1
|
Kuemper S, Cairns AG, Birchall K, Yao Z, Large JM. Targeted protein degradation in CNS disorders: a promising route to novel therapeutics? Front Mol Neurosci 2024; 17:1370509. [PMID: 38685916 PMCID: PMC11057381 DOI: 10.3389/fnmol.2024.1370509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.
Collapse
Affiliation(s)
- Sandra Kuemper
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Andrew G. Cairns
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | | | | | | |
Collapse
|
2
|
Häring M, Amann V, Kissmann AK, Herberger T, Synatschke C, Kirsch-Pietz N, Perez-Erviti JA, Otero-Gonzalez AJ, Morales-Vicente F, Andersson J, Weil T, Stenger S, Rodríguez A, Ständker L, Rosenau F. Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14071332. [PMID: 35890228 PMCID: PMC9319270 DOI: 10.3390/pharmaceutics14071332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
In previous studies, derivatives of the peptide Pom-1, which was originally extracted from the freshwater mollusk Pomacea poeyana, showed an exceptional ability to specifically inhibit biofilm formation of the laboratory strain ATCC 90028 as a model strain of the pathogenic yeast Candida albicans. In follow-up, here, we demonstrate that the derivatives Pom-1A to Pom-1F are also active against biofilms of invasive clinical C. albicans isolates, including strains resistant against fluconazole and/or amphotericin B. However, efficacy varied strongly between the isolates, as indicated by large deviations in the experiments. This lack of robustness could be efficiently bypassed by using mixtures of all peptides. These mixed peptide preparations were active against biofilm formation of all the isolates with uniform efficacies, and the total peptide concentration could be halved compared to the original MIC of the individual peptides (2.5 µg/mL). Moreover, mixing the individual peptides restored the antifungal effect of fluconazole against fluconazole-resistant isolates even at 50% of the standard therapeutic concentration. Without having elucidated the reason for these synergistic effects of the peptides yet, both the gain of efficacy and the considerable increase in efficiency by combining the peptides indicate that Pom-1 and its derivatives in suitable formulations may play an important role as new antibiofilm antimycotics in the fight against invasive clinical infections with (multi-) resistant C. albicans.
Collapse
Affiliation(s)
- Michelle Häring
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| | - Tilmann Herberger
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Christopher Synatschke
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Nicole Kirsch-Pietz
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Julio A. Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Anselmo J. Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Fidel Morales-Vicente
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria;
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany;
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
3
|
Kusova A, Abramova M, Skvortsova P, Yulmetov A, Mukhametzyanov T, Klochkov V, Blokhin D. Structure of amyloidogenic PAP(85-120) peptide by high-resolution NMR spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Mohapatra S, Viswanathan GKK, Wettstein L, Arad E, Paul A, Kumar V, Jelinek R, Münch J, Segal D. Dual concentration-dependent effect of ascorbic acid on PAP(248-286) amyloid formation and SEVI-mediated HIV infection. RSC Chem Biol 2021; 2:1534-1545. [PMID: 34704058 PMCID: PMC8496042 DOI: 10.1039/d1cb00084e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
Human semen contains various amyloidogenic peptides derived from Prostatic Acid Phosphatase (PAP) and Semenogelin proteins that are capable of enhancing HIV-1 infection when assembled into fibrils. The best characterized among them is a 39 amino acid peptide PAP(248–286), which forms amyloid fibrils termed SEVI (semen-derived enhancer of viral infection) that increase the infectivity of HIV-1 by orders of magnitude. Inhibiting amyloid formation by PAP(248–286) may mitigate the sexual transmission of HIV-1. Several vitamins have been shown to reduce the aggregation of amyloids such as Aβ, α-Synuclein, and Tau, which are associated with neurodegenerative diseases. Since ascorbic acid (AA, vitamin C) is the most abundant vitamin in semen with average concentrations of 0.4 mM, we here examined how AA affects PAP(248–286) aggregation in vitro. Using ThT binding assays, transmission electron microscopy, and circular dichroism spectroscopy, a dual and concentration-dependent behavior of AA in modulating PAP(248–286) fibril formation was observed. We found that low molar ratios of AA:PAP(248–286) promoted whereas high molar ratios inhibited PAP(248–286) fibril formation. Accordingly, PAP(248–286) aggregated in the presence of low amounts of AA enhanced HIV-1 infection, whereas excess amounts of AA during aggregation reduced the infectivity enhancing effect in cell culture. Collectively, this work provides a biophysical insight into the effect of AA, an important seminal component, on SEVI fibrillation which might impact amyloid formation kinetics, thereby modulating the biological activity of semen amyloids. Human semen contains various amyloidogenic peptides derived from Prostatic Acid Phosphatase (PAP) and Semenogelin proteins that are capable of enhancing HIV-1 infection when assembled into fibrils.![]()
Collapse
Affiliation(s)
- Satabdee Mohapatra
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Guru Krishna Kumar Viswanathan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center Ulm 89081 Germany
| | - Elad Arad
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev Beer Sheva 8410501 Israel
| | - Ashim Paul
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Vijay Kumar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev Beer Sheva 8410501 Israel
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center Ulm 89081 Germany
| | - Daniel Segal
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
5
|
Multifunctional imaging of amyloid-beta peptides with a new gadolinium-based contrast agent in Alzheimer’s disease. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Tan S, Li JQ, Cheng H, Li Z, Lan Y, Zhang TT, Yang ZC, Li W, Qi T, Qiu YR, Chen Z, Li L, Liu SW. The anti-parasitic drug suramin potently inhibits formation of seminal amyloid fibrils and their interaction with HIV-1. J Biol Chem 2019; 294:13740-13754. [PMID: 31346035 DOI: 10.1074/jbc.ra118.006797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Seminal amyloid fibrils are made up of naturally occurring peptide fragments and are key targets for the development of combination microbicides or antiviral drugs. Previously, we reported that the polysulfonic compound ADS-J1 is a potential candidate microbicide that not only inhibits HIV-1 entry, but also seminal fibrils. However, the carcinogenic azo moieties in ADS-J1 preclude its clinical application. Here, we screened several ADS-J1-like analogs and found that the antiparasitic drug suramin most potently inhibited seminal amyloid fibrils. Using various biochemical methods, including Congo red staining, CD analysis, transmission EM, viral infection assays, surface plasmon resonance imaging, and molecular dynamics simulations, we investigated suramin's inhibitory effects and its putative mechanism of action. We found that by forming a multivalent interaction, suramin binds to proteolytic peptides and mature fibrils, thereby inhibiting seminal fibril formation and blocking fibril-mediated enhancement of viral infection. Of note, suramin exhibited potent anti-HIV activities, and combining suramin with several antiretroviral drugs produced synergistic effects against HIV-1 in semen. Suramin also displayed a good safety profile for vaginal application. Moreover, suramin inhibited the semen-derived enhancer of viral infection (SEVI)/semen-mediated enhancement of HIV-1 transcytosis through genital epithelial cells and the subsequent infection of target cells. Collectively, suramin has great potential for further development as a combination microbicide to reduce the spread of the AIDS pandemic by targeting both viral and host factors involved in HIV-1 sexual transmission.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Qing Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaofeng Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Chao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Qi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
8
|
Cifelli JL, Capule CC, Yang J. Noncovalent, Electrostatic Interactions Induce Positively Cooperative Binding of Small Molecules to Alzheimer's and Parkinson's Disease-Related Amyloids. ACS Chem Neurosci 2019; 10:991-995. [PMID: 30044911 DOI: 10.1021/acschemneuro.8b00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Amyloids are self-assembled protein aggregates that represent a major hallmark of many neurologic and systemic diseases. Among the common features of amyloids is the presence of a high density of multiple binding sites for small molecule ligands, making them an attractive target for design of multimeric binding agents. Here, we demonstrate that noncovalent, intermolecular interactions between a 1:1 mixture of oppositely charged benzothiazole molecules enhances their binding to two different amyloid aggregates: Alzheimer's-related amyloid-β (Aβ) peptides or Parkinson's-related α-synuclein (αS) proteins. We show that this mixture leads to positively cooperative binding to amyloid targets, with up to 10-fold enhancement of binding compared to the uncharged parent compound. The observed enhancement of amyloid binding using noncovalent interactions was similar in magnitude to a benzothiazole dimer to aggregated Aβ. These results represent a novel strategy for designing amyloid-targeting molecules with enhanced affinity, which could aid in the development of new diagnostic or treatment strategies for amyloid-associated diseases.
