1
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Berthold DA, Gordon IR, Liu J, Milchberg MH, O'Shea JY, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Perrin RJ, Perlmutter JS, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat Commun 2024; 15:2750. [PMID: 38553463 PMCID: PMC10980826 DOI: 10.1038/s41467-024-46832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah A Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isabelle R Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Y O'Shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brock Summers
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Owen A Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard J Perrin
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Paul T Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Gordon IR, Liu J, Milchberg MH, O’shea J, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523303. [PMID: 36711931 PMCID: PMC9882085 DOI: 10.1101/2023.01.09.523303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D. Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander M. Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Isabelle R. Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Moses H. Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer O’shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Owen A. Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - James A. J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul T. Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Kikuchi H, Takahashi M, Komatsu H, Axelsen PH. Post-Translational Chemical Modification of Amyloid-β Peptides by 4-Hydroxy-2-Nonenal. J Alzheimers Dis 2023; 92:499-511. [PMID: 36776059 DOI: 10.3233/jad-220940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The extraction and quantification of amyloid-β (Aβ) peptides in brain tissue commonly uses formic acid (FA) to disaggregate Aβ fibrils. However, it is not clear whether FA can disaggregate post-translationally modified Aβ peptides, or whether it induces artifact by covalent modification during disaggregation. Of particular interest are Aβ peptides that have been covalently modified by 4-hydroxy-2-nonenal (HNE), an oxidative lipid degradation product produced in the vicinity of amyloid plaques that dramatically accelerates the aggregation of Aβ peptides. OBJECTIVE Test the ability of FA to disaggregate Aβ peptides modified by HNE and to induce covalent artifacts. METHODS Quantitative liquid-chromatography-tandem-mass spectrometry of monomeric Aβ peptides and identify covalently modified forms. RESULTS FA disaggregated ordinary Aβ fibrils but also induced the time-dependent formylation of at least 2 residue side chains in Aβ peptides, as well as oxidation of its methionine side chain. FA was unable to disaggregate Aβ peptides that had been covalently modified by HNE. CONCLUSION The inability of FA to disaggregate Aβ peptides modified by HNE prevents FA-based approaches from quantifying a pool of HNE-modified Aβ peptides in brain tissue that may have pathological significance.
Collapse
Affiliation(s)
- Hiroyuki Kikuchi
- Department of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, PA, USA
- Present address: Division of Foods, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Miki Takahashi
- Department of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, PA, USA
- Present address: College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiroaki Komatsu
- Department of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul H Axelsen
- Department of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Scalone E, Broggini L, Visentin C, Erba D, Bačić Toplek F, Peqini K, Pellegrino S, Ricagno S, Paissoni C, Camilloni C. Multi-eGO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2203181119. [PMID: 35737839 PMCID: PMC9245614 DOI: 10.1073/pnas.2203181119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.
Collapse
Affiliation(s)
- Emanuele Scalone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Davide Erba
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kaliroi Peqini
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
5
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
6
|
Islam T, Gharibyan AL, Lee CC, Olofsson A. Morphological analysis of Apolipoprotein E binding to Aβ Amyloid using a combination of Surface Plasmon Resonance, Immunogold Labeling and Scanning Electron Microscopy. BMC Biotechnol 2019; 19:97. [PMID: 31829176 PMCID: PMC6907347 DOI: 10.1186/s12896-019-0589-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/27/2019] [Indexed: 12/05/2022] Open
Abstract
Background Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis. Results We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy. Using this approach, we have probed the interaction between amyloid-β fibrils, associated to Alzheimer’s disease, and apolipoprotein E, a well-known ligand frequently found co-deposited to the fibrillar form of Aβ in vivo. The results display a lateral binding of ApoE along the amyloid fibrils and illustrates how the gold-beads represent a good reporter of the binding. Conclusions This approach exposes a technique with generic features which enables both a quantitative and a morphological evaluation of a ligand-receptor based system. The methodology mediates an advantage compared to traditional immunogold labeling since all washing steps can be monitored and where a high stringency can be maintained throughout the experiment.
