
| | | | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia .,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
34
|
Zhao K, Li G, Yao Y, Zhou Y, Li Z, Guo Q, Lu N. Activation of phospholipase C-γ1 and translocation of phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase contribute to GL-V9-induced apoptosis in human gastric cancer cells. Exp Cell Res 2017; 356:8-19. [PMID: 28412247 DOI: 10.1016/j.yexcr.2017.03.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
Gastric cancer is the most common type of tumor in developing countries and the fourth most frequently diagnosed cancer worldwide. Here, we demonstrated the apoptotic effects of GL-V9 on several human gastric cancer cells and selected MGC-803 cells to uncover the underlying mechanism. GL-V9 elevated Bax/Bcl-2 ratio, abated mitochondrial membrane potential and triggered the onset of apoptotic execution in MGC-803 cells. Our research revealed that CHOP silencing could not inhibit apoptosis, neither could it block Ca2+ release, suggesting that GL-V9-induced apoptosis was independent of CHOP. Furthermore, GL-V9 increased mitochondrial Ca2+ uptake through 1,4,5-triphosphate (IP3) receptor via the activation of phospholipase C-γ1 and the translocation of phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase from nucleus to endoplasmic reticulum. Moreover, in-vivo studies indicated that GL-V9 exhibited significant MGC-803 xenografts regression in nude mice with low systemic toxicity. In conclusion, GL-V9 could induce apoptosis in gastric cancer cells, and would be a promising therapeutical agent against gastric cancer.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Guojun Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yuyuan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
35
|
Chen J, De Raeymaecker J, Hovgaard JB, Smaardijk S, Vandecaetsbeek I, Wuytack F, Møller JV, Eggermont J, De Maeyer M, Christensen SB, Vangheluwe P. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca 2+/Mn 2+-transport ATPase (SPCA1a). J Biol Chem 2017; 292:6938-6951. [PMID: 28264934 DOI: 10.1074/jbc.m117.778431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca2+-dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di-tert-butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed.
Collapse
Affiliation(s)
- Jialin Chen
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Joren De Raeymaecker
- Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Jannik Brøndsted Hovgaard
- the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark, and
| | - Susanne Smaardijk
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Ilse Vandecaetsbeek
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Frank Wuytack
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | | | - Jan Eggermont
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| | - Marc De Maeyer
- Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Søren Brøgger Christensen
- the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark, and
| | - Peter Vangheluwe
- From the Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, and
| |
Collapse
|
36
|
Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 2017; 7:3-17. [PMID: 28119804 PMCID: PMC5237760 DOI: 10.1016/j.apsb.2016.11.001] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
The intracellular calcium ions (Ca2+) act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca2+ homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca2+ signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca2+ channels, transporters and Ca2+-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca2+ channels/transporters or Ca2+-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca2+ signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca2+ channels or transporters.
Collapse
Key Words
- 20-GPPD, 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
- Apoptosis
- CBD, cannabidiol
- CBG, cannabigerol
- CPZ, capsazepine
- CRAC, Ca2+ release-activated Ca2+ channel
- CTL, cytotoxic T cells
- CYP3A4, cytochrome P450 3A4
- Ca2+ channels
- CaM, calmodulin
- CaMKII, calmodulin-dependent protein kinase II
- Cancer therapy
- Cell proliferation
- Channel blockers;
- ER/SR, endoplasmic/sarcoplasmic reticulum
- HCX, H+/Ca2+ exchangers
- IP3, inositol 1,4,5-trisphosphate
- IP3R (1, 2, 3), IP3 receptor (type 1, type 2, type 3)
- MCU, mitochondrial Ca2+ uniporter
- MCUR1, MCU uniporter regulator 1
- MICU (1, 2, 3), mitochondrial calcium uptake (type 1, type 2, type 3)
- MLCK, myosin light-chain kinase
- Migration
- NCX, Na+/Ca2+ exchanger
- NF-κB, nuclear factor-κB
- NFAT, nuclear factor of activated T cells
- NSCLC, non-small cell lung cancer
- OSCC, oral squamous cell carcinoma cells
- PKC, protein kinase C
- PM, plasma membrane
- PMCA, plasma membrane Ca2+-ATPase
- PTP, permeability transition pore
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SERCA, SR/ER Ca2+-ATPase
- SOCE, store-operated Ca2+ entry
- SPCA, secretory pathway Ca2+-ATPase
- Store-operated Ca2+ entry
- TEA, tetraethylammonium
- TG, thapsigargin
- TPC2, two-pore channel 2
- TRIM, 1-(2-(trifluoromethyl) phenyl) imidazole
- TRP (A, C, M, ML, N, P, V), transient receptor potential (ankyrin, canonical, melastatin, mucolipin, no mechanoreceptor potential C, polycystic, vanilloid)
- VGCC, voltage-gated Ca2+ channel
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Chaochu Cui
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Merritt
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zui Pan
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
