1
|
Janardhanan P, Somasundaran AK, Balakrishnan AJ, Pilankatta R. Sensitization of cancer cells towards Cisplatin and Carboplatin by protein kinase D inhibitors through modulation of ATP7A/B (copper transport ATPases). Cancer Treat Res Commun 2022; 32:100613. [PMID: 35908410 DOI: 10.1016/j.ctarc.2022.100613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Drug resistance of cancer cells is a significant impediment to effective chemotherapy. One primary reason for this is copper exporters - ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B). These molecular pumps belong to P-type ATPases and dispose off the Platinum (Pt) based anticancer drugs from cancer cells, causing resistance in them. For the disposal of Pt-drugs, copper exporters require phosphorylation mediated by protein kinase D (PKD) for their activation and trafficking. Even though various research works are underway to overcome resistance to anticancer drugs, the role of PKD is mainly ignored. In this study, we have found a significant upregulation of ATP7A and ATP7B in cervical cancer cells (HeLa) and Liver Hepatocellular Carcinoma cells (HepG2) in the presence of Cisplatin or Carboplatin; both at transcriptional as well as translational levels. Interestingly, the expression of ATP7A and ATP7B were significantly downregulated in the presence of a PKD inhibitor (CID2011756), resulting in the reduction of PKD mediated phosphorylation of ATP7A/7B. This causes enhancement of proteasome-mediated degradation of ATP7A/7B and thereby sensitizes the cells towards Cisplatin and Carboplatin. Similarly, the treatment of Cisplatin resistant HepG2 cells with PKD inhibitor causes enhanced sensitivity towards Cisplatin drug. However, the presence of proteasome inhibitor (MG132) reversed the effect of the PKD inhibitor on the expression level of ATP7A/7B, indicating the necessity of phosphorylation for its stability. Hence, we conclude that the combinatorial usage of Cisplatin with drugs targeting PKD can be developed as an effective chemotherapeutic approach to overcome drug resistance.
Collapse
Affiliation(s)
- Prajit Janardhanan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India
| | | | - Anjali Jayasree Balakrishnan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala 671316, India.
| |
Collapse
|
2
|
Das S, Mohammed A, Mandal T, Maji S, Verma J, Ruturaj, Gupta A. Polarized trafficking and copper transport activity of ATP7B: a mutational approach to establish genotype-phenotype correlation in Wilson disease. Hum Mutat 2022; 43:1408-1429. [PMID: 35762218 DOI: 10.1002/humu.24428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Mutation in ATP7B gene causes Wilson disease (WD) that is characterized by severe hepatic and neurological symptoms. ATP7B localizes at the trans-Golgi Network (TGN) transporting copper to copper-dependent enzymes and traffics in apically targeted vesicles upon intracellular copper elevation. To decode the cellular underpinnings of WD manifestation we investigated copper-responsive polarized trafficking and copper transport activity of fifteen WD causing point mutations in ATP7B. Amino-terminal mutations Gly85Val, Leu168Pro and Gly591Asp displayed TGN and sub-apical localization whereas, Leu492Ser mislocalized at the basolateral region. The actuator domain mutation Gly875Arg shows retention in the endoplasmic reticulum (ER), Ala874Val and Leu795Phe show partial targeting to TGN and post-Golgi vesicles. The Nucleotide-Binding Domain mutations His1069Gln and Leu1083Phe also display impaired targeting. The C-terminal mutations Leu1373Pro/Arg is arrested at ER but Ser1423Asn shows TGN localization. Transmembrane mutant Arg778Leu resides in ER and TGN while Arg969Gln is exclusively ER localized. Cellular Cu level does not alter the targeting of any of the studied mutations. Mutants that traffic to TGN exhibits biosynthetic function. Finally, we correlated cellular phenotypes with the clinical manifestation of the two most prevalent mutations; the early onset and more aggressive WD caused by Arg778Leu and the milder form of WD caused by mutation His1069Gln. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Ameena Mohammed
