1
|
Liu H, Huang M, Wei S, Wang X, Zhao Y, Han Z, Ye X, Li Z, Ji Y, Cui Z, Huang Y. Characterization of a multi-domain exo-β-1,3-galactanase from Paenibacillus xylanexedens. Int J Biol Macromol 2024; 266:131413. [PMID: 38582482 DOI: 10.1016/j.ijbiomac.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only β-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 β-1,3-galactanase for the degradation of arabinogalactan.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Min Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaqin Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhengyang Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
2
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
3
|
Shi Q, Abdel-Hamid AM, Sun Z, Cheng Y, Tu T, Cann I, Yao B, Zhu W. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals. Biotechnol Adv 2023; 65:108126. [PMID: 36921877 DOI: 10.1016/j.biotechadv.2023.108126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.
Collapse
Affiliation(s)
- Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed M Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Geng A, Jin M, Li N, Tu Z, Zhu D, Xie R, Wang Q, Sun J. Arabinan hydrolysis by GH43 enzymes of Hungateiclostridium clariflavum and the potential synergistic mechanisms. Appl Microbiol Biotechnol 2022; 106:7793-7803. [PMID: 36251023 DOI: 10.1007/s00253-022-12238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Glycoside hydrolase family 43 (GH43) represents a major source of arabinan- and arabinoxylan-active enzymes. Interestingly, some microbes remarkably enriched GH genes of this family, with the reason unknown. Hungateiclostridium clariflavum DSM 19,732 is an efficient lignocellulose degrader, which harbors up to 7 GH43 genes in its genome. We cloned three of the seven GH43 genes, and found that Abn43A is a unique endoarabinanase, which unprecedently showed approximately two times larger activity on sugar beet arabinan (116.8 U/mg) than that on linear arabinan, and it is efficient in arabinooligosaccharide production. Abn43B is an exoarabinanase which directly releases arabinose from linear arabinan. Abn43C is an α-L-arabinofuranosidase which is capable of splitting the arabinose side-chains from arabinooligosaccharides, arabinoxylooligosaccharides, and arabinoxylan. Most importantly, the three GH43 enzymes synergized in hydrolyzing arabinan. Compared to Abn43B alone, a supplement of Abn43A increased the arabinose production from linear arabinan by 150%, reaching 0.44 g/g arabinan. Moreover, an addition of Abn43C to Abn43A and Abn43B boosted the arabinose production from sugar beet arabinan by 15 times, reaching 0.262 g/g arabinan. Our work suggested the intensified functions of multiple GH43 enzymes toward arabinan degradation in H. clariflavum, and a potential synergetic mechanism among the three GH43 enzymes is suggested. KEY POINTS: • Endoarabinanase GH43A prefers branched substrate to linear one • Exoarabinanase GH43B can directly release arabinose from linear arabinan • The three GH43 enzymes synergized in arabinan hydrolysis.
Collapse
Affiliation(s)
- Alei Geng
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Meng Jin
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Nana Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhuowei Tu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rongrong Xie
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Baudrexl M, Fida T, Berk B, Schwarz WH, Zverlov VV, Groll M, Liebl W. Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity. Front Mol Biosci 2022; 9:907439. [PMID: 35847984 PMCID: PMC9278983 DOI: 10.3389/fmolb.2022.907439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on β-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed β-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.