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Anna L Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, SE-90187, Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Lin YC, Komatsu H, Ma J, Axelsen PH, Fakhraai Z. Identifying Polymorphs of Amyloid-β (1-40) Fibrils Using High-Resolution Atomic Force Microscopy. J Phys Chem B 2019; 123:10376-10383. [PMID: 31714085 DOI: 10.1021/acs.jpcb.9b07854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many amyloid-β fibril preparations are highly polymorphic, and the conditions under which they are formed determine their morphology. This report describes the application of high-resolution atomic force microscopy (HR-AFM), combined with volume-per-length analysis, to define, identify, and quantify the structural components of polymorphic Aβ fibril preparations. Volume-per-length analysis confirms that they are composed of discrete cross-β filaments, and the analysis of HR-AFM images yields the number of striations in each fibril. Compared to mass-per-length analysis by electron microscopy, HR-AFM analysis yields narrower distributions, facilitating rapid and label-free quantitative morphological characterization of Aβ fibril preparations.
Collapse
Affiliation(s)
| | - Hiroaki Komatsu
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104-6084 , United States
| | | | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104-6084 , United States
| | | |
Collapse
|
8
|
Ghosh R, Dong J, Wall J, Frederick KK. Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies. FEMS Yeast Res 2019; 18:5004852. [PMID: 29846554 PMCID: PMC6001884 DOI: 10.1093/femsyr/foy059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Yeast prions are self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Here, we investigate the structure of NM fibrils templated into the prion conformation with cellular lysates. Our electron microscopy studies reveal that NM fibrils that confer either a strong or a weak prion phenotype are both mixtures of thin and thick fibrils that result from differences in packing of the M domain. Strong NM fibrils have more thin fibrils and weak NM fibrils have more thick fibrils. Interestingly, both mass per length and solid state NMR reveal that the thin and thick fibrils have different underlying molecular structures in the prion strain variants that do not interconvert.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jijun Dong
- Alkermes Inc. 852 Winter Street, Waltham, MA 02451
| | - Joe Wall
- Brookhaven National Laboratory, Upton, NY 11973
| | - Kendra K Frederick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
Sil TB, Sahoo B, Bera SC, Garai K. Quantitative Characterization of Metastability and Heterogeneity of Amyloid Aggregates. Biophys J 2019; 114:800-811. [PMID: 29490242 DOI: 10.1016/j.bpj.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Abstract
Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled Aβ (TMR-Aβ) to characterize its stability and heterogeneity. Disaggregation of TMR-Aβ amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-Aβ amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.
Collapse
Affiliation(s)
- Timir Baran Sil
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | | | - Kanchan Garai
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India.
| |
Collapse
|
10
|
Affiliation(s)
- Jancy Nixon Abraham
- Polymer Science and Engineering Division; CSIR National Chemical Laboratory; Pune India
| | - Corinne Nardin
- Université de Pau et des Pays de l'Adour (UPPA), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM); Equipe Physique et Chimie des Polymères (EPCP); Pau France
| |
Collapse
|
11
|
Grasso G, Komatsu H, Axelsen P. Covalent modifications of the amyloid beta peptide by hydroxynonenal: Effects on metal ion binding by monomers and insights into the fibril topology. J Inorg Biochem 2017; 174:130-136. [DOI: 10.1016/j.jinorgbio.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022]
|
12
|
Identification of the primary peptide contaminant that inhibits fibrillation and toxicity in synthetic amyloid-β42. PLoS One 2017; 12:e0182804. [PMID: 28792968 PMCID: PMC5549942 DOI: 10.1371/journal.pone.0182804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
Understanding the pathophysiology of Alzheimer disease has relied upon the use of amyloid peptides from a variety of sources, but most predominantly synthetic peptides produced using t-butyloxycarbonyl (Boc) or 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. These synthetic methods can lead to minor impurities which can have profound effects on the biological activity of amyloid peptides. Here we used a combination of cytotoxicity assays, fibrillation assays and high resolution mass spectrometry (MS) to identify impurities in synthetic amyloid preparations that inhibit both cytotoxicity and aggregation. We identify the Aβ42Δ39 species as the major peptide contaminant responsible for limiting both cytotoxicity and fibrillation of the amyloid peptide. In addition, we demonstrate that the presence of this minor impurity inhibits the formation of a stable Aβ42 dimer observable by MS in very pure peptide samples. These results highlight the critical importance of purity and provenance of amyloid peptides in Alzheimer’s research in particular, and biological research in general.
