1
|
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol 2022; 117:17. [PMID: 35357563 PMCID: PMC8971196 DOI: 10.1007/s00395-022-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Abigail Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Marjorie Fournier
- Department of Biochemistry, Advanced Proteomics Facility, University of Oxford, Oxford, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
2
|
Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients. Oncogene 2017; 36:6109-6118. [PMID: 28692053 PMCID: PMC5671943 DOI: 10.1038/onc.2017.86] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/12/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.
Collapse
|
3
|
Kolobynina KG, Solovyova VV, Levay K, Rizvanov AA, Slepak VZ. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci 2016; 129:3533-3540. [PMID: 27609838 DOI: 10.1242/jcs.191486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.
Collapse
Affiliation(s)
- Ksenia G Kolobynina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Valeria V Solovyova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Gerdtsson AS, Wingren C, Persson H, Delfani P, Nordström M, Ren H, Wen X, Ringdahl U, Borrebaeck CAK, Hao J. Plasma protein profiling in a stage defined pancreatic cancer cohort - Implications for early diagnosis. Mol Oncol 2016; 10:1305-16. [PMID: 27522951 DOI: 10.1016/j.molonc.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease where detection preceding clinical symptoms significantly increases the life expectancy of patients. In this study, a recombinant antibody microarray platform was used to analyze 213 Chinese plasma samples from PDAC patients and normal control (NC) individuals. The cohort was stratified according to disease stage, i.e. resectable disease (stage I/II), locally advanced (stage III) and metastatic disease (stage IV). Support vector machine analysis showed that all PDAC stages could be discriminated from controls and that the accuracy increased with disease progression, from stage I to IV. Patients with stage I/II PDAC could be discriminated from NC with high accuracy based on a plasma protein signature, indicating a possibility for early diagnosis and increased detection rate of surgically resectable tumors.
Collapse
Affiliation(s)
- Anna Sandström Gerdtsson
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | - Christer Wingren
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | - Helena Persson
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | - Payam Delfani
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | | | - He Ren
- Tianjin Medical University Cancer Institute & Hospital, Huan-Hu-Xi Road, Ti-Huan-Bei, He Xi District, Tianjin 300060, PR China.
| | - Xin Wen
- Tianjin Medical University Cancer Institute & Hospital, Huan-Hu-Xi Road, Ti-Huan-Bei, He Xi District, Tianjin 300060, PR China.
| | - Ulrika Ringdahl
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | - Carl A K Borrebaeck
- Department of Immunotechnology, CREATE Health Translational Cancer Center, Medicon Village bldg. 406, Lund University, SE 223 81 Lund, Sweden.
| | - Jihui Hao
- Tianjin Medical University Cancer Institute & Hospital, Huan-Hu-Xi Road, Ti-Huan-Bei, He Xi District, Tianjin 300060, PR China.
| |
Collapse
|
5
|
Allman E, Wang Q, Walker RL, Austen M, Peters MA, Nehrke K. Calcineurin homologous proteins regulate the membrane localization and activity of sodium/proton exchangers in C. elegans. Am J Physiol Cell Physiol 2015; 310:C233-42. [PMID: 26561640 DOI: 10.1152/ajpcell.00291.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Calcineurin B homologous proteins (CHP) are N-myristoylated, EF-hand Ca(2+)-binding proteins that bind to and regulate Na(+)/H(+) exchangers, which occurs through a variety of mechanisms whose relative significance is incompletely understood. Like mammals, Caenorhabditis elegans has three CHP paralogs, but unlike mammals, worms can survive CHP loss-of-function. However, mutants for the CHP ortholog PBO-1 are unfit, and PBO-1 has been shown to be required for proton signaling by the basolateral Na(+)/H(+) exchanger NHX-7 and for proton-coupled intestinal nutrient uptake by the apical Na(+)/H(+) exchanger NHX-2. Here, we have used this genetic model organism to interrogate PBO-1's mechanism of action. Using fluorescent tags to monitor Na(+)/H(+) exchanger trafficking and localization, we found that loss of either PBO-1 binding or activity caused NHX-7 to accumulate in late endosomes/lysosomes. In contrast, NHX-2 was stabilized at the apical membrane by a nonfunctional PBO-1 protein and was only internalized following its complete loss. Additionally, two pbo-1 paralogs were identified, and their expression patterns were analyzed. One of these contributed to the function of the excretory cell, which acts like a kidney in worms, establishing an alternative model for testing the role of this protein in membrane transporter trafficking and regulation. These results lead us to conclude that the role of CHP in Na(+)/H(+) exchanger regulation differs between apical and basolateral transporters. This further emphasizes the importance of proper targeting of Na(+)/H(+) exchangers and the critical role of CHP family proteins in this process.