Collapse
Affiliation(s)
- Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Tarik Fida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Berkay Berk
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | | | - Vladimir V. Zverlov
- Chair of Microbiology, Technical University of Munich, Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Garching, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
7
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
8
|
Meelua W, Wanjai T, Thinkumrob N, Oláh J, Mujika JI, Ketudat-Cairns JR, Hannongbua S, Jitonnom J. Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface. J Biomol Struct Dyn 2021; 40:7439-7449. [PMID: 33715601 DOI: 10.1080/07391102.2021.1898469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The endo-1,5-α-L-arabinanases, belonging to glycoside hydrolase family 43 (GH43), catalyse the hydrolysis of α-1,5-arabinofuranosidic bonds in arabinose-containing polysaccharides. These enzymes are proposed targets for industrial and medical applications. Here, molecular dynamics (MD), potential energy surface and free energy (potential of mean force) simulations are undertaken using hybrid quantum mechanical/molecular mechanical (QM/MM) potentials to understand the active site dynamics, catalytic mechanism and the electrostatic influence of active site residues of the GH43 endo-arabinanase from G. stearothermophilus. The calculated results give support to the single-displacement mechanism proposed for the inverting GH43 enzymes: first a proton is transferred from the general acid E201 to the substrate, followed by a nucleophilic attack by water, activated by the general base D27, on the anomer carbon. A conformational change (2E ↔E3 ↔ 4E) in the -1 sugar ring is observed involving a transition state featuring an oxocarbenium ion character. Residues D87, K106, H271 are highlighted as potential targets for future mutation experiments in order to increase the efficiency of the reaction. To our knowledge, this is the first QM/MM study providing molecular insights into the glycosidic bond hydrolysis of a furanoside substrate by an inverting GH in solution.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, Thailand.,Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| | | | | | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC), Donostia, Euskadi, Spain
| | - James R Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| |
Collapse
|
9
|
Rational protein engineering of α-L-arabinofuranosidase from Aspergillus niger for improved catalytic hydrolysis efficiency on kenaf hemicellulose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kravchenko U, Gogoleva N, Kalubaka N, Kruk A, Diubo Y, Gogolev Y, Nikolaichik Y. The PhoPQ Two-Component System Is the Major Regulator of Cell Surface Properties, Stress Responses and Plant-Derived Substrate Utilisation During Development of Pectobacterium versatile-Host Plant Pathosystems. Front Microbiol 2021; 11:621391. [PMID: 33519782 PMCID: PMC7843439 DOI: 10.3389/fmicb.2020.621391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Pectobacterium versatile (formerly P. carotovorum) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited. The PhoPQ two-component system, originally described in pectobacteria as PehRS, was previously shown to regulate a single gene, pehA. Using an insertional phoP mutant of Pectobacterium versatile (earlier-P. carotovorum), we demonstrate that PhoP regulates at least 115 genes with a majority of them specific for pectobacteria. The functions performed by PhoP-controlled genes include degradation, transport and metabolism of plant-derived carbon sources (polygalacturonate, arabinose-containing polysaccharides and citrate), modification of bacterial cell envelope and stress resistance. We also demonstrated PhoP involvement in establishing the order of plant cell wall decomposition and utilisation of the corresponding breakdown products. Based on experimental data and in silico analysis, we defined a PhoP binding site motif and provided proof for its universality in enteric bacteria. Scanning P. versatile genome for the locations of this motif suggested a much larger PhoP regulon enriched with the genes important for a plant pathogen, which makes PhoP a global virulence regulator. Potential PhoP targets include many regulatory genes and PhoP control over one of them, expI, was confirmed experimentally, highlighting the link between the PhoPQ two-component and quorum sensing systems. High concentrations of calcium and magnesium ions were found to abolish the PhoPQ-dependent transcription activation but did not relieve repression. Reduced PhoP expression and minimisation of PhoP dependence of regulon members' expression in P. versatile cells isolated from potato tuber tissues suggest that PhoPQ system is a key switch of expression levels of multiple virulence-related genes fine-tuned to control the development of P. versatile-host plant pathosystem.
Collapse
Affiliation(s)
- Uljana Kravchenko
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Natalia Gogoleva
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Laboratory of Extreme Biology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Nastassia Kalubaka
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Alla Kruk
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuliya Diubo
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuri Gogolev
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
11
|
Teramoto K, Tsutsui S, Sato T, Fujimoto Z, Kaneko S. Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2021; 193:1042-1055. [PMID: 33394289 DOI: 10.1007/s12010-020-03451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Substrate specificities of glycoside hydrolase families 8 (Rex), 39 (BhXyl39), and 52 (BhXyl52) β-xylosidases from Bacillus halodurans C-125 were investigated. BhXyl39 hydrolyzed xylotriose most efficiently among the linear xylooligosaccharides. The activity decreased in the order of xylohexaose > xylopentaose > xylotetraose and it had little effect on xylobiose. In contrast, BhXyl52 hydrolyzed xylobiose and xylotriose most efficiently, and its activity decreased when the main chain became longer as follows: xylotetraose > xylopentaose > xylohexaose. Rex produced O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara2Xyl3) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(l → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA2Xyl3), which lost a xylose residue from the reducing end of O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara3Xyl4) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(1 → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA3Xyl4). It was considered that there is no space to accommodate side chains at subsite -1. BhXyl39 rapidly hydrolyzes the non-reducing-end xylose linkages of MeGlcA3Xyl4, while the arabinose branch does not significantly affect the enzyme activity because it degrades Ara3Xyl4 as rapidly as unmodified xylotetraose. The model structure suggested that BhXyl39 enhanced the activity for MeGlcA3Xyl4 by forming a hydrogen bond between glucuronic acid and Lys265. BhXyl52 did not hydrolyze Ara3Xyl4 and MeGlcA3Xyl4 because it has a narrow substrate binding pocket and 2- and 3-hydroxyl groups of xylose at subsite +1 hydrogen bond to the enzyme.