Collapse
Affiliation(s)
- Jessica L. Cifelli
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Christina C. Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
9
|
Inhibitory Effect of Naphthoquinone-Tryptophan Hybrid towards Aggregation of PAP f39 Semen Amyloid. Molecules 2018; 23:molecules23123279. [PMID: 30544943 PMCID: PMC6320874 DOI: 10.3390/molecules23123279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
PAP248–286, a 39 amino acid peptide fragment, derived from the prostatic acid phosphatase secreted in human semen, forms amyloid fibrils and facilitates the attachment of retroviruses to host cells that results in the enhancement of viral infection. Therefore, the inhibition of amyloid formation by PAP248–286 (termed PAP f39) may likely reduce HIV transmission in AIDS. In this study, we show that the naphthoquinone tryptophan (NQTrp) hybrid molecule significantly inhibited PAP f39 aggregation in vitro in a dose-dependent manner as observed from the ThT assay, ANS assay, and transmission electron microscopy imaging. We found that even at a sub-molar concentration of 20:1 [PAP f39:NQTrp], NQTrp could reduce >50% amyloid formation. NQTrp inhibition of PAP f39 aggregation resulted in non-toxic intermediate species as determined by the vesicle leakage assay. Isothermal titration calorimetry and molecular docking revealed that the binding of NQTrp and PAP f39 is spontaneous, and NQTrp predominantly interacts with the polar and charged residues of the peptide by forming hydrogen bonds and hydrophobic contacts with a strong binding energy. Collectively, these findings indicate that NQTrp holds significant potential as a small molecule inhibitor of semen amyloids.
Collapse
|
10
|
Röcker A, Roan NR, Yadav JK, Fändrich M, Münch J. Structure, function and antagonism of semen amyloids. Chem Commun (Camb) 2018; 54:7557-7569. [PMID: 29873340 DOI: 10.1039/c8cc01491d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyloid fibrils are linear polypeptide aggregates with a cross-β structure. These fibrils are best known for their association with neurodegenerative diseases, such as Alzheimer's or Parkinson's, but they may also be used by living organisms as functional units, e.g. in the synthesis of melanin or in the formation of bacterial biofilms. About a decade ago, in a search for semen factors that modulate infection by HIV-1 (a sexually transmitted virus and the causative agent of the acquired immune deficiency syndrome (AIDS)), it was demonstrated that semen harbors amyloid fibrils capable of markedly increasing HIV infection rates. This discovery not only created novel opportunities to prevent sexual HIV-1 transmission but also stimulated research to unravel the natural role of these factors. We discuss here the identification of these intriguing structures, their molecular properties, and their effects on both sexually transmitted diseases and reproductive health. Moreover, we review strategies to antagonize semen amyloid to prevent sexual transmission of viruses.
Collapse
Affiliation(s)
- Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
11
|
Lee YH, Ramamoorthy A. Semen-derived amyloidogenic peptides-Key players of HIV infection. Protein Sci 2018; 27:1151-1165. [PMID: 29493036 DOI: 10.1002/pro.3395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022]
Abstract
Misfolding and amyloid aggregation of intrinsically disordered proteins (IDPs) are implicated in a variety of diseases. Studies have shown that membrane plays important roles on the formation of intermediate structures of IDPs that can initiate (and/or speed-up) amyloid aggregation to form fibers. The process of amyloid aggregation also disrupts membrane to cause cell death in amyloid diseases like Alzheimer's disease and type-2 diabetes. On the other hand, recent studies reported the membrane fusion properties of amyloid fibers. Remarkably, amyloid-fibril formation by short peptide fragments of highly abundant prostatic acidic-phosphatase (PAP) in human semen and are capable of boosting the rate of HIV infection up to 400,000-fold during sexual contact. Unlike the least toxic fully matured fibers of most amyloid proteins, the semen-derived enhancer of virus infection (SEVI) amyloid-fibrils of PAP peptide fragments are highly potent in rendering the maximum rate of HIV infection. This unusual property of amyloid fibers has witnessed increasing number of studies on the biophysical aspects of fiber formation and fiber-membrane interactions. NMR studies have reported a highly disordered partial helical structure in a membrane environment for the intrinsically disordered PAP peptide that promotes the fusion of the viral membrane with that of host cells. The purpose of this review article is to unify and integrate biophysical and immunological research reported in the previous studies on SEVI. Specifically, amyloid aggregation, dramatic HIV infection enhancing properties, membrane fusion properties, high resolution NMR structure, and approaches to eliminate the enhancement of HIV infection of SEVI peptides are discussed.
Collapse
Affiliation(s)
- Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055
| |
Collapse
|
12
|
Sheik DA, Dewhurst S, Yang J. Natural Seminal Amyloids as Targets for Development of Synthetic Inhibitors of HIV Transmission. Acc Chem Res 2017; 50:2159-2166. [PMID: 28809479 DOI: 10.1021/acs.accounts.7b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloids refer to a class of protein or peptide aggregates that are heterogeneous in size, morphology, and composition, and are implicated to play a central role in many neurodegenerative and systemic diseases. The strong correlation between biological activity and extent of aggregation of amyloidogenic proteins and peptides has led to an explosion of research efforts to target these materials with synthetic molecules or engineered antibodies to try to attenuate their function in disease pathology. Although many of these efforts to attenuate amyloid function have shown great promise in laboratory settings, the vast majority of work has been focused on targeting amyloids associated with neurologic diseases, which has been met with significant additional challenges that preclude clinical evaluation. Only recently have researchers started applying their efforts toward neutralizing the activity of amyloids associated with non-neurologic diseases. For instance, small peptides present in high abundance in human semen have been found to aggregate into amyloid-like fibrils, with in vitro experiments indicating that these amyloid fibrils could potentially increase the rate of infection of pathogens such as HIV by over 400 000-fold during sexual contact. Mechanistic investigations of naturally occurring seminal amyloid species such as Semen-derived Enhancer of Virus Infection (SEVI) and related natural peptide aggregates suggest that these materials interact strongly with virus particles and cell surfaces, facilitating viral attachment and internalization into cells and, thus, possibly promoting sexual transmission of disease. Such amyloid mediators in HIV transmission represent an attractive target for development of chemical approaches to attenuate their biological activity. For instance, the activity of seminal amyloids in genital fluids potentially allows for topical delivery of amyloid-targeting molecules, which could minimize common problems with systemic toxicity or permeability across biological barriers. In addition, molecules that target these amyloid mediators in viral attachment could potentially work synergistically with current antiviral agents to reduce the rate of HIV transmission. This Account will briefly summarize some of the key evidence in support of the capability of SEVI to enhance viral infection, and will highlight examples, many from our group, of recent efforts aimed at inhibiting its activity using synthetic small molecules, oligomeric peptides, and polymeric materials. We present various chemical strategies that have shown promise for neutralizing the role of SEVI in HIV transmission including the development of aggregation inhibitors of SEVI fibril formation, small molecule amyloid binders that modulate the charge or structure of SEVI, and synthetic molecules that form bioresistive coatings on SEVI and inhibit its interaction with the virus or cell surface. We discuss some unique challenges that hamper translation of these molecular strategies toward clinical evaluation, and propose several opportunities for researchers to address these challenges.