37
|
Smaardijk S, Chen J, Wuytack F, Vangheluwe P. SPCA2 couples Ca 2+ influx via Orai1 to Ca 2+ uptake into the Golgi/secretory pathway. Tissue Cell 2016; 49:141-149. [PMID: 27692665 DOI: 10.1016/j.tice.2016.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Dysregulation of the Golgi/Secretory Pathway Ca2+ transport ATPase SPCA2 is implicated in breast cancer. During lactation and in luminal breast cancer types, SPCA2 interacts with the plasma membrane Ca2+ channel Orai1, promoting constitutive Ca2+ influx, which is termed store independent Ca2+ entry (SICE). The mechanism of SPCA2/Orai1 interaction depends on the N- and C-termini of SPCA2. These extensions may play a dual role in activating not only Orai1, but also Ca2+ transport into the Golgi/secretory pathway, which we tested by investigating the impact of various SPCA2 N- and/or C-terminal truncations on SICE and Ca2+ transport activity of SPCA2. C-terminal truncations impair SICE and SPCA2 activity, but also affect targeting, whereas N-terminal truncations affect targeting and inactivate SPCA2, but remarkably, SICE activation remains unaffected. Importantly, overexpression of SPCA2 increases the Ca2+ content of non-ER stores, which depends on Orai1 and SPCA2 activity. Thus, Orai1-mediated Ca2+-influx and SPCA2-mediated Ca2+ uptake activity into the Golgi/secretory pathway might be coupled possibly in a microdomain. This channel/pump complex may efficiently transfer Ca2+ into the secretory pathway, which might play a role in SPCA2-expressing secretory cells, such as mammary gland during lactation.
Collapse
Affiliation(s)
- Susanne Smaardijk
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
38
|
Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 2016; 7:e2259. [PMID: 27277681 PMCID: PMC5143377 DOI: 10.1038/cddis.2016.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
Collapse
Affiliation(s)
- M Micaroni
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - G Giacchetti
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - R Plebani
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - G G Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - L Federici
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
39
|
The calcium pump plasma membrane Ca(2+)-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin. Sci Rep 2016; 6:25505. [PMID: 27148852 PMCID: PMC4857793 DOI: 10.1038/srep25505] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Regulation of Ca(2+) transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca(2+) pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca(2+) ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer.
Collapse
|
40
|
Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR. Altered purinergic receptor-Ca²⁺ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 2016; 10:166-78. [PMID: 26433470 PMCID: PMC5528926 DOI: 10.1016/j.molonc.2015.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelial-mesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca(2+) signaling via purinergic receptors is associated with epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP-mediated Ca(2+) signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 μM for normoxic cells versus EC50 of 5.8 μM for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up-regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB-468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hannah Beilby
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Daneth L Marcial
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia; St Vincent's Institute, Fitzroy, Victoria, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
41
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
42
|
Dang D, Rao R. Calcium-ATPases: Gene disorders and dysregulation in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1344-50. [PMID: 26608610 DOI: 10.1016/j.bbamcr.2015.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
44
|
Mahdi SHA, Cheng H, Li J, Feng R. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells. Arch Biochem Biophys 2015; 583:18-26. [PMID: 26247838 DOI: 10.1016/j.abb.2015.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis.
Collapse
Affiliation(s)
- Shah H A Mahdi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Huanyi Cheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Li
- Breast Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Renqing Feng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells. J CHEM-NY 2015. [DOI: 10.1155/2015/613268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW), Nam Doc Mai (NDM), and Kensington Pride (KP), differentially affect proliferation, extracellular signal-regulated kinase (ERK) activity, and intracellular calcium ([Ca2+]I) signalling in MCF-7 human breast cancer cells. Mango flesh extracts from all three cultivars did not inhibit cell growth, and of the peel extracts only NDM reduced MCF-7 cell proliferation. Mango cultivar peel and flesh extracts did not significantly change ERK phosphorylation compared to controls; however, some reduced relative maximal peak[Ca2+]Iafter adenosine triphosphate stimulation, with NDM peel extract having the greatest effect among the treatments. Our results identify mango interfruit and intrafruit (peel and flesh) extract variability in antiproliferative effects and[Ca2+]Isignalling in MCF-7 breast cancer cells and highlight that parts of the fruit (such as peel and flesh) and cultivar differences are important factors to consider when assessing potential chemopreventive bioactive compounds in plants extracts.