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Taniya Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Jay Verma
- Maulana Azad Medical College, 2 Bahadur Shah Zafar Marg, New Delhi, Delhi, 110002, India
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
3
|
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 2021; 134:272704. [PMID: 34734631 DOI: 10.1242/jcs.240523] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Copper (Cu) homeostasis is essential for the development and function of many organisms. In humans, Cu misbalance causes serious pathologies and has been observed in a growing number of diseases. This Review focuses on mammalian Cu(I) transporters and highlights recent studies on regulation of intracellular Cu fluxes. Cu is used by essential metabolic enzymes for their activity. These enzymes are located in various intracellular compartments and outside cells. When cells differentiate, or their metabolic state is otherwise altered, the need for Cu in different cell compartments change, and Cu has to be redistributed to accommodate these changes. The Cu transporters SLC31A1 (CTR1), SLC31A2 (CTR2), ATP7A and ATP7B regulate Cu content in cellular compartments and maintain Cu homeostasis. Increasing numbers of regulatory proteins have been shown to contribute to multifaceted regulation of these Cu transporters. It is becoming abundantly clear that the Cu transport networks are dynamic and cell specific. The comparison of the Cu transport machinery in the liver and intestine illustrates the distinct composition and dissimilar regulatory response of their Cu transporters to changing Cu levels.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Johns Hopkins Medical Institutes, Department of Physiology, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
McCann CJ, Jayakanthan S, Siotto M, Yang N, Osipova M, Squitti R, Lutsenko S. Single nucleotide polymorphisms in the human ATP7B gene modify the properties of the ATP7B protein. Metallomics 2020; 11:1128-1139. [PMID: 31070637 DOI: 10.1039/c9mt00057g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the largest source of sequence variation in the human genome. However, their functional significance is not well understood. We show that SNPs in the Wilson disease gene, ATP7B, that produce amino-acid substitutions K832R and R952K, modulate ATP7B properties in vitro and influence serum copper (Cu) status in vivo. The presence of R832 is associated with a lower ATP7B abundance and a diminished trafficking in response to elevated Cu. The K832R substitution alters surface exposure of amino acid residues in the actuator domain and increases its conformational flexibility. All SNP-related ATP7B variants (R832/R952, R832/K952, K832/K952, and K832/R952) have Cu-transport activity. However, the activity of ATP7B-K832/K952 is lower compared to other variants. In humans, the presence of K952 is associated with a higher fraction of exchangeable Cu in serum. Thus, SNPs may modulate the properties of ATP7B and the organism Cu status.
Collapse
Affiliation(s)
- Courtney J McCann
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem 2018; 293:20085-20098. [PMID: 30341172 DOI: 10.1074/jbc.ra118.004889] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-β-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Collapse
Affiliation(s)
- Katharina Schmidt
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas Schaffer
- the Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Samuel Jayakanthan
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bilal Bari
- the Department of Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Abigael Muchenditsi
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,.