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Tomoko Sato
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
12
|
Two Novel α-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl Environ Microbiol 2019; 85:AEM.02582-18. [PMID: 30635377 DOI: 10.1128/aem.02582-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022] Open
Abstract
Arabinose-containing poly- or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum However, their degradation pathways are poorly understood. In this study, we cloned and characterized the previously uncharacterized glycoside hydrolase family 43 (GH43) enzymes B. longum subsp. longum ArafC (BlArafC; encoded by BLLJ_1852) and B. longum subsp. longum ArafB (BlArafB; encoded by BLLJ_1853) from B. longum subsp. longum JCM 1217. Both enzymes exhibited α-l-arabinofuranosidase activity toward p-nitrophenyl-α-l-arabinofuranoside but no activity toward p-nitrophenyl-β-d-xylopyranoside. The specificities of the two enzymes for l-arabinofuranosyl linkages were different. BlArafC catalyzed the hydrolysis of α1,2- and α1,3-l-arabinofuranosyl linkages found on the side chains of both arabinan and arabinoxylan. It released l-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. On the other hand, BlArafB catalyzed the hydrolysis of the α1,5-l-arabinofuranosyl linkage found on the arabinan backbone. It released l-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Coincubation of BlArafC and BlArafB revealed that these two enzymes are able to degrade arabinan in a synergistic manner. Both enzyme activities were suppressed with EDTA treatment, suggesting that they require divalent metal ions. The GH43 domains of BlArafC and BlArafB are classified into GH43 subfamilies 27 and 22, respectively, but show very low similarity (less than 15% identity) with other biochemically characterized members in the corresponding subfamilies. The B. longum subsp. longum strain lacking the GH43 gene cluster that includes BLLJ_1850 to BLLJ_1853 did not grow in arabinan medium, suggesting that BlArafC and BlArafB are important for assimilation of arabinan.IMPORTANCE We identified two novel α-l-arabinofuranosidases, BlArafC and BlArafB, from B. longum subsp. longum JCM 1217, both of which are predicted to be extracellular membrane-bound enzymes. The former specifically acts on α1,2/3-l-arabinofuranosyl linkages, while the latter acts on the α1,5-l-arabinofuranosyl linkage. These enzymes cooperatively degrade arabinan and are required for the efficient growth of bifidobacteria in arabinan-containing medium. The genes encoding these enzymes are located side by side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.