Collapse
|
13
|
Wälti MA, Orts J, Riek R. Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph. PLoS One 2017; 12:e0172862. [PMID: 28319116 PMCID: PMC5358797 DOI: 10.1371/journal.pone.0172862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease is associated with the aggregation into amyloid fibrils of Aβ(1–42) and Aβ(1–40) peptides. Interestingly, these fibrils often do not obtain one single structure but rather show different morphologies, so-called polymorphs. Here, we compare quenched hydrogen-deuterium (H/D) exchange of a disease-relevant Aβ(1–42) fibril for which the 3D structure has been determined by solid-state NMR with H/D exchange previously determined on another structural polymorph. This comparison reveals secondary structural differences between the two polymorphs suggesting that the two polymorphisms can be classified as segmental polymorphs.
Collapse
Affiliation(s)
| | - Julien Orts
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Nugent E, Kaminski CF, Kaminski Schierle GS. Super-resolution imaging of alpha-synuclein polymorphisms and their potential role in neurodegeneration. Integr Biol (Camb) 2017; 9:206-210. [DOI: 10.1039/c6ib00206d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eileen Nugent
- Sector of Biological and Soft Systems, The Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| |
Collapse
|
15
|
Grigorashvili EI, Selivanova OM, Dovidchenko NV, Dzhus UF, Mikhailina AO, Suvorina MY, Marchenkov VV, Surin AK, Galzitskaya OV. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide. BIOCHEMISTRY (MOSCOW) 2017; 81:538-47. [PMID: 27297904 DOI: 10.1134/s0006297916050114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a highly efficient method for purification of the recombinant product Aβ(1-40) peptide. The concentration dependence of amyloid formation by recombinant Aβ(1-40) peptide was studied using fluorescence spectroscopy and electron microscopy. We found that the process of amyloid formation is preceded by lag time, which indicates that the process is nucleation-dependent. Further exponential growth of amyloid fibrils is followed by branching scenarios. Based on the experimental data on the concentration dependence, the sizes of the folding nuclei of fibrils were calculated. It turned out that the size of the primary nucleus is one "monomer" and the size of the secondary nucleus is zero. This means that the nucleus for new aggregates can be a surface of the fibrils themselves. Using electron microscopy, we have demonstrated that fibrils of these peptides are formed by the association of rounded ring structures.
Collapse
Affiliation(s)
- E I Grigorashvili
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu J, Costantino I, Venugopalan N, Fischetti RF, Hyman BT, Frosch MP, Gomez-Isla T, Makowski L. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue. Sci Rep 2016; 6:33079. [PMID: 27629394 PMCID: PMC5024092 DOI: 10.1038/srep33079] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022] Open
Abstract
Aggregation of Aβ amyloid fibrils into plaques in the brain is a universal hallmark of Alzheimer's Disease (AD), but whether plaques in different individuals are equivalent is unknown. One possibility is that amyloid fibrils exhibit different structures and different structures may contribute differentially to disease, either within an individual brain or between individuals. However, the occurrence and distribution of structural polymorphisms of amyloid in human brain is poorly documented. Here we use X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid. Our observations indicate that (i) tissue derived from subjects with different clinical histories may contain different ensembles of fibrillar structures; (ii) plaques harboring distinct amyloid structures can coexist within a single tissue section and (iii) within individual plaques there is a gradient of fibrillar structure from core to margins. These observations have immediate implications for existing theories on the inception and progression of AD.
Collapse
Affiliation(s)
- Jiliang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Isabel Costantino
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Bradley T Hyman
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Gomez-Isla
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Delgado DA, Doherty K, Cheng Q, Kim H, Xu D, Dong H, Grewer C, Qiang W. Distinct Membrane Disruption Pathways Are Induced by 40-Residue β-Amyloid Peptides. J Biol Chem 2016; 291:12233-44. [PMID: 27056326 DOI: 10.1074/jbc.m116.720656] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
Cellular membrane disruption induced by β-amyloid (Aβ) peptides has been considered one of the major pathological mechanisms for Alzheimer disease. Mechanistic studies of the membrane disruption process at a high-resolution level, on the other hand, are hindered by the co-existence of multiple possible pathways, even in simplified model systems such as the phospholipid liposome. Therefore, separation of these pathways is crucial to achieve an in-depth understanding of the Aβ-induced membrane disruption process. This study, which utilized a combination of multiple biophysical techniques, shows that the peptide-to-lipid (P:L) molar ratio is an important factor that regulates the selection of dominant membrane disruption pathways in the presence of 40-residue Aβ peptides in liposomes. Three distinct pathways (fibrillation with membrane content leakage, vesicle fusion, and lipid uptake through a temporarily stable ionic channel) become dominant in model liposome systems under specific conditions. These individual systems are characterized by both the initial states of Aβ peptides and the P:L molar ratio. Our results demonstrated the possibility to generate simplified Aβ-membrane model systems with a homogeneous membrane disruption pathway, which will benefit high-resolution mechanistic studies in the future. Fundamentally, the possibility of pathway selection controlled by P:L suggests that the driving forces for Aβ aggregation and Aβ-membrane interactions may be similar at the molecular level.