| |
Collapse
|
6
|
Lai YH, Kuo C, Kuo MT, Chen HHW. Modulating Chemosensitivity of Tumors to Platinum-Based Antitumor Drugs by Transcriptional Regulation of Copper Homeostasis. Int J Mol Sci 2018; 19:ijms19051486. [PMID: 29772714 PMCID: PMC5983780 DOI: 10.3390/ijms19051486] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Platinum (Pt)-based antitumor agents have been effective in treating many human malignancies. Drug importing, intracellular shuffling, and exporting—carried out by the high-affinity copper (Cu) transporter (hCtr1), Cu chaperone (Ato x1), and Cu exporters (ATP7A and ATP7B), respectively—cumulatively contribute to the chemosensitivity of Pt drugs including cisplatin and carboplatin, but not oxaliplatin. This entire system can also handle Pt drugs via interactions between Pt and the thiol-containing amino acid residues in these proteins; the interactions are strongly influenced by cellular redox regulators such as glutathione. hCtr1 expression is induced by acute Cu deprivation, and the induction is regulated by the transcription factor specific protein 1 (Sp1) which by itself is also regulated by Cu concentration variations. Copper displaces zinc (Zn) coordination at the zinc finger (ZF) domains of Sp1 and inactivates its DNA binding, whereas Cu deprivation enhances Sp1-DNA interactions and increases Sp1 expression, which in turn upregulates hCtr1. Because of the shared transport system, chemosensitivity of Pt drugs can be modulated by targeting Cu transporters. A Cu-lowering agent (trientine) in combination with a Pt drug (carboplatin) has been used in clinical studies for overcoming Pt-resistance. Future research should aim at further developing effective Pt drug retention strategies for improving the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hsuan Lai
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Chin Kuo
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
7
|
Sudhahar V, Okur MN, Bagi Z, O'Bryan JP, Hay N, Makino A, Patel VS, Phillips SA, Stepp D, Ushio-Fukai M, Fukai T. Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2018; 38:529-541. [PMID: 29301787 DOI: 10.1161/atvbaha.117.309819] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired. APPROACH AND RESULTS Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression. CONCLUSION Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Mustafa Nazir Okur
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Zsolt Bagi
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - John P O'Bryan
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Nissim Hay
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Ayako Makino
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Vijay S Patel
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Shane A Phillips
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - David Stepp
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Masuko Ushio-Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Tohru Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.).
| |
Collapse
|
8
|
Ariöz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 2017; 30:823-840. [PMID: 29063292 PMCID: PMC5684295 DOI: 10.1007/s10534-017-0058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Wilson Disease (WD) is a hereditary genetic disorder, which coincides with a dysfunctional copper (Cu) metabolism caused by mutations in ATP7B, a membrane-bound P1B-type ATPase responsible for Cu export from hepatic cells. The N-terminal part (~ 600 residues) of the multi-domain 1400-residue ATP7B constitutes six metal binding domains (MBDs), each of which can bind a copper ion, interact with other ATP7B domains as well as with different proteins. Although the ATP7B's MBDs have been investigated in vitro and in vivo intensively, it remains unclear how these domains modulate overall structure, dynamics, stability and function of ATP7B. The presence of six MBDs is unique to mammalian ATP7B homologs, and many WD causing missense mutations are found in these domains. Here, we have summarized previously reported in vitro biophysical data on the MBDs of ATP7B and WD point mutations located in these domains. Besides the demonstration of where the research field stands today, this review showcasts the need for further biophysical investigation about the roles of MBDs in ATP7B function. Molecular mechanisms of ATP7B are important not only in the development of new WD treatment but also for other aspects of human physiology where Cu transport plays a role.
Collapse
Affiliation(s)
- Candan Ariöz
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, Kemihuset A, Linnaeus väg 10, 901 87 Umeå, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Yu CH, Yang N, Bothe J, Tonelli M, Nokhrin S, Dolgova NV, Braiterman L, Lutsenko S, Dmitriev OY. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J Biol Chem 2017; 292:18169-18177. [PMID: 28900031 DOI: 10.1074/jbc.m117.811752] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/01/2017] [Indexed: 01/28/2023] Open
Abstract
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.