Collapse
|
13
|
The modular arabinanolytic enzyme Abf43A-Abf43B-Abf43C from Ruminiclostridium josui consists of three GH43 modules classified in different subfamilies. Enzyme Microb Technol 2019; 124:23-31. [PMID: 30797476 DOI: 10.1016/j.enzmictec.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
The abnA gene from Ruminiclostridium josui encodes the large modular arabinanolytic enzyme, Abf43A-Abf43B-Abf43C, consisting of an N-terminal signal peptide, a Laminin_G_3 module, a GH43_22 module, a Laminin_G_3 module, a Big_4 module, a GH43_26 module, a GH43_34 module and a dockerin module in order with a calculated molecular weight of 204,108. Three truncated enzymes were recombinantly produced in Escherichia coli and biochemically characterized, RjAbf43A consisting of the first Laminin_G_3 module and GH43_22 module, RjAbf43B consisting of the second Laminin_G_3 module, Big_4 module and GH43_26 module, and RjAbf43C consisting of the GH43_34 module. RjAbf43A showed a strong α-l-arabinofuranosidase activity toward sugar beet arabinan, highly branched arabinan but not linear arabinan, thus it acted in the removal of arabinose side chains from sugar beet arabinan. By contrast, RjAbf43B showed a strong exo-α-1,5-l-arabinofuranosidase activity toward linear arabinan and arabinooligosaccharides whereas RjAbf43C showed low activity toward these substrates. Although RjAbf43B was activated by the presence of some metal ions such as Zn2+, Mg2+ and Ni2+, RjAbf43A was inhibited by these ions. RjAbf43A and RjAbf43B attacked sugar beet arabinan in a synergistic manner. By comparison, RjAbf43A-Abf43B containing both GH43_22 and GH43_26 modules showed lower hydrolytic activity toward sugar beet arabinan but higher activity toward sugar beet fiber than the sum of the individual activities of RjAbf43A and RjAbf43B, suggesting that the coexistence of two distinct GH43 modules in a single polypeptide is important for the efficient hydrolysis of an insoluble and natural polysaccharide but not a soluble substrate.
Collapse
|
14
|
Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W. Recent advances in Levansucrase and Inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr 2018; 59:3630-3647. [DOI: 10.1080/10408398.2018.1506421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Structure-based protein engineering of bacterial β-xylosidase to increase the production yield of xylobiose from xylose. Biochem Biophys Res Commun 2018; 501:703-710. [DOI: 10.1016/j.bbrc.2018.05.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022]
|
16
|
Jitonnom J, Hannongbua S. Theoretical study of the arabinan hydrolysis by an inverting GH43 arabinanase. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1422212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
17
|
Matsuzawa T, Kaneko S, Kishine N, Fujimoto Z, Yaoi K. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium. J Biochem 2017; 162:173-181. [PMID: 28204531 DOI: 10.1093/jb/mvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
18
|
Linares-Pastén JA, Falck P, Albasri K, Kjellström S, Adlercreutz P, Logan DT, Karlsson EN. Three-dimensional structures and functional studies of two GH43 arabinofuranosidases fromWeissellasp. strain 142 andLactobacillus brevis. FEBS J 2017; 284:2019-2036. [DOI: 10.1111/febs.14101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Peter Falck
- Biotechnology; Department of Chemistry; Lund University; Sweden
| | - Khalil Albasri
- Biotechnology; Department of Chemistry; Lund University; Sweden
| | - Sven Kjellström
- Biochemistry and Structural Biology; Department of Chemistry; Lund University; Sweden
| | | | - Derek T. Logan
- Biochemistry and Structural Biology; Department of Chemistry; Lund University; Sweden
| | | |
Collapse
|
19
|
Goyal A, Ahmed S, Sharma K, Gupta V, Bule P, Alves VD, Fontes CMGA, Najmudin S. Molecular determinants of substrate specificity revealed by the structure of Clostridium thermocellum arabinofuranosidase 43A from glycosyl hydrolase family 43 subfamily 16. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1281-1289. [PMID: 27917828 DOI: 10.1107/s205979831601737x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/28/2016] [Indexed: 11/11/2022]
Abstract
The recent division of the large glycoside hydrolase family 43 (GH43) into subfamilies offers a renewed opportunity to develop structure-function studies aimed at clarifying the molecular determinants of substrate specificity in carbohydrate-degrading enzymes. α-L-Arabinofuranosidases (EC 3.2.1.55) remove arabinose side chains from heteropolysaccharides such as xylan and arabinan. However, there is some evidence suggesting that arabinofuranosidases are substrate-specific, being unable to display a debranching activity on different polysaccharides. Here, the structure of Clostridium thermocellum arabinofuranosidase 43A (CtAbf43A), which has been shown to act in the removal of arabinose side chains from arabinoxylan but not from pectic arabinan, is reported. CtAbf43A belongs to GH43 subfamily 16, the members of which have a restricted capacity to attack xylans. The crystal structure of CtAbf43A comprises a five-bladed β-propeller fold typical of GH43 enzymes. CtAbf43A displays a highly compact architecture compatible with its high thermostability. Analysis of CtAbf43A along with the other member of GH43 subfamily 16 with known structure, the Bacillus subtilis arabinofuranosidase BsAXH-m2,3, suggests that the specificity of subfamily 16 for arabinoxylan is conferred by a long surface substrate-binding cleft that is complementary to the xylan backbone. The lack of a curved-shaped carbohydrate-interacting platform precludes GH43 subfamily 16 enzymes from interacting with the nonlinear arabinan scaffold and therefore from deconstructing this polysaccharide.