Collapse
Affiliation(s)
- Dennis A Delgado
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| | - Katelynne Doherty
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| | - Qinghui Cheng
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| | - Hyeongeun Kim
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| | - Dawei Xu
- the Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699
| | - He Dong
- the Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699
| | - Christof Grewer
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| | - Wei Qiang
- From the Department of Chemistry, State University of New York, Binghamton, New York 13902 and
| |
Collapse
|
18
|
Lin YC, Komatsu H, Ma J, Axelsen PH, Fakhraai Z. Quantitative analysis of amyloid polymorphism using height histograms to correct for tip convolution effects in atomic force microscopy imaging. RSC Adv 2016. [DOI: 10.1039/c6ra24031c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Development of a statistical height analysis method to study amyloid polymorphism.
Collapse
Affiliation(s)
- Yi-Chih Lin
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Hiroaki Komatsu
- Departments of Pharmacology
- Biochemistry and Biophysics, and Medicine
- University of Pennsylvania School of Medicine
- Philadelphia
- USA
| | - Jianqiang Ma
- Ultrafast Optical Processes Laboratory
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Paul H. Axelsen
- Departments of Pharmacology
- Biochemistry and Biophysics, and Medicine
- University of Pennsylvania School of Medicine
- Philadelphia
- USA
| | - Zahra Fakhraai
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
19
|
Klinger AL, Kiselar J, Ilchenko S, Komatsu H, Chance MR, Axelsen PH. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Biochemistry 2014; 53:7724-34. [PMID: 25382225 PMCID: PMC4270378 DOI: 10.1021/bi5010409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Structural models of the fibrils
formed by the 40-residue amyloid-β
(Aβ40) peptide in Alzheimer’s disease typically consist
of linear polypeptide segments, oriented approximately perpendicular
to the long axis of the fibril, and joined together as parallel in-register
β-sheets to form filaments. However, various models differ in
the number of filaments that run the length of a fibril, and in the
topological arrangement of these filaments. In addition to questions
about the structure of Aβ40 monomers in fibrils, there are important
unanswered questions about their structure in prefibrillar intermediates,
which are of interest because they may represent the most neurotoxic
form of Aβ40. To assess different models of fibril structure
and to gain insight into the structure of prefibrillar intermediates,
the relative solvent accessibility of amino acid residue side chains
in fibrillar and prefibrillar Aβ40 preparations was characterized
in solution by hydroxyl radical footprinting and structural mass spectrometry.
A key to the application of this technology was the development of
hydroxyl radical reactivity measures for individual side chains of
Aβ40. Combined with mass-per-length measurements performed by
dark-field electron microscopy, the results of this study are consistent
with the core filament structure represented by two- and three-filament
solid state nuclear magnetic resonance-based models of the Aβ40
fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements,
but they are inconsistent with the more recently proposed 2M4J model. The results
also demonstrate that individual Aβ40 fibrils exhibit structural
heterogeneity or polymorphism, where regions of two-filament structure
alternate with regions of three-filament structure. The footprinting
approach utilized in this study will be valuable for characterizing
various fibrillar and nonfibrillar forms of the Aβ peptide.