Collapse
Affiliation(s)
- Daniel A. Sheik
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Stephen Dewhurst
- Department
of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
13
|
Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Discovery of Small Molecules that Induce the Degradation of Huntingtin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shusuke Tomoshige
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Sayaka Nomura
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Kenji Ohgane
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| |
Collapse
|
14
|
Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Discovery of Small Molecules that Induce the Degradation of Huntingtin. Angew Chem Int Ed Engl 2017; 56:11530-11533. [PMID: 28703441 DOI: 10.1002/anie.201706529] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the aggregation of mutant huntingtin (mHtt), and removal of toxic mHtt is expected to be an effective therapeutic approach. We designed two small hybrid molecules (1 and 2) by linking a ligand for ubiquitin ligase (cellular inhibitor of apoptosis protein 1; cIAP1) with probes for mHtt aggregates, anticipating that these compounds would recruit cIAP1 to mHtt and induce selective degradation by the ubiquitin-proteasome system. The synthesized compounds reduced mHtt levels in HD patient fibroblasts and appear to be promising candidates for the development of a treatment for HD.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Sayaka Nomura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kenji Ohgane
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
15
|
Roan NR, Sandi-Monroy N, Kohgadai N, Usmani SM, Hamil KG, Neidleman J, Montano M, Ständker L, Röcker A, Cavrois M, Rosen J, Marson K, Smith JF, Pilcher CD, Gagsteiger F, Sakk O, O'Rand M, Lishko PV, Kirchhoff F, Münch J, Greene WC. Semen amyloids participate in spermatozoa selection and clearance. eLife 2017; 6. [PMID: 28653619 PMCID: PMC5487211 DOI: 10.7554/elife.24888] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens. DOI:http://dx.doi.org/10.7554/eLife.24888.001 Seminal plasma, the fluid portion of semen, helps to transport sperm cells to the egg during sexual reproduction. Seminal plasma contains numerous proteins that help the sperm to survive and, in recent years, researchers discovered that it also harbours protein deposits known as amyloid fibrils. Such protein deposits are generally associated with neurodegenerative diseases such as Alzheimer's and Parkinson’s disease, where a build-up of fibrils can damage the nervous system. Semen amyloids, however, are present in the absence of disease, but can boost infection by HIV and other sexually transmitted viruses, by shuttling virus particles to their target cells. Despite these damaging effects, some researchers had suggested that amyloids in semen could be beneficial for humans, though it was unclear what these benefits might be. Roan et al. now set out to assess how semen amyloids affect human sperm activity. The results show that semen amyloids bind to damaged sperm cells and immobilize them, which are then quickly cleared away by immune cells. This could ensure that only the fittest sperm cells reach the egg. These findings suggest that amyloids can potentially serve beneficial roles for reproduction. A next step will be to investigate how semen amyloids trap unwanted sperm and how immune cells know when to remove it. More research is needed to investigate if problems in these processes could lead to infertility in men. DOI:http://dx.doi.org/10.7554/eLife.24888.002
Collapse
Affiliation(s)
- Nadia R Roan
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Nathallie Sandi-Monroy
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Kinderwunsch-Zentrum, Ulm, Germany
| | - Nargis Kohgadai
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Shariq M Usmani
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Katherine G Hamil
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Jason Neidleman
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Mauricio Montano
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Ludger Ständker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University, Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marielle Cavrois
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Jared Rosen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Kara Marson
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | - James F Smith
- Department or Urology, University of California San Francisco, San Francisco, United States
| | - Christopher D Pilcher
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | | | - Olena Sakk
- Core Facility Transgenic Mice, Medical Faculty, Ulm University, Ulm, Germany
| | - Michael O'Rand
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
16
|
HIV-Enhancing and HIV-Inhibiting Properties of Cationic Peptides and Proteins. Viruses 2017; 9:v9050108. [PMID: 28505117 PMCID: PMC5454421 DOI: 10.3390/v9050108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic antimicrobial peptides and proteins have historically been ascribed roles in innate immunity that infer killing of microbial and viral pathogens and protection of the host. In the context of sexually transmitted HIV-1, we take an unconventional approach that questions this paradigm. It is becoming increasingly apparent that many of the cationic polypeptides present in the human genital or anorectal mucosa, or human semen, are capable of enhancing HIV-1 infection, often in addition to other reported roles as viral inhibitors. We explore how the in vivo environment may select for or against the HIV-enhancing aspects of these cationic polypeptides by focusing on biological relevance. We stress that the distinction between enhancing and inhibiting HIV-1 infection is not mutually exclusive to specific classes of cationic polypeptides. Understanding how virally enhancing peptides and proteins act to promote sexual transmission of HIV-1 would be important for the design of topical microbicides, mucosal vaccines, and other preventative measures.
Collapse
|
17
|
Li M, Dong X, Liu Y, Sun Y. Brazilin Inhibits Prostatic Acidic Phosphatase Fibrillogenesis and Decreases its Cytotoxicity. Chem Asian J 2017; 12:1062-1068. [PMID: 28303660 DOI: 10.1002/asia.201700058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/24/2017] [Indexed: 11/06/2022]
Abstract
A 39-amino acid peptide fragment that is derived from prostatic acidic phosphatase (PAP), PAP248-286 , is secreted in large amounts in human semen and forms amyloid fibrils. These fibrils can capture HIV virions and increase the attachment of virions to target cells; as such, they are called a "semen-derived enhancer of virus infection" (SEVI). Therefore, the inhibition of the formation of PAP248-286 amyloid fibrils is of great significance. Herein, we demonstrate that brazilin effectively inhibits PAP248-286 aggregation. The inhibitory effect increases with increasing brazilin concentration. Thioflavin T fluorescence assays and TEM observations confirmed that a few fibrils formed when brazilin was present with PAP248-286 in an equimolar concentration. Circular dichroism spectroscopy indicated that brazilin inhibited the secondary structural transitions from α-helices and random coils into β-sheets. Cytotoxicity assays showed that brazilin significantly decreased the cytotoxicity of the fibrils at 0.01 mmol L-1 . Isothermal titration calorimetry revealed that hydrophobic interactions were the main driving force for the binding of brazilin to the PAP248-286 monomer (dissociation constant, 4.03 μmol L-1 ), and that the binding affinity of brazilin for the fibrils was at least three orders of magnitude lower than that for the monomer. These results indicate that brazilin holds great potential as a small-molecule agent against SEVIs.