Collapse
Affiliation(s)
- Corey H Yu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nan Yang
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Jameson Bothe
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Sergiy Nokhrin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Natalia V Dolgova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Lelita Braiterman
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| |
Collapse
|
10
|
Seddigh S. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects. Comput Biol Chem 2017; 68:266-281. [DOI: 10.1016/j.compbiolchem.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
|
11
|
Yu CH, Dolgova NV, Dmitriev OY. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A. IUBMB Life 2017; 69:226-235. [DOI: 10.1002/iub.1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Corey H. Yu
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Natalia V. Dolgova
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Oleg Y. Dmitriev
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
12
|
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 2016; 69:211-217. [PMID: 27896900 DOI: 10.1002/iub.1590] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 11/06/2022]
Abstract
Copper has a wide and important role in biological systems, determining conformation and activity of many metalloproteins and enzymes, such as cytochrome oxidase and superoxide dismutase . Furthermore, due to its possible reactivity with nonspecific proteins and toxic effects, elaborate systems of absorption, concentration buffering, delivery to specific protein sites and elimination, require a complex system including small carriers, chaperones and active transporters. The P-type copper ATPases ATP7A and ATP7B provide an important system for acquisition, active transport, distribution and elimination of copper. Relevance of copper metabolism to human diseases and therapy is already known. It is quite certain that further studies will reveal detailed and useful information on biochemical mechanisms and relevance to diseases. © 2016 IUBMB Life, 69(4):211-217, 2017.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| |
Collapse
|
13
|
Modulation of hepatic copper-ATPase activity by insulin and glucagon involves protein kinase A (PKA) signaling pathway. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2086-2097. [DOI: 10.1016/j.bbadis.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 11/23/2022]
|
14
|
Diaz D, Pai R, Cain G, La N, Dambach D, Schwartz J, Tarrant JM. MEK and ERK Kinase Inhibitors Increase Circulating Ceruloplasmin and Cause Green Serum in Rats. Toxicol Pathol 2016; 45:353-361. [DOI: 10.1177/0192623316664590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inhibition of the mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is an attractive therapeutic approach for human cancer therapy. In the course of evaluating structurally distinct small molecule inhibitors that target mitogen-activated protein kinase kinase (MEK) and ERK kinases in this pathway, we observed an unusual, dose-related increase in the incidence of green serum in preclinical safety studies in rats. Having ruled out changes in bilirubin metabolism, we demonstrated a 2- to 3-fold increase in serum ceruloplasmin levels, likely accounting for the observed green color. This was not associated with an increase in α-2-macroglobulin, the major acute phase protein in rats, indicating that ceruloplasmin levels increased independently of an inflammatory response. Elevated serum ceruloplasmin was also not correlated with changes in total hepatic copper, adverse clinical signs, or pathology findings indicative of copper toxicity, therefore discounting copper overload as the etiology. Both ERK and MEK inhibitors led to increased ceruloplasmin secretion in rat primary hepatocyte cultures in vitro, and this increase was associated with activation of the Forkhead box, class O1 (FOXO1) transcription factor. In conclusion, increased serum ceruloplasmin induced by MEK and ERK inhibition is due to increased synthesis by hepatocytes from FOXO1 activation and results in the nonadverse development of green serum in rats.
Collapse
Affiliation(s)
- Dolores Diaz
- Genentech, Inc., South San Francisco, California, USA
| | - Rama Pai
- Genentech, Inc., South San Francisco, California, USA
- Medivation, San Francisco, California, USA
| | - Gary Cain
- Genentech, Inc., South San Francisco, California, USA
| | - Nghi La
- Genentech, Inc., South San Francisco, California, USA
| | - Donna Dambach
- Genentech, Inc., South San Francisco, California, USA
| | | | - Jacqueline M. Tarrant
- Genentech, Inc., South San Francisco, California, USA
- Gilead Sciences, Foster City, California, USA
| |
Collapse
|
15
|
Abstract
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing - all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a "skeleton" that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe street, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Häupl B, Ihling CH, Sinz A. Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry. J Proteome Res 2016; 15:3686-3699. [PMID: 27559607 DOI: 10.1021/acs.jproteome.6b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the interaction network of human PKD2 in the cytosol and in Golgi-enriched subcellular protein fractions by an affinity enrichment strategy combined with chemical cross-linking/mass spectrometry (MS). Analysis of the subproteomes revealed the presence of distinct proteins in the cytosolic and Golgi fractions. The covalent fixation of transient or weak interactors by chemical cross-linking allowed capturing interaction partners that might otherwise disappear during conventional pull-down experiments. In total, 31 interaction partners were identified for PKD2, including glycogen synthase kinase-3 beta (GSK3B), 14-3-3 protein gamma (YWHAG), and the alpha isoform of 55 kDa regulatory subunit B of protein phosphatase 2A (PPP2R2A). Remarkably, the entire seven-subunit Arp2/3 complex (ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5, ACTR3, ACTR2) as well as ARPC1A and ARPC5L, which are putative substitutes of ARPC1B and ARPC5, were identified. We provide evidence of a direct protein-protein interaction between PKD2 and Arp2/3. Our findings will pave the way for further structural and functional studies of PKD2 complexes, especially the PKD2/Arp2/3 interaction, to elucidate the role of PKD2 for transport processes at the trans-Golgi network. Data are available via ProteomeXchange with identifiers PXD003909 (enrichment from cytosolic fractions), PXD003913 (enrichment from Golgi fractions), and PXD003917 (subcellular fractionation).