Collapse
Affiliation(s)
- Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Shadab Ahmed
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Kedar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Vikas Gupta
- Qiagen Aarhus, Silkeborgvej 2, 8000 Aarhus C, Denmark
| | - Pedro Bule
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1360-477 Lisbon, Portugal
| | - Victor D Alves
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1360-477 Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1360-477 Lisbon, Portugal
| | - Shabir Najmudin
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1360-477 Lisbon, Portugal
| |
Collapse
|
20
|
Structure of the Catalytic Domain of α-l-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure–Function Relationships in Glycoside Hydrolase Family 62. Appl Biochem Biotechnol 2016; 181:511-525. [DOI: 10.1007/s12010-016-2227-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
21
|
Hemsworth GR, Thompson AJ, Stepper J, Sobala ŁF, Coyle T, Larsbrink J, Spadiut O, Goddard-Borger ED, Stubbs KA, Brumer H, Davies GJ. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut. Open Biol 2016; 6:160142. [PMID: 27466444 PMCID: PMC4967831 DOI: 10.1098/rsob.160142] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Andrew J Thompson
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Judith Stepper
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Łukasz F Sobala
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| | - Travis Coyle
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Johan Larsbrink
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Oliver Spadiut
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Keith A Stubbs
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
22
|
Hassan N, Kori LD, Gandini R, Patel BKC, Divne C, Tan TC. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-L-arabinofuranosidase activity. Acta Crystallogr F Struct Biol Commun 2015; 71:338-45. [PMID: 25760712 PMCID: PMC4356313 DOI: 10.1107/s2053230x15003337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn(2+) at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-L-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-L-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn(2+) at pH 6.5, giving a specific activity of 20-36 µmol min(-1) mg(-1). The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.
Collapse
Affiliation(s)
- Noor Hassan
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lokesh D. Kori
- Microbial Gene Research and Resources Facility, School of Natural Sciences, Griffith University, Brisbane, QLD 4111, Australia
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bharat K. C. Patel
- Microbial Gene Research and Resources Facility, School of Natural Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tien Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Kaur AP, Nocek BP, Xu X, Lowden MJ, Leyva JF, Stogios PJ, Cui H, Di Leo R, Powlowski J, Tsang A, Savchenko A. Functional and structural diversity in GH62 α-L-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum. Microb Biotechnol 2014; 8:419-33. [PMID: 25267315 PMCID: PMC4408175 DOI: 10.1111/1751-7915.12168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/16/2014] [Indexed: 01/22/2023] Open
Abstract
The genome of the thermophilic fungus Scytalidium thermophilum (strain CBS 625.91) harbours a wide range of genes involved in carbohydrate degradation, including three genes, abf62A, abf62B and abf62C, predicted to encode glycoside hydrolase family 62 (GH62) enzymes. Transcriptome analysis showed that only abf62A and abf62C are actively expressed during growth on diverse substrates including straws from barley, alfalfa, triticale and canola. The abf62A and abf62C genes were expressed in Escherichia coli and the resulting recombinant proteins were characterized. Calcium-free crystal structures of Abf62C in apo and xylotriose bound forms were determined to 1.23 and 1.48 Å resolution respectively. Site-directed mutagenesis confirmed Asp55, Asp171 and Glu230 as catalytic triad residues, and revealed the critical role of non-catalytic residues Asp194, Trp229 and Tyr338 in positioning the scissile α-L-arabinofuranoside bond at the catalytic site. Further, the +2R substrate-binding site residues Tyr168 and Asn339, as well as the +2NR residue Tyr226, are involved in accommodating long-chain xylan polymers. Overall, our structural and functional analysis highlights characteristic differences between Abf62A and Abf62C, which represent divergent subgroups in the GH62 family.