Collapse
Affiliation(s)
- Ming Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Yang Liu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, Guangdong, 515063, P. R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
18
|
Sheik DA, Chamberlain JM, Brooks L, Clark M, Kim YH, Leriche G, Kubiak CP, Dewhurst S, Yang J. Hydrophobic Nanoparticles Reduce the β-Sheet Content of SEVI Amyloid Fibrils and Inhibit SEVI-Enhanced HIV Infectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2596-2602. [PMID: 28207276 DOI: 10.1021/acs.langmuir.6b04295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semen-derived enhancer of virus infection (SEVI) fibrils are naturally abundant amyloid aggregates found in semen that facilitate viral attachment and internalization of human immunodeficiency virus (HIV) in cells, thereby increasing the probability of infection. Mature SEVI fibrils are composed of aggregated peptides exhibiting high β-sheet secondary structural characteristics. Herein, we show that polymers containing hydrophobic side chains can interact with SEVI and reduce its β-sheet content by ∼45% compared with the β-sheet content of SEVI in the presence of polymers with hydrophilic side chains, as estimated by polarization modulation-infrared reflectance absorption spectroscopy measurements. A nanoparticle (NP) formulation of this hydrophobic polymer reduced SEVI-mediated HIV infection in TMZ-bl cells by 60% compared with the control treatment. Although these NPs lacked specific amyloid-targeting groups, thus requiring high concentrations to observe biological activity, the use of hydrophobic interactions to alter the secondary structure of amyloids represents a useful approach to neutralizing the SEVI function. These results could, therefore, have general implications in the design of novel materials that can modify the activity of amyloids associated with a variety of other neurological and systemic diseases.
Collapse
Affiliation(s)
- Daniel A Sheik
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Jeffrey M Chamberlain
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York 14642, United States
| | - Lauren Brooks
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York 14642, United States
| | - Melissa Clark
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Young Hun Kim
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York 14642, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
19
|
Abstract
Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area.
Collapse
Affiliation(s)
- P Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - N R Roan
- Department of Urology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - U Römling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | - C L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - J Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany.,Ulm Peptide Pharmaceuticals, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
Cifelli JL, Chung TS, Liu H, Prangkio P, Mayer M, Yang J. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress. ACS Chem Neurosci 2016; 7:682-8. [PMID: 27055069 DOI: 10.1021/acschemneuro.6b00085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.
Collapse
Affiliation(s)
- Jessica L. Cifelli
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tim S. Chung
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Haiyan Liu
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Panchika Prangkio
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Michael Mayer
- Department
of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
21
|
LoRicco JG, Xu CS, Neidleman J, Bergkvist M, Greene WC, Roan NR, Makhatadze GI. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection. J Biol Chem 2016; 291:14045-14055. [PMID: 27226574 DOI: 10.1074/jbc.m116.718684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection.
Collapse
Affiliation(s)
- Josephine G LoRicco
- Center for Biotechnology and Interdisciplinary Studies and Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Changmingzi Sherry Xu
- Center for Biotechnology and Interdisciplinary Studies and Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158,; Department of Urology, University of California, San Francisco, California 94158.
| | - George I Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180,.
| |
Collapse
|
22
|
Lee NJ, Song JM, Cho HJ, Sung YM, Lee T, Chung A, Hong SH, Cifelli JL, Rubinshtein M, Habib LK, Capule CC, Turner RS, Pak DTS, Yang J, Hoe HS. Hexa (ethylene glycol) derivative of benzothiazole aniline promotes dendritic spine formation through the RasGRF1-Ras dependent pathway. Biochim Biophys Acta Mol Basis Dis 2015; 1862:284-95. [PMID: 26675527 DOI: 10.1016/j.bbadis.2015.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022]
Abstract
Our recent study demonstrated that an amyloid-β binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-β binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain.
Collapse
Affiliation(s)
- Nathanael J Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jung Min Song
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea
| | - You Me Sung
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Taehee Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Andrew Chung
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sung-Ha Hong
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jessica L Cifelli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Rubinshtein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lila K Habib
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina C Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Daniel T S Pak
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 701-300, Republic of Korea.
| |
Collapse
|
23
|
Van Dis ES, Moore TC, Lavender KJ, Messer RJ, Keppler OT, Verheyen J, Dittmer U, Hasenkrug KJ. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts. Virology 2015; 488:88-95. [PMID: 26609939 DOI: 10.1016/j.virol.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission.
Collapse
Affiliation(s)
- Erik S Van Dis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tyler C Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kerry J Lavender
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Oliver T Keppler
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Frankfurt, Germany
| | - Jens Verheyen
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
24
|
Zirafi O, Kim KA, Roan NR, Kluge SF, Müller JA, Jiang S, Mayer B, Greene WC, Kirchhoff F, Münch J. Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Sci Transl Med 2015; 6:262ra157. [PMID: 25391483 DOI: 10.1126/scitranslmed.3009634] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. We report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was maraviroc. This HIV entry inhibitor targets the host cell CCR5 co-receptor and was highly active against both untreated and semen-exposed HIV. These data help to explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission.
Collapse
Affiliation(s)
- Onofrio Zirafi
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Kyeong-Ae Kim
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA. Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89081 Ulm, Germany
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA. Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
25
|
ADS-J1 inhibits semen-derived amyloid fibril formation and blocks fibril-mediated enhancement of HIV-1 infection. Antimicrob Agents Chemother 2015; 59:5123-34. [PMID: 26055369 DOI: 10.1128/aac.00385-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Semen-derived enhancer of viral infection (SEVI) is composed of amyloid fibrils that can greatly enhance HIV-1 infectivity. By its cationic property, SEVI promotes viral sexual transmission by facilitating the attachment and internalization of HIV-1 to target cells. Therefore, semen-derived amyloid fibrils are potential targets for microbicide design. ADS-J1 is an anionic HIV-1 entry inhibitor. In this study, we explored an additional function of ADS-J1: inhibition of SEVI fibril formation and blockage of SEVI-mediated enhancement of viral infection. We found that ADS-J1 bound to an amyloidogenic peptide fragment (PAP248-286, comprising amino acids 248 to 286 of the enzyme prostatic acid phosphatase), thereby inhibiting peptide assembly into amyloid fibrils. In addition, ADS-J1 binds to mature amyloid fibrils and antagonizes fibril-mediated enhancement of viral infection. Unlike cellulose sulfate, a polyanion that failed in clinical trial to prevent HIV-1 sexual transmission, ADS-J1 shows no ability to facilitate fibril formation. More importantly, the combination of ADS-J1 with several antiretroviral drugs exhibited synergistic effects against HIV-1 infection in semen, with little cytotoxicity to vaginal epithelial cells. Our results suggest that ADS-J1 or a derivative may be incorporated into a combination microbicide for prevention of the sexual transmission of HIV-1.
Collapse
|
26
|
Sheik DA, Brooks L, Frantzen K, Dewhurst S, Yang J. Inhibition of the enhancement of infection of human immunodeficiency virus by semen-derived enhancer of virus infection using amyloid-targeting polymeric nanoparticles. ACS NANO 2015; 9:1829-1836. [PMID: 25619867 PMCID: PMC4426188 DOI: 10.1021/nn5067254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The semen-derived enhancer of virus infection (SEVI) is a natural amyloid material that has been shown to substantially increase viral attachment and infectivity of HIV in cells. We previously reported that synthetic monomeric and oligomeric amyloid-targeting molecules could form protein-resistive coatings on SEVI and inhibit SEVI- and semen-mediated enhancement of HIV infectivity. While oligomeric amyloid-binding compounds showed substantial improvement in apparent binding to SEVI compared to monomeric compounds, we observed only a modest correlation between apparent binding to SEVI and activity for reducing SEVI-mediated HIV infection. Here, we synthesized amyloid-binding polyacrylate-based polymers and polymeric nanoparticles of comparable size to HIV virus particles (∼150 nm) to assess the effect of sterics on the inhibition of SEVI-mediated enhancement of HIV infectivity. We show that these polymeric materials exhibit excellent capability to reduce SEVI-mediated enhancement of HIV infection, with the nanoparticles exhibiting the greatest activity (IC50 value of ∼4 μg/mL, or 59 nM based on polymer) of any SEVI-neutralizing agent reported to date. The results support that the improved activity of these nanomaterials is likely due to their increased size (diameters = 80-200 nm) compared to amyloid-targeting small molecules and that steric interactions may play as important a role as binding affinity in inhibiting viral infection mediated by SEVI amyloids. In contrast to the previously reported SEVI-neutralizing, amyloid-targeting molecules (which required concentrations at least 100-fold above the Kd to observe activity), the approximate 1:1 ratio of apparent Kd to IC50 for activity of these polymeric materials suggests the majority of polymer molecules that are bound to SEVI contribute to the inhibition of HIV infectivity enhanced by SEVI. Such size-related effects on physical inhibition of protein-protein interactions may open further opportunities for the use of targeted nanomaterials in disease intervention.