Collapse
Affiliation(s)
- Erik Allman
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Qian Wang
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Rachel L Walker
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Molly Austen
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Keith Nehrke
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
6
|
Effect of huanglian jiedu decoction on thoracic aorta gene expression in spontaneous hypertensive rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:565784. [PMID: 24744811 PMCID: PMC3976878 DOI: 10.1155/2014/565784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/13/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022]
Abstract
Objective. Hypertension is one of the most common cardiovascular disorders with high mortality. Here we explored the antihypertension effects of Huanglian Jiedu Decoction (HJD) on thoracic aorta gene expression in spontaneous hypertensive rats. Methods. A rat model of spontaneous hypertension was used. The gene change profile of thoracic aorta after JHD treatment was assessed by GeneChip(GC) analysis using the Agilent Whole Rat Genome Oligo Microarray. Results. Hypertension induced 441 genes upregulated and 417 genes downregulated compared with the normal control group. Treatment of HJD resulted in 76 genes downregulated and 20 genes upregulated. GC data analysis showed that the majority of change genes were involved in immune system process, developmental process, and cell death. Conclusion. Hypertension altered expression of many genes that regulate various biological functions. HJD significantly reduced hypertension and altered the gene expression profiles of SHR rats. These changing genes were involved in many cellular functions such as regulating smooth muscle contraction, Ca(2+) homeostasis, and NO pathway. This study provides the potential novel insights into hypertension and antihypertension effects of HJD.
Collapse
|
7
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
8
|
Juvvadi PR, Fortwendel JR, Rogg LE, Burns KA, Randell SH, Steinbach WJ. Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus. Mol Microbiol 2011; 82:1235-59. [PMID: 22066998 DOI: 10.1111/j.1365-2958.2011.07886.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcineurin, a heterodimer composed of the catalytic (CnaA) and regulatory (CnaB) subunits, plays key roles in growth, virulence and stress responses of fungi. To investigate the contribution of CnaA and CnaB to hyphal growth and septation, ΔcnaB and ΔcnaAΔcnaB strains of Aspergillus fumigatus were constructed. CnaA colocalizes to the contractile actin ring early during septation and remains at the centre of the mature septum. While CnaB's septal localization is CnaA-dependent, CnaA's septal localization is CnaB-independent, but CnaB is required for CnaA's function at the septum. Catalytic null mutations in CnaA caused stunted growth despite septal localization of the calcineurin complex, indicating the requirement of calcineurin activity at the septum. Compared to the ΔcnaA and ΔcnaB strains, the ΔcnaAΔcnaB strain displayed more defective growth and aberrant septation. While three Ca(2+) -binding motifs in CnaB were sufficient for its association with CnaA at the septum, the amino-terminal arginine-rich domains (16-RRRR-19 and 44-RLRKR-48) are dispensable for septal localization, yet required for complete functionality. Mutation of the 51-KLDK-54 motif in CnaB causes its mislocalization from the septum to the nucleus, suggesting it is a nuclear export signal sequence. These findings confirm a cooperative role for the calcineurin complex in regulating hyphal growth and septation.
Collapse
Affiliation(s)
- Praveen Rao Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wagner J, Allman E, Taylor A, Ulmschneider K, Kovanda T, Ulmschneider B, Nehrke K, Peters MA. A calcineurin homologous protein is required for sodium-proton exchange events in the C. elegans intestine. Am J Physiol Cell Physiol 2011; 301:C1389-403. [PMID: 21865588 DOI: 10.1152/ajpcell.00139.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caenorhabditis elegans defecation is a rhythmic behavior, composed of three sequential muscle contractions, with a 50-s periodicity. The motor program is driven by oscillatory calcium signaling in the intestine. Proton fluxes, which require sodium-proton exchangers at the apical and basolateral intestinal membranes, parallel the intestinal calcium flux. These proton shifts are critical for defecation-associated muscle contraction, nutrient uptake, and longevity. How sodium-proton exchangers are activated in time with intestinal calcium oscillation is not known. The posterior body defecation contraction mutant (pbo-1) encodes a calcium-binding protein with homology to calcineurin homologous proteins, which are putative cofactors for mammalian sodium-proton exchangers. Loss of pbo-1 function results in a weakened defecation muscle contraction and a caloric restriction phenotype. Both of these phenotypes also arise from dysfunctions in pH regulation due to mutations in intestinal sodium-proton exchangers. Dynamic, in vivo imaging of intestinal proton flux in pbo-1 mutants using genetically encoded pH biosensors demonstrates that proton movements associated with these sodium-proton exchangers are significantly reduced. The basolateral acidification that signals the first defecation motor contraction is scant in the mutant compared with a normal animal. Luminal and cytoplasmic pH shifts are much reduced in the absence of PBO-1 compared with control animals. We conclude that pbo-1 is required for normal sodium-proton exchanger activity and may couple calcium and proton signaling events.
Collapse
Affiliation(s)
- Jamie Wagner
- Dept. of Biology, Oberlin College, Oberlin, OH 44074, USA
| | | | | | | | | | | | | | | |
Collapse
|