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, M5S 3E5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Structure and Function of Carbohydrate-Binding Module Families 13 and 42 of Glycoside Hydrolases, Comprising a β-Trefoil Fold. Biosci Biotechnol Biochem 2014; 77:1363-71. [DOI: 10.1271/bbb.130183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Characterization of an α-L-Rhamnosidase fromStreptomyces avermitilis. Biosci Biotechnol Biochem 2014; 77:213-6. [DOI: 10.1271/bbb.120735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Maehara T, Fujimoto Z, Ichinose H, Michikawa M, Harazono K, Kaneko S. Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. J Biol Chem 2014; 289:7962-72. [PMID: 24482228 DOI: 10.1074/jbc.m113.540542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-L-arabinofuranosidase, which belongs to the glycoside hydrolase family 62 (GH62), hydrolyzes arabinoxylan but not arabinan or arabinogalactan. The crystal structures of several α-L-arabinofuranosidases have been determined, although the structures, catalytic mechanisms, and substrate specificities of GH62 enzymes remain unclear. To evaluate the substrate specificity of a GH62 enzyme, we determined the crystal structure of α-L-arabinofuranosidase, which comprises a carbohydrate-binding module family 13 domain at its N terminus and a catalytic domain at its C terminus, from Streptomyces coelicolor. The catalytic domain was a five-bladed β-propeller consisting of five radially oriented anti-parallel β-sheets. Sugar complex structures with l-arabinose, xylotriose, and xylohexaose revealed five subsites in the catalytic cleft and an l-arabinose-binding pocket at the bottom of the cleft. The entire structure of this GH62 family enzyme was very similar to that of glycoside hydrolase 43 family enzymes, and the catalytically important acidic residues found in family 43 enzymes were conserved in GH62. Mutagenesis studies revealed that Asp(202) and Glu(361) were catalytic residues, and Trp(270), Tyr(461), and Asn(462) were involved in the substrate-binding site for discriminating the substrate structures. In particular, hydrogen bonding between Asn(462) and xylose at the nonreducing end subsite +2 was important for the higher activity of substituted arabinofuranosyl residues than that for terminal arabinofuranoses.
Collapse
Affiliation(s)
- Tomoko Maehara
- From the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642
| | | | | | | | | | | |
Collapse
|
27
|
Santos CR, Polo CC, Costa MCMF, Nascimento AFZ, Meza AN, Cota J, Hoffmam ZB, Honorato RV, Oliveira PSL, Goldman GH, Gilbert HJ, Prade RA, Ruller R, Squina FM, Wong DWS, Murakami MT. Mechanistic strategies for catalysis adopted by evolutionary distinct family 43 arabinanases. J Biol Chem 2014; 289:7362-73. [PMID: 24469445 DOI: 10.1074/jbc.m113.537167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg(203)-Ala(230) loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Collapse
|
28
|
Patel A, Falck P, Shah N, Immerzeel P, Adlercreutz P, Stålbrand H, Prajapati JB, Holst O, Nordberg Karlsson E. Evidence for xylooligosaccharide utilization in Weissella strains isolated from Indian fermented foods and vegetables. FEMS Microbiol Lett 2013; 346:20-8. [PMID: 23738850 DOI: 10.1111/1574-6968.12191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022] Open
Abstract
Six strains isolated from fermented food were identified as Weissella species by 16S rDNA sequencing, clustering with the species pair W. confusa/W. cibaria. The strains were analysed for growth on glucose, xylose and xylooligosaccharides (XOS). All strains were xylose positive using the API CHL 50 test. Growth on XOS was observed for strains 85, 92, 145 and AV1, firstly by optical density measurements in microtitre plates and secondly in batch cultures also confirming concomitant decrease in pH. Analysis of XOS before and after growth established consumption in the DP2-DP5 range in the four XOS-fermenting strains. XOS were consumed simultaneously with glucose, while xylose was consumed after glucose depletion. Cell-associated β-xylosidase activity was detected in the XOS-fermenting strains. Analysis of genomic data suggests this activity to be linked with genes encoding glycoside hydrolases from family 3, 8 or 43. No endo-β-xylanase activity was detectable. Major end products were lactate and acetate. A higher ratio of acetic acid to lactic acid was obtained during growth on XOS compared with growth on glucose. This is the first report on utilization of XOS in Weissella, indicating an increased probiotic potential for XOS-utilizing strains from the species pair W. confusa/W. cibaria, but also showing that XOS utilization is strain dependent for these species.