Collapse
Affiliation(s)
- Daniel A. Sheik
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0358, United States
| | - Lauren Brooks
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Kristen Frantzen
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0358, United States
| |
Collapse
|
27
|
Yin P, Huang GB, Tse WH, Bao YG, Denstedt J, Zhang J. Nanocomposited silicone hydrogels with a laser-assisted surface modification for inhibiting the growth of bacterial biofilm. J Mater Chem B 2015; 3:3234-3241. [DOI: 10.1039/c4tb01871k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to the commercial silicone catheters, the nanocomposited silicone hydrogel with a laser-assisted surface modification can reduce the growth of bacteria from 1.20 × 106 CFU cm−2 to 3.69 × 105 CFU cm−2, almost an order of magnitude.
Collapse
Affiliation(s)
- P. Yin
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
| | - G. B. Huang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
| | - W. H. Tse
- Department of Medical Biophysics
- University of Western Ontario
- London
- Canada
| | - Y. G. Bao
- Department of Surgery in the Schulich School of Medicine & Dentistry
- University of Western Ontario
- London
- Canada
| | - J. Denstedt
- Department of Surgery in the Schulich School of Medicine & Dentistry
- University of Western Ontario
- London
- Canada
| | - J. Zhang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
- Department of Medical Biophysics
| |
Collapse
|
28
|
Münch J, Ständker L, Forssmann WG, Kirchhoff F. Discovery of modulators of HIV-1 infection from the human peptidome. Nat Rev Microbiol 2014; 12:715-22. [PMID: 25110191 PMCID: PMC7097597 DOI: 10.1038/nrmicro3312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Kirchhoff and colleagues discuss the discovery of novel antimicrobial peptides by systematic screening of complex peptide and protein libraries that have been derived from human bodily fluids and tissues, with a focus on the isolation of endogenous agents that affect HIV-1 infection. Almost all human proteins are subject to proteolytic degradation, which produces a broad range of peptides that have highly specific and sometimes unexpected functions. Peptide libraries that have been generated from human bodily fluids or tissues are a rich but mostly unexplored source of bioactive compounds that could be used to develop antimicrobial and immunomodulatory therapeutic agents. In this Innovation article, we describe the discovery, optimization and application of endogenous bioactive peptides from human-derived peptide libraries, with a particular focus on the isolation of endogenous inhibitors and promoters of HIV-1 infection.
Collapse
Affiliation(s)
- Jan Münch
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| | - Wolf-Georg Forssmann
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Pharis Biotec GmbH, 30625 Hannover, Germany
| | - Frank Kirchhoff
- 1] Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. [2] Ulm Peptide Pharmaceuticals, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
29
|
Meier C, Weil T, Kirchhoff F, Münch J. Peptide nanofibrils as enhancers of retroviral gene transfer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:438-51. [PMID: 24865496 DOI: 10.1002/wnan.1275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 01/13/2023]
Abstract
Amyloid fibrils are polypeptide-based polymers that are typically associated with neurodegenerative disorders such as Alzheimer's disease. More recently, it has become clear that amyloid fibrils also fulfill functional roles in hormone storage and biosynthesis. Furthermore, it has been demonstrated that semen contains abundant levels of polycationic amyloid fibrils. The natural role of these seminal amyloids remains elusive. Strikingly, however, they drastically enhance HIV-1 infection and may be exploited by the virus to increase its sexual transmission rate. Their strong activity in enhancing HIV-1 infection suggests that seminal amyloid might also promote transduction by retroviral vectors. Indeed, SEVI (semen-derived enhancer of virus infection), the best characterized seminal amyloid, boosts retroviral gene transfer more efficiently than conventional additives. However, the use of SEVI as laboratory tool for efficient retroviral gene transfer is limited because the polypeptide monomers are relatively expensive to produce. Furthermore, standardized production of SEVI fibrils with similar high activities is difficult to achieve because of the stochastic nature of the amyloid assembly process. These obstacles can be overcome by recently identified smaller peptides that spontaneously self-assemble into nanofibrils. These nanofibrils increase retroviral gene transfer even more efficiently than SEVI, are easy to produce and to handle, and seem to be safe as assessed in an ex vivo gene transfer study. Furthermore, peptide-based nanofibrils allow to concentrate viral particles by low-speed centrifugation. Specific adaption and customization of self-assembling peptides might lead to novel nanofibrils with versatile biological functions, e.g., targeted retroviral gene transfer or drug delivery.
Collapse
Affiliation(s)
- Christoph Meier
- Department of Organic Chemistry III, Ulm University, Ulm, Germany
| | | | | | | |
Collapse
|
30
|
French KC, Roan NR, Makhatadze GI. Structural characterization of semen coagulum-derived SEM1(86-107) amyloid fibrils that enhance HIV-1 infection. Biochemistry 2014; 53:3267-77. [PMID: 24811874 PMCID: PMC4039337 DOI: 10.1021/bi500427r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
SEM1(86–107)
is a 22-residue peptide corresponding to residues
86–107 in the semenogelin I protein. SEM1(86–107) is
an abundant component of freshly liquefied semen and forms amyloid
fibrils capable of enhancing HIV infection. To probe the factors affecting
fibril formation and gain a better understanding of how differences
in pH between semen and vaginal fluid affect fibril stability, this
study determined the effect of pH on SEM1(86–107) fibril formation
and dissociation. The SEM1(86–107) fibril structure (i.e.,
residues that comprise the fibrillar core) was also probed using hydrogen–deuterium
exchange mass spectrometry (HDXMS) and hydroxyl radical-mediated protein
modification. The average percent exposure to hydroxyl radical-mediated
modification in the SEM1(86–107) fibrils was determined without
requiring tandem mass spectrometry spectral acquisition or complete
separation of modified peptides. It was found that the residue exposures
calculated from HDXMS and hydroxyl radical-mediated modification were
similar. These techniques demonstrated that three regions of SEM1(86–107)
comprise the amyloid fibril core and that positively charged residues
are exposed, suggesting that electrostatic interactions between SEM1(86–107)
and HIV or the cell surface may be responsible for mediating HIV infection
enhancement by the SEM1(86–107) fibrils.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
31
|
Liquefaction of semen generates and later degrades a conserved semenogelin peptide that enhances HIV infection. J Virol 2014; 88:7221-34. [PMID: 24741080 DOI: 10.1128/jvi.00269-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen naturally undergoes physiological changes over time, whereby it converts from a gel-like consistency to a more liquid form. This process, termed liquefaction, is characterized at the molecular level by site-specific and progressive cleavage of SEMs, the major components of the coagulum, by seminal proteases. We demonstrate that the HIV-enhancing activity of semen gradually decreases over the course of extended liquefaction and identify a naturally occurring semenogelin-derived fragment, SEM1(86-107), whose levels correlate with virus-enhancing activity over the course of liquefaction. SEM1(86-107) amyloids are naturally present in semen, and synthetic SEM1(86-107) fibrils bind virions and are sufficient to enhance HIV infection. Therefore, by characterizing dynamic changes in the HIV-enhancing activity of semen during extended liquefaction, we identified SEM1(86-107) to be a key virus-enhancing component of human semen.