Collapse
Affiliation(s)
- Björn Häupl
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Squitti R, Siotto M, Arciello M, Rossi L. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer's disease. Metallomics 2016; 8:863-73. [DOI: 10.1039/c6mt00101g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATP7B, a protein mainly expressed in the hepatocytes, is a copper chaperone that loads the metal into the serum copper–protein ceruloplasmin during its synthesis and also escorts superfluous copper into the bile, by a sophisticated trafficking mechanism.
Collapse
Affiliation(s)
- R. Squitti
- Molecular Markers Laboratory
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli
- 25125 Brescia, Italy
| | - M. Siotto
- Don Carlo Gnocchi ONLUS Foundation
- Milan, Italy
| | - M. Arciello
- Department of Biology
- University of Rome Tor Vergata
- Rome, Italy
| | - L. Rossi
- Department of Biology
- University of Rome Tor Vergata
- Rome, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (I.N.B.B.)
- Rome, Italy
| |
Collapse
|
18
|
Braiterman LT, Gupta A, Chaerkady R, Cole RN, Hubbard AL. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem 2015; 290:8803-19. [PMID: 25666620 DOI: 10.1074/jbc.m114.627414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated ("hyperphosphorylated") in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.
Collapse
Affiliation(s)
| | | | - Raghothama Chaerkady
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
19
|
Sajith AM, Abdul Khader K, Joshi N, Reddy MN, Syed Ali Padusha M, Nagaswarupa H, Nibin Joy M, Bodke YD, Karuvalam RP, Banerjee R, Muralidharan A, Rajendra P. Design, synthesis and structure–activity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents. Eur J Med Chem 2015; 89:21-31. [DOI: 10.1016/j.ejmech.2014.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/05/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
|
20
|
Abstract
Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper.
Collapse
|
21
|
Altered signaling pathways linked to angiotensin II underpin the upregulation of renal Na(+)-ATPase in chronically undernourished rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2357-66. [PMID: 25283821 DOI: 10.1016/j.bbadis.2014.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 01/23/2023]
Abstract
This study has investigated the participation of altered signaling linked to angiotensin II (Ang II) that could be associated with increased Na(+) reabsorption in renal proximal tubules during chronic undernutrition. A multideficient chow for rats (basic regional diet, BRD) was used, which mimics several human diets widely taken in developing countries. The Vmax of the ouabain-resistant Na(+)-ATPase resident in the basolateral membranes increased >3-fold (P<0.001) accompanied by an increase in Na(+) affinity from 4.0 to 0.2mM (P<0.001). BRD rats had a >3-fold acceleration of the formation of phosphorylated intermediates in the early stage of the catalytic cycle (in the E1 conformation) (P<0.001). Immunostaining showed a huge increase in Ang II-positive cells in the cortical tubulointerstitium neighboring the basolateral membranes (>6-fold, P<0.001). PKC isoforms (α, ε, λ, ζ), Ang II type 1 receptors and PP2A were upregulated in BRD rats (in %): 55 (P<0.001); 35 (P<0.01); 125, 55, 11 and 30 (P<0.001). PKA was downregulated by 55% (P<0.001). With NetPhosK 1.0 and NetPhos 2.0, we detected 4 high-score (>0.70) regulatory phosphorylation sites for PKC and 1 for PKA in the primary sequence of the Na(+)-ATPase α-subunit, which are located in domains that are key for Na(+) binding and catalysis. Therefore, chronic undernutrition stimulates tubulointerstitial activity of Ang II and impairs PKC- and PKA-mediated regulatory phosphorylation, which culminates in an exaggerated Na(+) reabsorption across the proximal tubular epithelium.