Collapse
Affiliation(s)
- Ami Patel
- Department of Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jordan DB, Lee CC, Wagschal K, Braker JD. Activation of a GH43 β-xylosidase by divalent metal cations: slow binding of divalent metal and high substrate specificity. Arch Biochem Biophys 2013; 533:79-87. [PMID: 23500142 DOI: 10.1016/j.abb.2013.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
RS223-BX of glycoside hydrolase family 43 is a β-d-xylosidase that is strongly activated (k(cat)/K(m) as much as 116-fold) by the addition of divalent metal cations, Ca(2+), Co(2+), Fe(2+), Mg(2+), Mn(2+) and Ni(2+). Slow activation by Mg(2+) was demonstrated (k(on) 0.013 s(-1) mM(-1), k(off) 0.008 s(-1)) at pH 7.0 and 25 °C. k(off) and k(on) values are independent of Mg(2+) concentration, but k(off) and k(on) are slower in the presence of increasing levels of substrate 4-nitrophenyl-β-D-xylopyranoside. The kinetics strongly suggest that M(2+) binds to the enzyme rapidly, forming E M(2+), followed by slow isomerization to the activated enzyme, E* M(2+). Moderately high values of kcat (7-30 s(-1)) were found for M(2+)-activated RS223-BX acting on xylobiose (natural substrate) at pH 7.0 and 25 °C. Certain M(2+)-activated RS223-BX exhibit the highest reported values of k(cat)/K(m) of any β-xylosidase acting on natural substrates: for example, at pH 7.0 and 25°C, xylobiose (Mn(2+), 190 s(-1) mM(-1)), xylotriose (Ca(2+), 150 s(-1) mM(-1)) and xylotetraose (Ca(2+), 260 s(-1) mM(-1)). There is potential for the enzyme to add value to industrial saccharification operations at low substrate and high d-glucose and high d-xylose concentrations.
Collapse
Affiliation(s)
- Douglas B Jordan
- USDA-ARS-National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.
| | | | | | | |
Collapse
|
30
|
Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, Matsui H. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J Biol Chem 2012; 287:42389-99. [PMID: 23093406 DOI: 10.1074/jbc.m112.390336] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-D-glucosyl-D-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-D-mannosyl-D-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-D-mannosyl 1-phosphate (Man1P) and D-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward D-glucose and 6-deoxy-D-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on D-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N'-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than D-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.
Collapse
Affiliation(s)
- Ryosuke Kawahara
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
The crystallization and structural analysis of cellulases (and other glycoside hydrolases): strategies and tactics. Methods Enzymol 2012; 510:141-68. [PMID: 22608725 DOI: 10.1016/b978-0-12-415931-0.00008-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The three-dimensional (3-D) structures of cellulases, and other glycoside hydrolases, are a central feature of research in carbohydrate chemistry and biochemistry. 3-D structure is used to inform protein engineering campaigns, both academic and industrial, which are typically used to improve the stability or activity of an enzyme. Examples of classical protein engineering goals include higher thermal stability, reduced metal-ion dependency, detergent and protease resistance, decreased product inhibition, and altered specificity. 3-D structure may also be used to interpret the behavior of enzyme variants that are derived from screening or random mutagenesis approaches, with a view to establishing an iterative design process. In other areas, 3-D structure is used as one of the many tools to probe enzymatic catalysis, typically dovetailing with physical organic chemistry approaches to provide complete reaction mechanisms for enzymes by visualizing catalytic site interactions at different stages of the reaction. Such mechanistic insight is not only fundamentally important, impacting on inhibitor and drug design approaches with ramifications way beyond cellulose hydrolysis, but also provides the framework for the design of enzyme variants to use as biocatalysts for the synthesis of bespoke oligosaccharides. Here we review some of the strategies and tactics that may be applied to the X-ray structure solution of cellulases (and other carbohydrate-active enzymes). The general approach is first to decide why you are doing the work, then to establish correct domain boundaries for truncated constructs (typically the catalytic domain only), and finally to pursue crystallization of pure, homogeneous, and monodisperse protein with appropriate ligand and additive combinations. Cellulase-specific strategies are important for the delineation of domain boundaries, while glycoside hydrolases generally also present challenges and opportunities for the selection and optimization of ligands to both aid crystallization, and also provide structural and mechanistic insight. As the many roles for plant cell wall degrading enzymes increase, so does the need for rapid high-quality structure determination to provide a sound structural foundation for understanding mechanism and specificity, and for future protein engineering strategies.