Collapse
Affiliation(s)
- Alexandra L Klinger
- Department of Pharmacology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
20
|
Ma J, Komatsu H, Kim YS, Liu L, Hochstrasser RM, Axelsen PH. Intrinsic structural heterogeneity and long-term maturation of amyloid β peptide fibrils. ACS Chem Neurosci 2013; 4:1236-43. [PMID: 23701594 DOI: 10.1021/cn400092v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyloid β peptides form fibrils that are commonly assumed to have a dry, homogeneous, and static internal structure. To examine these assumptions, fibrils under various conditions and different ages have been examined with multidimensional infrared spectroscopy. Each peptide in the fibril had a ¹³C═¹⁸O label in the backbone of one residue to disinguish the amide I' absorption due to that residue from the amide I' absorption of other residues. Fibrils examined soon after they formed, and reexamined after 1 year in the dry state, exhibited spectral changes confirming that structurally significant water molecules were present in the freshly formed fibrils. Results from fibrils incubated in solution for 4 years indicate that water molecules remained trapped within fibrils and mobile over the 4 year time span. These water molecules are structurally significant because they perturb the parallel β-sheet hydrogen bonding pattern at frequent intervals and at multiple points within individual fibrils, creating structural heterogeneity along the length of a fibril. These results show that the interface between β-sheets in an amyloid fibril is not a "dry zipper", and that the internal structure of a fibril evolves while it remains in a fibrillar state. These features, water trapping, structural heterogeneity, and structural evolution within a fibril over time, must be accommodated in models of amyloid fibril structure and formation.
Collapse
Affiliation(s)
- Jianqiang Ma
- Ultrafast Optical Processes Laboratory,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hiroaki Komatsu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Yung Sam Kim
- School of Nano-Bioscience
and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Liu Liu
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Robin M. Hochstrasser
- Ultrafast Optical Processes Laboratory,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul H. Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
- Departments
of Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
21
|
Qiang W, Kelley K, Tycko R. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth. J Am Chem Soc 2013; 135:6860-71. [PMID: 23627695 DOI: 10.1021/ja311963f] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils formed by the 40-residue β-amyloid peptide (Aβ(1-40)) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aβ(1-40) fibril polymorphs for which detailed structural models are available from solid-state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aβ(1-40) and shrinkage in the absence of soluble Aβ(1-40) are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aβ(1-40) concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24 °C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37 °C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24 °C by solid-state NMR, showing that the two-fold symmetric "agitated" (A) polymorph is more stable than the three-fold symmetric "quiescent" (Q) polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the A structure when fibrils are grown in agitated solutions.
Collapse
Affiliation(s)
- Wei Qiang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | | | | |
Collapse
|
22
|
Fitzpatrick AWP, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA, Bajaj VS, Jaroniec CP, Wang L, Ladizhansky V, Müller SA, MacPhee CE, Waudby CA, Mott HR, De Simone A, Knowles TPJ, Saibil HR, Vendruscolo M, Orlova EV, Griffin RG, Dobson CM. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci U S A 2013; 110:5468-73. [PMID: 23513222 PMCID: PMC3619355 DOI: 10.1073/pnas.1219476110] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-β amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale--including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy--we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.
Collapse
Affiliation(s)
- Anthony W. P. Fitzpatrick
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Galia T. Debelouchina
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Marvin J. Bayro
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel K. Clare
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Marc A. Caporini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vikram S. Bajaj
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christopher P. Jaroniec
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luchun Wang
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Vladimir Ladizhansky
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Cait E. MacPhee
- School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Christopher A. Waudby
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Helen R. Mott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; and
| | - Alfonso De Simone
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
23
|
Jeong JS, Ansaloni A, Mezzenga R, Lashuel HA, Dietler G. Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation. J Mol Biol 2013; 425:1765-81. [PMID: 23415897 DOI: 10.1016/j.jmb.2013.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
Abstract
The formation of amyloid β (Aβ) fibrils is crucial in initiating the cascade of pathological events that culminates in Alzheimer's disease. In this study, we investigated the mechanism of Aβ fibril formation from hydrodynamically well defined species under controlled aggregation conditions. We present a detailed mechanistic model that furnishes a novel insight into the process of Aβ42 fibril formation and the molecular basis for the different structural transitions in the amyloid pathway. Our data reveal the structure and polymorphism of Aβ fibrils to be critically influenced by the oligomeric state of the starting materials, the ratio of monomeric-to-aggregated forms of Aβ42 (oligomers and protofibrils), and the occurrence of secondary nucleation. We demonstrate that monomeric Aβ42 plays an important role in mediating structural transitions in the amyloid pathway, and for the first time, we provide evidences that Aβ42 fibrillization occurs via a combined mechanism of nucleated polymerization and secondary nucleation. These findings will have significant implications to our understanding of the molecular basis of amyloid formation in vivo, of the heterogeneity of Aβ pathology (e.g., diffuse versus amyloid plaques), and of the structural basis of Aβ toxicity.