Collapse
|
22
|
Huang Y, Nokhrin S, Hassanzadeh-Ghassabeh G, Yu CH, Yang H, Barry AN, Tonelli M, Markley JL, Muyldermans S, Dmitriev OY, Lutsenko S. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding. J Biol Chem 2014; 289:32682-93. [PMID: 25253690 DOI: 10.1074/jbc.m114.580845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1-3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell.
Collapse
Affiliation(s)
- Yiping Huang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sergiy Nokhrin
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Gholamreza Hassanzadeh-Ghassabeh
- the Vrije Universiteit Brussel, Structural Biology Research Center, and Nanobody Service Facility, VIB, 1050 Brussels, Belgium, and
| | - Corey H Yu
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Haojun Yang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda N Barry
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marco Tonelli
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John L Markley
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Serge Muyldermans
- the Vrije Universiteit Brussel, Structural Biology Research Center, and
| | - Oleg Y Dmitriev
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
23
|
ATP7B activity is stimulated by PKCɛ in porcine liver. Int J Biochem Cell Biol 2014; 54:60-7. [PMID: 25003971 DOI: 10.1016/j.biocel.2014.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/22/2022]
Abstract
Copper is necessary for all organisms since it acts as a cofactor in different enzymes, although toxic at high concentrations. ATP7B is one of two copper-transporting ATPases in humans, its vital role being manifested in Wilson disease due to a mutation in the gene that encodes this pump. Our objective has been to determine whether pathways involving protein kinase C (PKC) modulate ATP7B activity. Different isoforms of PKC (α, ɛ, ζ) were found in Golgi-enriched membrane fractions obtained from porcine liver. Cu(I)-ATPase activity was assessed in the presence of different activators and inhibitors of PKC signaling pathways. PMA (10(-8) M), a PKC activator, increased Cu(I)-ATPase activity by 60%, whereas calphostin C and U73122 (PKC and PLC inhibitors, respectively) decreased the activity by 40%. Addition of phosphatase λ decreased activity by 60%, irrespective of pre-incubation with PMA. No changes were detected with 2 μM Ca(2+), whereas PMA plus EGTA increased activity. This enhanced activity elicited by PMA decreased with a specific inhibitor of PKCɛ to levels comparable with those found after phosphatase λ treatment, showing that the ɛ isoform is essential for activation of the enzyme. This regulatory phosphorylation enhanced Vmax without modifying affinities for ATP and copper. It can be concluded that signaling pathways leading to DAG formation and PKCɛ activation stimulate the active transport of copper by ATP7B, thus evidencing a central role for this specific kinase-mediated mechanism in hepatic copper handling.
Collapse
|
24
|
Lalioti V, Hernandez-Tiedra S, Sandoval IV. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B. Traffic 2014; 15:839-60. [PMID: 24831241 DOI: 10.1111/tra.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 11/27/2022]
Abstract
In the liver, the P-type ATPase and membrane pump ATP7B plays a crucial role in Cu(+) donation to cuproenzymes and in the elimination of excess Cu(+). ATP7B is endowed with a COOH-cytoplasmic (DE)XXXLL-type traffic signal. We find that accessory (Lys -3, Trp -2, Ser -1 and Leu +2) and canonical (D -4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu(+)-regulated cycling of ATP7B between the trans-Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu(+) at the TGN.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Centro Biología Molecular Severo Ochoa, Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
25
|
Abstract
Aldosterone regulates blood pressure through its effects on the kidney and the cardiovascular system. Dysregulation of aldosterone signalling can result in hypertension which in turn can lead to chronic pathologies of the kidney such as renal fibrosis and nephropathy. Aldosterone acts by binding to the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues such as segments of the distal nephron including the connecting tubule and cortical collecting duct (CCD). Aldosterone also promotes the activation of protein kinase signalling cascades that are coupled to growth factor receptors and act directly on specific substrates in the cell membrane or cytoplasm. The rapid actions of aldosterone can also modulate gene expression through the phosphorylation of transcription factors. Aldosterone is a key regulator of Na(+) conservation in the distal nephron, largely through multiple mechanisms that modulate the activity of the epithelial Na(+) channel (ENaC). Aldosterone transcriptionally up-regulates the ENaCα subunit and also up regulates serum and glucocorticoid-regulated kinase-1 (SGK1) that indirectly regulates the ubiquitination of ENaC subunits. Aldosterone promotes the activation of protein kinase D1 (PKD1) which can modify the activity of ENaC and other transporters through effects on sub-cellular trafficking. In M1-CCD cells, early sub-cellular trafficking causes the redistribution of ENaC subunits within minutes of treatment with aldosterone. ENaC subunits can also interact directly with phosphatidylinositide signalling intermediates in the membrane and the mechanism by which PKD isoforms regulate protein trafficking is through the control of vesicle fission from the trans Golgi network by activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ).