Collapse
|
32
|
Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, Zhang XC. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J Struct Biol 2012; 180:447-57. [PMID: 22960181 DOI: 10.1016/j.jsb.2012.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
Glycoside hydrolase family 43 (GH43) consists of a variety of enzymes distributed widely in prokaryotes and eukaryotes. The mechanism by which GH43 enzymes hydrolyze oligosaccharides requires three essential acidic amino acid residues. However, one of them is thought to be missing in galactan β-1,3-galactosidases from the GH43 family. Ct1,3Gal43A, from Clostridium thermocellum, is comprised of a GH43 domain, a CBM13 domain, and a dockerin domain and exhibits an unusual ability to hydrolyze β-1,3-galactan in the presence of a β-1,6 linked branch. Here, we present its crystal structure at 2.7 Å resolution and complex structures of the enzyme with several substrates and analogs. Two modes of substrate binding were observed at the β site of the CtCBM13 domain, and one galactobiose molecule was found in an "L" shaped pocket of the CtGH43 domain, which appears large enough to accommodate two more galactose units. In addition, we found that mutating Glu112 to Gln or Ala eliminated the galactan hydrolysis activity of Ct1,3Gal43A while did not disrupt its ligand binding ability. Combining this results and the crystal structure we identified Glu112 in Ct1,3Gal43A as the 'missing' essential acidic residue in galactan β-1,3-galactosidases. Structural information presented here also suggests a mechanism by which Ct1,3Gal43A bypasses β-1,6 linked branches in the substrate and another mechanism by which the substrate is delivered 'in trans' from the CBM13 domain to the catalytic GH43 domain.
Collapse
Affiliation(s)
- Daohua Jiang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Chlubnova I, Legentil L, Dureau R, Pennec A, Almendros M, Daniellou R, Nugier-Chauvin C, Ferrières V. Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydr Res 2012; 356:44-61. [PMID: 22554502 DOI: 10.1016/j.carres.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.
Collapse
Affiliation(s)
- Ilona Chlubnova
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci U S A 2012; 109:6537-42. [PMID: 22492980 DOI: 10.1073/pnas.1117686109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.
Collapse
|
35
|
Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S, Ichinose H, Lewis RJ, Viksø-Nielsen A, Gilbert HJ, Marles-Wright J. The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J Biol Chem 2011; 286:15483-95. [PMID: 21339299 PMCID: PMC3083193 DOI: 10.1074/jbc.m110.215962] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/16/2011] [Indexed: 11/06/2022] Open
Abstract
Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific α-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave α-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific α-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed β-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for α-1,2-l-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.
Collapse
Affiliation(s)
- Alan Cartmell
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lauren S. McKee
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maria J. Peña
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Johan Larsbrink
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Harry Brumer
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Satoshi Kaneko
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Hitomi Ichinose
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Richard J. Lewis
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jon Marles-Wright
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
36
|
Fujimoto Z, Ichinose H, Biely P, Kaneko S. Crystallization and preliminary crystallographic analysis of the glycoside hydrolase family 115 α-glucuronidase from Streptomyces pristinaespiralis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 67:68-71. [PMID: 21206027 DOI: 10.1107/s1744309110043721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022]
Abstract
α-Glucuronidase from Streptomyces pristinaespiralis (SpGlcA115A) is composed of a single-chain peptide containing a catalytic domain belonging to glycosyl hydrolase family 115, a novel family of hemicellulolytic α-glucuronidases. The enzyme catalyzes the hydrolysis of α-linked 4-O-methylglucuronosyl and glucuronosyl residues from both polymeric xylans and oligosaccharides. SpGlcA115A was crystallized at 293 K using the sitting-drop vapour-diffusion method. The crystals belonged to space group R3 and diffracted to a resolution of 1.9 Å.
Collapse
Affiliation(s)
- Zui Fujimoto
- Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|