Collapse
|
32
|
Roan NR, Chu S, Liu H, Neidleman J, Witkowska HE, Greene WC. Interaction of fibronectin with semen amyloids synergistically enhances HIV infection. J Infect Dis 2014; 210:1062-6. [PMID: 24719472 DOI: 10.1093/infdis/jiu220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Semen harbors amyloids that enhance human immunodeficiency virus type 1 (HIV-1) infection. We set out to identify factors that bind these amyloids and to determine whether these factors modulate amyloid-mediated HIV-enhancing activity. Using biochemical and mass spectrometric approaches, we identified fibronectin as a consistent interaction partner. Although monomeric fibronectin did not enhance HIV infection, it synergistically increased the infectivity enhancement activity of the amyloids. Depletion of fibronectin decreased the enhancing activity of semen, suggesting that interfering with the binding interface between fibronectin and the amyloids could be an approach to developing a novel class of microbicides targeting the viral-enhancing activity of semen.
Collapse
Affiliation(s)
- Nadia R Roan
- Gladstone Institute of Virology and Immunology Department of Urology
| | - Simon Chu
- Gladstone Institute of Virology and Immunology
| | - Haichuan Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences Sandler-Moore Mass Spectrometry Core Facility
| | | | - H Ewa Witkowska
- Department of Obstetrics, Gynecology, and Reproductive Sciences Sandler-Moore Mass Spectrometry Core Facility
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology Department of Medicine Department of Microbiology and Immunology, University of California, San Francisco
| |
Collapse
|
33
|
Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun 2014; 5:3508. [PMID: 24691351 PMCID: PMC4129123 DOI: 10.1038/ncomms4508] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission.
Collapse
|
34
|
Widera M, Klein AN, Cinar Y, Funke SA, Willbold D, Schaal H. The D-amino acid peptide D3 reduces amyloid fibril boosted HIV-1 infectivity. AIDS Res Ther 2014; 11:1. [PMID: 24422713 PMCID: PMC3899924 DOI: 10.1186/1742-6405-11-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background Amyloid fibrils such as Semen-Derived Enhancer of Viral Infection (SEVI) or amyloid-β-peptide (Aβ) enhance HIV-1 attachment and entry. Inhibitors destroying or converting those fibrils into non-amyloidogenic aggregates effectively reduce viral infectivity. Thus, they seem to be suitable as therapeutic drugs expanding the current HIV-intervening repertoire of antiretroviral compounds. Findings In this study, we demonstrate that the small D-amino acid peptide D3, which was investigated for therapeutic studies on Alzheimer’s disease (AD), significantly reduces both SEVI and Aβ fibril boosted infectivity of HIV-1. Conclusions Since amyloids could play an important role in the progression of AIDS dementia complex (ADC), the treatment of HIV-1 infected individuals with D3, that inhibits Aβ fibril formation and converts preformed Aβ fibrils into non-amyloidogenic and non-fibrillar aggregates, may reduce the vulnerability of the central nervous system of HIV patients for HIV associated neurological disorders.
Collapse
|
35
|
Münch J, Sauermann U, Yolamanova M, Raue K, Stahl-Hennig C, Kirchhoff F. Effect of semen and seminal amyloid on vaginal transmission of simian immunodeficiency virus. Retrovirology 2013; 10:148. [PMID: 24308721 PMCID: PMC4029343 DOI: 10.1186/1742-4690-10-148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/27/2013] [Indexed: 12/03/2022] Open
Abstract
Background Semen and semen-derived amyloid fibrils boost HIV infection in vitro but their impact on sexual virus transmission in vivo is unknown. Here, we examined the effect of seminal plasma (SP) and semen-derived enhancer of virus infection (SEVI) on vaginal virus transmission in the SIV/rhesus macaque (Macacca mulatta) model. Results A total of 18 non-synchronized female rhesus macaques (six per group) were exposed intra-vaginally to increasing doses of the pathogenic SIVmac239 molecular clone in the presence or absence of SEVI and SP. Establishment of productive virus infection was assessed by measuring plasma viral RNA loads at weekly intervals. We found that the first infections occurred at lower viral doses in the presence of SP and SEVI compared to the control group. Furthermore, the average peak viral loads during acute infection were about 6-fold higher after exposure to SP- and SEVI-treated virus. Overall infection rates after a total of 27 intra-vaginal exposures to increasing doses of SIV, however, were similar in the absence (4 of 6 animals) and presence of SP (5 of 6), or SEVI (4 of 6). Furthermore, the infectious viral doses required for infection varied considerably and did not differ significantly between these three groups. Conclusions Semen and SEVI did not have drastic effects on vaginal SIV transmission in the present experimental setting but may facilitate spreading of virus infection after exposure to low viral doses that most closely approximate the in vivo situation.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Semen-derived enhancer of viral infection (SEVI) binds bacteria, enhances bacterial phagocytosis by macrophages, and can protect against vaginal infection by a sexually transmitted bacterial pathogen. Antimicrob Agents Chemother 2013; 57:2443-50. [PMID: 23507280 DOI: 10.1128/aac.02464-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The semen-derived enhancer of viral infection (SEVI) is a positively charged amyloid fibril that is derived from a self-assembling proteolytic cleavage fragment of prostatic acid phosphatase (PAP(248-286)). SEVI efficiently facilitates HIV-1 infection in vitro, but its normal physiologic function remains unknown. In light of the fact that other amyloidogenic peptides have been shown to possess direct antibacterial activity, we investigated whether SEVI could inhibit bacterial growth. Neither SEVI fibrils nor the unassembled PAP(248-286) peptide had significant direct antibacterial activity in vitro. However, SEVI fibrils bound to both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Neisseria gonorrhoeae) bacteria, in a charge-dependent fashion. Furthermore, SEVI fibrils but not the monomeric PAP(248-286) peptide promoted bacterial aggregation and enhanced the phagocytosis of bacteria by primary human macrophages. SEVI also enhanced binding of bacteria to macrophages and the subsequent release of bacterially induced proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-1β). Finally, SEVI fibrils inhibited murine vaginal colonization with Neisseria gonorrhoeae. These findings demonstrate that SEVI has indirect antimicrobial activity and that this activity is dependent on both the cationic charge and the fibrillar nature of SEVI.
Collapse
|
37
|
Hartman K, Brender JR, Monde K, Ono A, Evans M, Popovych N, Chapman MR, Ramamoorthy A. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. PeerJ 2013; 1:e5. [PMID: 23638387 PMCID: PMC3629062 DOI: 10.7717/peerj.5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically increase HIV infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a more general phenomenon than previously supposed.
Collapse
Affiliation(s)
- Kevin Hartman
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Jeffrey R. Brender
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Kazuaki Monde
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Margery L. Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Nataliya Popovych
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| |
Collapse
|
38
|
Inhibition of semen-derived enhancer of virus infection (SEVI) fibrillogenesis by zinc and copper. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:695-704. [PMID: 22907203 DOI: 10.1007/s00249-012-0846-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/15/2012] [Accepted: 07/27/2012] [Indexed: 01/27/2023]
Abstract
Semen-derived enhancer of virus infection (SEVI), a naturally occurring peptide fragment of prostatic acid phosphatase, enhances HIV infectivity by forming cationic amyloid fibrils that aid the fusion of negatively charged virion and target cell membranes. Cu(II) and Zn(II) inhibit fibrillization of SEVI in a kinetic assay using the fibril-specific dye ThT. TEM suggests that the metals do not affect fibril morphology. NMR shows that the metals bind to histidines 3 and 23 in the SEVI sequence. ITC experiments indicate that SEVI forms oligomeric complexes with the metals. Dissociation constants are micromolar for Cu(II) and millimolar for Zn(II). Because the Cu(II) and Zn(II) concentrations that inhibit fibrillization are comparable with those found in seminal fluid the metals may modulate SEVI fibrillization under physiological conditions.