Collapse
Affiliation(s)
- Sinéad Quinn
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Warren Thomas
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
26
|
Polishchuk R, Lutsenko S. Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 2013; 140:285-95. [PMID: 23846821 DOI: 10.1007/s00418-013-1123-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 01/06/2023]
Abstract
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintains Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease.
Collapse
Affiliation(s)
- Roman Polishchuk
- Telethon Institute of Genetics and Medicine TIGEM, Via Pietro Castellino, 111, 80131 Naples, Italy.
| | | |
Collapse
|
27
|
Hasan NM, Gupta A, Polishchuk E, Yu CH, Polishchuk R, Dmitriev OY, Lutsenko S. Molecular events initiating exit of a copper-transporting ATPase ATP7B from the trans-Golgi network. J Biol Chem 2012; 287:36041-50. [PMID: 22898812 DOI: 10.1074/jbc.m112.370403] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The copper-transporting ATPase ATP7B has a dual intracellular localization: the trans-Golgi network (TGN) and cytosolic vesicles. Changes in copper levels, kinase-mediated phosphorylation, and mutations associated with Wilson disease alter the steady-state distribution of ATP7B between these compartments. To identify a primary molecular event that triggers ATP7B exit from the TGN, we characterized the folding, activity, and trafficking of the ATP7B variants with mutations within the regulatory N-terminal domain (N-ATP7B). We found that structural changes disrupting the inter-domain contacts facilitate ATP7B exit from the TGN. Mutating Ser-340/341 in the N-ATP7B individually or together to Ala, Gly, Thr, or Asp produced active protein and shifted the steady-state localization of ATP7B to vesicles, independently of copper levels. The Ser340/341G mutant had a lower kinase-mediated phosphorylation under basal conditions and no copper-dependent phosphorylation. Thus, negative charges introduced by copper-dependent phosphorylation are not obligatory for ATP7B trafficking from the TGN. The Ser340/341A mutation did not alter the overall fold of N-ATP7B, but significantly decreased interactions with the nucleotide-binding domain, mimicking consequences of copper binding to N-ATP7B. We propose that structural changes that specifically alter the inter-domain contacts initiate exit of ATP7B from the TGN, whereas increased phosphorylation may be needed to maintain an open interface between the domains.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Lewis D, Pilankatta R, Inesi G, Bartolommei G, Moncelli MR, Tadini-Buoninsegni F. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases. J Biol Chem 2012; 287:32717-27. [PMID: 22854969 DOI: 10.1074/jbc.m112.373472] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ca(2+) (sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA)) and Cu(+) (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca(2+), demonstrated by the addition of ATP and Ca(2+) to SERCA deprived of Ca(2+) (E2) as compared with ATP to Ca(2+)-activated enzyme (E1·2Ca(2+)). Activation by Ca(2+) is slower at low pH (2H(+)·E2 to E1·2Ca(2+)) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca(2+) translocation. A "H(+)-gated pathway," demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca(2+) release by H(+)/Ca(2+) exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu(+)/H(+) exchange. As opposed to SERCA after Ca(2+) chelation, ATP7A/B does not undergo reverse phosphorylation with P(i) after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.