Collapse
Affiliation(s)
- Jae Sun Jeong
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Eskici G, Axelsen PH. Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012; 51:6289-311. [DOI: 10.1021/bi3006169] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gözde Eskici
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| | - Paul H. Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
25
|
Yeung PSW, Axelsen PH. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J Am Chem Soc 2012; 134:6061-3. [DOI: 10.1021/ja3004478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priscilla S.-W. Yeung
- Departments of †Pharmacology, ‡Biochemistry and
Biophysics, and §Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Paul H. Axelsen
- Departments of †Pharmacology, ‡Biochemistry and
Biophysics, and §Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
26
|
Cabriolu R, Kashchiev D, Auer S. Size distribution of amyloid nanofibrils. Biophys J 2011; 101:2232-41. [PMID: 22067163 DOI: 10.1016/j.bpj.2011.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
We consider the size distribution of amyloid nanofibrils (protofilaments) in nucleating protein solutions when the nucleation process occurs by the mechanism of direct polymerization of β-strands (extended peptides or protein segments) into β-sheets. Employing the atomistic nucleation theory, we derive a general expression for the stationary size distribution of amyloid nanofibrils constituted of successively layered β-sheets. The application of this expression to amyloid β(1-40) (Aβ(40)) fibrils allows us to determine the nanofibril size distribution as a function of the protein concentration and temperature. The distribution is most remarkable with its exhibiting a series of peaks positioned at "magic" nanofibril sizes (or lengths), which are due to deep local minima in the work for fibril formation. This finding of magic sizes or lengths is consistent with experimental results for the size distribution of aggregates in solutions of Aβ(40) proteins. Also, our approach makes it possible to gain insight into the effect of point mutations on the nanofibril size distribution, an effect that may play a role in experimentally observed substantial differences in the fibrillation lag-time of wild-type and point-mutated amyloid-β proteins.
Collapse
Affiliation(s)
- Raffaela Cabriolu
- Centre for Molecular Nanoscience, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
27
|
Wong HE, Kwon I. Xanthene food dye, as a modulator of Alzheimer's disease amyloid-beta peptide aggregation and the associated impaired neuronal cell function. PLoS One 2011; 6:e25752. [PMID: 21998691 PMCID: PMC3187789 DOI: 10.1371/journal.pone.0025752] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/09/2011] [Indexed: 12/24/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia. AD is a degenerative brain disorder that causes problems with memory, thinking and behavior. It has been suggested that aggregation of amyloid-beta peptide (Aβ) is closely linked to the development of AD pathology. In the search for safe, effective modulators, we evaluated the modulating capabilities of erythrosine B (ER), a Food and Drug Administration (FDA)-approved red food dye, on Aβ aggregation and Aβ-associated impaired neuronal cell function. Methodology/Principal Findings In order to evaluate the modulating ability of ER on Aβ aggregation, we employed transmission electron microscopy (TEM), thioflavin T (ThT) fluorescence assay, and immunoassays using Aβ-specific antibodies. TEM images and ThT fluorescence of Aβ samples indicate that protofibrils are predominantly generated and persist for at least 3 days. The average length of the ER-induced protofibrils is inversely proportional to the concentration of ER above the stoichiometric concentration of Aβ monomers. Immunoassay results using Aβ-specific antibodies suggest that ER binds to the N-terminus of Aβ and inhibits amyloid fibril formation. In order to evaluate Aβ-associated toxicity we determined the reducing activity of SH-SY5Y neuroblastoma cells treated with Aβ aggregates formed in the absence or in the presence of ER. As the concentration of ER increased above the stoichiometric concentration of Aβ, cellular reducing activity increased and Aβ-associated reducing activity loss was negligible at 500 µM ER. Conclusions/Significance Our findings show that ER is a novel modulator of Aβ aggregation and reduces Aβ-associated impaired cell function. Our findings also suggest that xanthene dye can be a new type of small molecule modulator of Aβ aggregation. With demonstrated safety profiles and blood-brain permeability, ER represents a particularly attractive aggregation modulator for amyloidogenic proteins associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- H. Edward Wong
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Institute on Aging, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Amyloid-beta (Aβ) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer's disease. Aβ molecules form β-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of Aβ has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate Aβ polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of Aβ. These structures, all of short, self-complementing pairs of β-sheets termed steric zippers, reveal a variety of modes of self-association of Aβ. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to Aβ. These structures and molecular models contribute fundamental information for understanding Aβ polymorphic nature and pathogenesis.
Collapse
|