Collapse
|
39
|
Zhao Y, Jiang F, Liu P, Chen W, Yi K. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds. Drug Discov Today 2012; 17:630-5. [DOI: 10.1016/j.drudis.2012.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 01/19/2023]
|
40
|
Castellano LM, Shorter J. The Surprising Role of Amyloid Fibrils in HIV Infection. BIOLOGY 2012; 1:58-80. [PMID: 24832047 PMCID: PMC4011035 DOI: 10.3390/biology1010058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 05/19/2012] [Accepted: 05/23/2012] [Indexed: 01/18/2023]
Abstract
Despite its discovery over 30 years ago, human immunodeficiency virus (HIV) continues to threaten public health worldwide. Semen is the principal vehicle for the transmission of this retrovirus and several endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), potentiate HIV infection by up to 105-fold. Fibrils enhance infectivity by facilitating virion attachment and fusion to target cells, whereas soluble peptides have no effect. Importantly, the stimulatory effect is greatest at low viral titers, which mimics mucosal transmission of HIV, where relatively few virions traverse the mucosal barrier. Devising a method to rapidly reverse fibril formation (rather than simply inhibit it) would provide an innovative and urgently needed preventative strategy for reducing HIV infection via the sexual route. Targeting a host-encoded protein conformer represents a departure from traditional microbicidal approaches that target the viral machinery, and could synergize with direct antiviral approaches. Here, we review the identification of these amyloidogenic peptides, their mechanism of action, and various strategies for inhibiting their HIV-enhancing effects.
Collapse
Affiliation(s)
- Laura M Castellano
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - James Shorter
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 2012; 10:541-50. [PMID: 22177559 DOI: 10.1016/j.chom.2011.10.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/29/2011] [Accepted: 10/07/2011] [Indexed: 01/09/2023]
Abstract
Semen serves as a vehicle for HIV and promotes sexual transmission of the virus, which accounts for the majority of new HIV cases. The major component of semen is the coagulum, a viscous structure composed predominantly of spermatozoa and semenogelin proteins. Due to the activity of the semen protease PSA, the coagulum is liquefied and semenogelins are cleaved into smaller fragments. Here, we report that a subset of these semenogelin fragments form amyloid fibrils that greatly enhance HIV infection. Like SEVI, another amyloid fibril previously identified in semen, the semenogelin fibrils exhibit a cationic surface and enhance HIV virion attachment and entry. Whereas semen samples from healthy individuals greatly enhance HIV infection, semenogelin-deficient semen samples from patients with ejaculatory duct obstruction are completely deficient in enhancing activity. Semen thus harbors distinct amyloidogenic peptides derived from different precursor proteins that commonly enhance HIV infection and likely contribute to HIV transmission.
Collapse
|
42
|
Roan NR, Cavrois M, Greene WC. [Role of semen-derived amyloid fibrils as facilitators of HIV infection]. Med Sci (Paris) 2012; 28:358-60. [PMID: 22549858 DOI: 10.1051/medsci/2012284008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Popovych N, Brender JR, Soong R, Vivekanandan S, Hartman K, Basrur V, Macdonald PM, Ramamoorthy A. Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248-286). J Phys Chem B 2012; 116:3650-8. [PMID: 22360607 DOI: 10.1021/jp2121577] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, a 39 amino acid peptide fragment from prostatic acid phosphatase has been isolated from seminal fluid that can enhance infectivity of the HIV virus by up to 4-5 orders of magnitude. PAP(248-286) is effective in enhancing HIV infectivity only when it is aggregated into amyloid fibers termed SEVI. The polyphenol EGCG (epigallocatechin-3-gallate) has been shown to disrupt both SEVI formation and HIV promotion by SEVI, but the mechanism by which it accomplishes this task is unknown. Here, we show that EGCG interacts specifically with the side chains of monomeric PAP(248-286) in two regions (K251-R257 and N269-I277) of primarily charged residues, particularly lysine. The specificity of interaction to these two sites is contrary to previous studies on the interaction of EGCG with other amyloidogenic proteins, which showed the nonspecific interaction of EGCG with exposed backbone sites of unfolded amyloidogenic proteins. This interaction is specific to EGCG as the related gallocatechin (GC) molecule, which shows greatly decreased antiamyloid activity, exhibits minimal interaction with monomeric PAP(248-286). The EGCG binding was shown to occur in two steps, with the initial formation of a weakly bound complex followed by a pH dependent formation of a tightly bound complex. Experiments in which the lysine residues of PAP(248-286) have been chemically modified suggest the tightly bound complex is created by Schiff-base formation with lysine residues. The results of this study could aid in the development of small molecule inhibitors of SEVI and other amyloid proteins.
Collapse
Affiliation(s)
- Nataliya Popovych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Capule CC, Yang J. Enzyme-linked immunosorbent assay-based method to quantify the association of small molecules with aggregated amyloid peptides. Anal Chem 2012; 84:1786-91. [PMID: 22243436 DOI: 10.1021/ac2030859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes a simple enzyme linked immunosorbent assay (ELISA) protocol for quantifying the binding of small molecules to aggregated β-amyloid (Aβ) peptides. Amyloid-targeting small molecules have attracted wide interest as potential agents for the treatment or diagnosis of neurodegenerative disorders such as Alzheimer's disease. The lack of general methods to evaluate small molecule-amyloid binding interactions, however, has significantly limited the number of amyloid-targeting molecules that have been studied to date. Here, we demonstrate a general method to quantify small molecule-amyloid binding interactions via a modified quantitative ELISA protocol. A key feature of this protocol is the treatment of commercial ELISA plates with an air plasma to help maintain the desired β-sheet content of the aggregated Aβ upon immobilization of these peptides on to the polystyrene surface. We developed an ELISA-based competition assay on these air plasma-treated plates and evaluated the binding of five previously known amyloid-binding small molecules to aggregated Aβ. We show that this general ELISA-based competition assay can be used to quantify small molecule-amyloid binding interactions in the low nanomolar to low micromolar range, which is the typical range of affinities for many amyloid-targeting diagnostic agents under current development. This simple protocol for quantifying the interaction of small molecules with aggregated Aβ peptides overcomes many limitations of previously reported spectroscopic or radioactivity assays and may, therefore, facilitate the screening and evaluation of a more structurally diverse set of amyloid-targeting agents than had previously been possible.
Collapse
Affiliation(s)
- Christina C Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | |
Collapse
|
45
|
Capule CC, Brown C, Olsen JS, Dewhurst S, Yang J. Oligovalent amyloid-binding agents reduce SEVI-mediated enhancement of HIV-1 infection. J Am Chem Soc 2012; 134:905-8. [PMID: 22239120 PMCID: PMC3262105 DOI: 10.1021/ja210931b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper evaluates the use of oligovalent amyloid-binding molecules as potential agents that can reduce the enhancement of human immunodeficiency virus-1 (HIV-1) infection in cells by semen-derived enhancer of virus infection (SEVI) fibrils. These naturally occurring amyloid fibrils found in semen have been implicated as mediators that can facilitate the attachment and internalization of HIV-1 virions to immune cells. Molecules that are capable of reducing the role of SEVI in HIV-1 infection may, therefore, represent a novel strategy to reduce the rate of sexual transmission of HIV-1 in humans. Here, we evaluated a set of synthetic, oligovalent derivatives of benzothiazole aniline (BTA, a known amyloid-binding molecule) for their capability to bind cooperatively to aggregated amyloid peptides and to neutralize the effects of SEVI in HIV-1 infection. We demonstrate that these BTA derivatives exhibit a general trend of increased binding to aggregated amyloids as a function of increasing valence number of the oligomer. Importantly, we find that oligomers of BTA show improved capability to reduce SEVI-mediated infection of HIV-1 in cells compared to a BTA monomer, with the pentamer exhibiting a 65-fold improvement in efficacy compared to a previously reported monomeric BTA derivative. These results, thus, support the use of amyloid-targeting molecules as potential supplements for microbicides to curb the spread of HIV-1 through sexual contact.