Collapse
Affiliation(s)
- David Lewis
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | |
Collapse
|
29
|
Keller AM, Benítez JJ, Klarin D, Zhong L, Goldfogel M, Yang F, Chen TY, Chen P. Dynamic multibody protein interactions suggest versatile pathways for copper trafficking. J Am Chem Soc 2012; 134:8934-43. [PMID: 22578168 DOI: 10.1021/ja3018835] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As part of intracellular copper trafficking pathways, the human copper chaperone Hah1 delivers Cu(+) to the Wilson's Disease Protein (WDP) via weak and dynamic protein-protein interactions. WDP contains six homologous metal binding domains (MBDs) connected by flexible linkers, and these MBDs all can receive Cu(+) from Hah1. The functional roles of the MBD multiplicity in Cu(+) trafficking are not well understood. Building on our previous study of the dynamic interactions between Hah1 and the isolated fourth MBD of WDP, here we study how Hah1 interacts with MBD34, a double-domain WDP construct, using single-molecule fluorescence resonance energy transfer (smFRET) combined with vesicle trapping. By alternating the positions of the smFRET donor and acceptor, we systematically probed Hah1-MBD3, Hah1-MBD4, and MBD3-MBD4 interaction dynamics within the multidomain system. We found that the two interconverting interaction geometries were conserved in both intermolecular Hah1-MBD and intramolecular MBD-MBD interactions. The Hah1-MBD interactions within MBD34 are stabilized by an order of magnitude relative to the isolated single-MBDs, and thermodynamic and kinetic evidence suggest that Hah1 can interact with both MBDs simultaneously. The enhanced interaction stability of Hah1 with the multi-MBD system, the dynamic intramolecular MBD-MBD interactions, and the ability of Hah1 to interact with multiple MBDs simultaneously suggest an efficient and versatile mechanism for the Hah1-to-WDP pathway to transport Cu(+).
Collapse
Affiliation(s)
- Aaron M Keller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Roberts EA. Using metalloproteomics to investigate the cellular physiology of copper in hepatocytes. Metallomics 2012; 4:633-40. [DOI: 10.1039/c2mt20019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Hasan NM, Lutsenko S. Regulation of copper transporters in human cells. CURRENT TOPICS IN MEMBRANES 2012; 69:137-61. [PMID: 23046650 DOI: 10.1016/b978-0-12-394390-3.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for normal growth and development of human organisms. The role of copper as a cofactor of important metabolic enzymes, such as cytochrome c oxidase, superoxide dismutase, lysyl oxidase, dopamine-β-hydroxylase, and many others, has been well established. In recent years, new regulatory roles of copper have emerged. Accumulating evidence points to the involvement of copper in lipid metabolism, antimicrobial defense, neuronal activity, resistance of tumor cells to platinum-based chemotherapeutic drugs, kinase-mediated signal transduction, and other essential cellular processes. For many of these processes, the precise mechanism of copper action remains to be established. Nevertheless, it is increasingly clear that many regulatory and signaling events are associated with changes in the intracellular localization and abundance of copper transporters, as well as distinct compartmentalization of copper itself. In this review, we discuss current data on regulation of the localization and abundance of copper transporters in response to metabolic and signaling events in human cells. Regulation by kinase-mediated phosphorylation will be addressed along with the emerging area of the redox-driven control of copper transport. We highlight mechanistic questions that await further testing.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
32
|
Inesi G. Calcium and copper transport ATPases: analogies and diversities in transduction and signaling mechanisms. J Cell Commun Signal 2011; 5:227-37. [PMID: 21656155 PMCID: PMC3145875 DOI: 10.1007/s12079-011-0136-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022] Open
Abstract
The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, 475 Brannan Street, San Francisco, CA, 94107, USA,
| |
Collapse
|