Collapse
|
46
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
47
|
Azimi I, Roberts-Thomson SJ, Monteith GR. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. Br J Pharmacol 2014; 171:945-60. [PMID: 24460676 PMCID: PMC3925034 DOI: 10.1111/bph.12486] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
Ca(2+) influx through Ca(2+) permeable ion channels is a key trigger and regulator of a diverse set of cellular events, such as neurotransmitter release and muscle contraction. Ca(2+) influx is also a regulator of processes relevant to cancer, including cellular proliferation and migration. This review focuses on calcium influx in breast cancer cells as well as the potential for pharmacological modulators of specific Ca(2+) influx channels to represent future agents for breast cancer therapy. Altered expression of specific calcium permeable ion channels is present in some breast cancers. In some cases, such changes can be related to breast cancer subtype and even prognosis. In vitro and in vivo models have now helped identify specific Ca(2+) channels that play important roles in the proliferation and invasiveness of breast cancer cells. However, some aspects of our understanding of Ca(2+) influx in breast cancer still require further study. These include identifying the mechanisms responsible for altered expression and the most effective therapeutic strategy to target breast cancer cells through specific Ca(2+) channels. The role of Ca(2+) influx in processes beyond breast cancer cell proliferation and migration should become the focus of studies in the next decade.
Collapse
Affiliation(s)
- I Azimi
- School of Pharmacy, The University of QueenslandBrisbane, Qld, Australia
| | | | - G R Monteith
- School of Pharmacy, The University of QueenslandBrisbane, Qld, Australia
| |
Collapse
|
48
|
Ross DGF, Smart CE, Azimi I, Roberts-Thomson SJ, Monteith GR. Assessment of ORAI1-mediated basal calcium influx in mammary epithelial cells. BMC Cell Biol 2013; 14:57. [PMID: 24359162 PMCID: PMC3878224 DOI: 10.1186/1471-2121-14-57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The entry of calcium ions into mammary gland epithelial cells is one of the least well-understood processes in the transport of calcium into milk during lactation. The store-operated calcium entry channel ORAI1, has been suggested as a potential mechanism for the entry of Ca(2+) into mammary gland epithelial cells from the maternal blood supply during lactation. The down regulation of the canonical ORAI1 activator STIM1 during lactation suggests that other known ORAI activators such as STIM2 and SPCA2 may be important during lactation. RESULTS Differentiation of HC11 mammary gland epithelial cells was associated with enhanced basal Ca(2+) influx. Silencing of Orai1 abolished this enhancement of Ca(2+) influx. Stim2 had a modest effect on Ca(2+) influx in this in vitro model of lactation, whereas Stim1 and Spca2 silencing had no effect. Despite pronounced increases in Spca2 mRNA during lactation there was no change in the generation of the alternative splice product generated by Mist1, which increases during lactation. CONCLUSIONS These studies support the hypothesis that lactation is associated with a remodelling of Ca(2+) influx and this is associated with enhancement of basal Ca(2+) influx. This enhanced Ca(2+) influx appears to occur through the calcium channel Orai1.
Collapse
Affiliation(s)
- Diana GF Ross
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Chanel E Smart
- University of Queensland Centre for Clinical Research (UQCCR), Building 71/918 Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Iman Azimi
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Sarah J Roberts-Thomson
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| |
Collapse
|
49
|
Lan MY, Yang WLR, Lin KT, Lin JC, Shann YJ, Ho CY, Huang CYF. Using computational strategies to predict potential drugs for nasopharyngeal carcinoma. Head Neck 2013; 36:1398-407. [PMID: 24038431 DOI: 10.1002/hed.23464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/06/2013] [Accepted: 08/13/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a unique cancer. Refinement of current therapy by discovering potential drugs may be approached by several computational strategies. METHODS We collected NPC genes from published microarray data and the literature. The NPC disease network was constructed via a protein-protein interaction (PPI) network. The Connectivity Map (CMap) was used to predict potential chemicals, and support vector machines (SVMs) were further utilized to classify the effectiveness of tested drugs against NPC using their gene expression from CMap. RESULTS A highly interconnected network was obtained. Several chemically sensitive genes were identified and 87 drugs were predicted with the potential for treating NPC by SVM, in which nearly half of them have anticancer effects according to the literature. The 2 top-ranked drugs, thioridazine and vorinostat, were demonstrated to be effective in inhibiting NPC cells. CONCLUSION This in silico approach provides a promising strategy for screening potential therapeutic drugs for NPC treatment.
Collapse
Affiliation(s)
- Ming-Ying Lan
- Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Cross BM, Breitwieser GE, Reinhardt TA, Rao R. Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 2013; 306:C515-26. [PMID: 24225884 DOI: 10.1152/ajpcell.00330.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca(2+) plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca(2+) secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca(2+) regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca(2+) from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca(2+) in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.
Collapse
Affiliation(s)
- Brandie M Cross
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|