Collapse
Affiliation(s)
- Christina C. Capule
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Caitlin Brown
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Joanna S. Olsen
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response can influence mucosal transmission of HIV-1. RECENT FINDINGS A large array of cell types reside at the mucosal surface ranging from Langerhans cells, dendritic cells, macrophages as well as CD4⁺ lymphocytes, all of which interact with the virus in a unique and different way and which can contribute to risk of HIV-1 transmission. Numerous factors present in bodily secretions as well as the carrier fluids of HIV-1 (breast milk, vaginal secretions, semen and intestinal mucus) can influence transmission and early virus replication. These range from cytokines, chemokines, small peptides, glycoproteins as well as an array of host intracellular molecules which can influence viral uncoating, reverse transcription as well as egress from the infected cell. SUMMARY Better understanding the cellular mechanisms of HIV-1 transmission and how different host factor can influence infection will aide in the future development of vaccines, microbicides, and therapies.
Collapse
|
47
|
Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol 2011; 86:1244-9. [PMID: 22090109 DOI: 10.1128/jvi.06121-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semen is the major vector for HIV-1 transmission. We previously isolated C-proximal fragments of the prostatic acid phosphatase (PAP) from semen which formed amyloid fibrils that potently enhanced HIV infection. Here, we used the same methodology and identified another amyloidogenic peptide. Surprisingly, this peptide is derived from an N-proximal fragment of PAP (PAP85-120) and forms, similar to the C-proximal fragments, positively charged fibrillar structures that increase virion attachment to cells. Our results provide a first example for amyloid formation by fragments of distinct regions of the same precursor and further emphasize the possible importance of amyloidogenic peptides in HIV transmission.
Collapse
|
48
|
Prangkio P, Rao DK, Lance KD, Rubinshtein M, Yang J, Mayer M. Self-assembled, cation-selective ion channels from an oligo(ethylene glycol) derivative of benzothiazole aniline. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2877-85. [PMID: 21889925 DOI: 10.1016/j.bbamem.2011.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/22/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
Abstract
This paper describes the spontaneous formation of well-defined pores in planar lipid bilayers from the self-assembly of a small synthetic molecule that contains a benzothiazole aniline (BTA) group attached to a tetra-ethylene glycol (EG4) moiety. Macroscopic and single-channel current recordings suggest that these pores are formed by the assembly of four BTA-EG4 monomers with an open pore diameter that appears similar to the one of gramicidin pores (~0.4 nm). The single-channel conductance of these pores is modulated by the pH of the electrolyte and has a minimum at pH~3. Self-assembled pores from BTA-EG4 are selective for monovalent cations and have long open channel lifetimes on the order of seconds. BTA-EG4 monomers in these pores appear to be arranged symmetrically across both leaflets of the bilayer, and spectroscopy studies suggest that the fluorescent BTA group is localized inside the lipid bilayers. In terms of biological activity, BTA-EG4 molecules inhibited growth of gram-positive Bacillus subtilis bacteria (IC50~50 μM) and human neuroblastoma SH-SY5Y cells (IC50~60 μM), while they were not toxic to gram-negative Escherichia coli bacteria at a concentration up to 500 μM. Based on these properties, this drug-like, synthetic, pore-forming molecule with a molecular weight below 500 g mol(-1) might be appealing as a starting material for development of antibiotics or membrane-permeating moieties for drug delivery. From a biophysical point of view, long-lived, well-defined ion-selective pores from BTA-EG4 molecules offer an example of a self-assembled synthetic supramolecule with biological function.
Collapse
Affiliation(s)
- Panchika Prangkio
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
49
|
Enhancement of HIV-1 infectivity by simple, self-assembling modular peptides. Biophys J 2011; 100:1325-34. [PMID: 21354406 DOI: 10.1016/j.bpj.2011.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/05/2011] [Accepted: 01/19/2011] [Indexed: 11/20/2022] Open
Abstract
Semen-derived enhancer of viral infection (SEVI), an amyloid fibril formed from a cationic peptide fragment of prostatic acidic phosphatase (PAP), dramatically enhances the infectivity of human immunodeficiency virus type 1 (HIV-1). Insoluble, sedimentable fibrils contribute to SEVI-mediated enhancement of virus infection. However, the SEVI-forming PAP(248-286) peptide is able to produce infection-enhancing structures much more quickly than it forms amyloid fibrils. This suggests that soluble supramolecular assemblies may enhance HIV-1 infection. To address this question, non-SEVI amyloid-like fibrils were derived from general amphipathic peptides of sequence Ac-K(n)(XKXE)(2)-NH(2). These cationic peptides efficiently self-assembled to form soluble, fibril-like structures that were, in some cases, able to enhance HIV-1 infection even more efficiently than SEVI. Experiments were also performed to determine whether agents that efficiently shield the charged surface of SEVI fibrils block SEVI-mediated infection-enhancement. To do this, we generated self-assembling anionic peptides of sequence Ac-E(n)(XKXE)(2)-NH(2). One of these peptides completely abrogated SEVI-mediated enhancement of HIV-1 infection, without altering HIV-1 infectivity in the absence of SEVI. Collectively, these data suggest that soluble SEVI assemblies may mediate infection-enhancement, and that anionic peptide supramolecular assemblies have the potential to act as anti-SEVI microbicides.
Collapse
|
50
|
Kirchhoff F, Münch J. Blocking semen-mediated enhancement of HIV infection by amyloid-binding small molecules. Future Virol 2011. [DOI: 10.2217/fvl.10.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evaluation of: Olsen JS, Brown C, Capule CC et al.: Amyloid-binding small molecules efficiently block SEVI (semen-derived enhancer of virus infection)- and semen-mediated enhancement of HIV-1 infection. J. Biol. Chem. 285(46), 35488–35496 (2010). Sexual intercourse is the major route for the spread of the AIDS pandemic and semen represents the main vector for HIV-1 transmission. It is under debate whether semen enhances or inhibits HIV-1 infection. However, accumulating evidence suggests that semen contains amyloid aggregates (termed ‘semen-derived enhancer of virus infection’ [SEVI]) that boost infection and thus represent a promising target for the prevention of HIV-1 transmission. Here, Olsen and colleagues demonstrate that BTA-EG6, a derivative of the amyloid-specific dye thioflavin T, binds SEVI fibrils. This interaction blocks the ability of SEVI to enhance virus infection by preventing the association of SEVI with target cells. Importantly, the authors also demonstrate that BTA-EG6 inhibits semen-mediated enhancement of HIV-1 infection without causing inflammation or toxicity in cervical cells. These results suggest that small amyloid-binding molecules that block semen-mediated enhancement of HIV-1 infection are a useful supplement to microbicides for preventing sexual transmission of the virus.
Collapse
Affiliation(s)
- Frank Kirchhoff
- Institute of Molecular Virology, University Hospital Ulm, Meyerhofstrasse 1, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, University Hospital Ulm, Meyerhofstrasse 1, 89081 Ulm, Germany
| |
Collapse
|