1
|
Basse Hansen S, Flygaard RK, Kjaergaard M, Nissen P. Structure of the [Ca]E2P intermediate of Ca 2+-ATPase 1 from Listeria monocytogenes. EMBO Rep 2025:10.1038/s44319-025-00392-x. [PMID: 40016426 DOI: 10.1038/s44319-025-00392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Active transport by P-type Ca2+-ATPases maintain internal calcium stores and a low cytosolic calcium concentration. Structural studies of mammalian sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) have revealed several steps of the transport cycle, but a calcium-releasing intermediate has remained elusive. Single-molecule FRET studies of the bacterial Ca2+-ATPase LMCA1 revealed an intermediate of the transition between so-called [Ca]E1P and E2P states and suggested that calcium release from this intermediate was the essentially irreversible step of transport. Here, we present a 3.5 Å resolution cryo-EM structure for a four-glycine insertion mutant of LMCA1 in a lipid nanodisc obtained under conditions with calcium and ATP and adopting such an intermediate state, denoted [Ca]E2P. The cytosolic domains are positioned in the E2P-like conformation, while the calcium-binding transmembrane (TM) domain adopts a calcium-bound E1P-ADP-like conformation. Missing density for the E292 residue at the calcium site (the equivalent of SERCA1a E309) suggests flexibility and a site poised for calcium release and proton uptake. The structure suggests a mechanism where ADP release and re-organization of the cytoplasmic domains precede calcium release.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| |
Collapse
|
2
|
Larsen ST, Dannersø JK, Nielsen CJF, Poulsen LR, Palmgren M, Nissen P. Conserved N-terminal Regulation of the ACA8 Calcium Pump with Two Calmodulin Binding Sites. J Mol Biol 2024; 436:168747. [PMID: 39168442 DOI: 10.1016/j.jmb.2024.168747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The autoinhibited plasma membrane calcium ATPase ACA8 from A. thaliana has an N-terminal autoinhibitory domain. Binding of calcium-loaded calmodulin at two sites located at residues 42-62 and 74-96 relieves autoinhibition of ACA8 activity. Through activity studies and a yeast complementation assay we investigated wild-type (WT) and N-terminally truncated ACA8 constructs (Δ20, Δ30, Δ35, Δ37, Δ40, Δ74 and Δ100) to explore the role of conserved motifs in the N-terminal segment preceding the calmodulin binding sites. Furthermore, we purified WT, Δ20- and Δ100-ACA8, tested activity in vitro and performed structural studies of purified Δ20-ACA8 stabilized in a lipid nanodisc to explore the mechanism of autoinhibition. We show that an N-terminal segment between residues 20 and 35 including conserved Phe32, upstream of the calmodulin binding sites, is important for autoinhibition and the activation by calmodulin. Cryo-EM structure determination at 3.3 Å resolution of a beryllium fluoride inhibited E2 form, and at low resolution for an E1 state combined with AlphaFold prediction provide a model for autoinhibition, consistent with the mutational studies.
Collapse
Affiliation(s)
- Sigrid Thirup Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Josephine Karlsen Dannersø
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Christine Juul Fælled Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Lisbeth Rosager Poulsen
- Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, DK-1871, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, DK-1871, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Prabudiansyah I, Orädd F, Magkakis K, Pounot K, Levantino M, Andersson M. Dephosphorylation and ion binding in prokaryotic calcium transport. SCIENCE ADVANCES 2024; 10:eadp2916. [PMID: 39908574 DOI: 10.1126/sciadv.adp2916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 02/07/2025]
Abstract
Calcium (Ca2+) signaling is fundamental to cellular processes in both eukaryotic and prokaryotic organisms. While the mechanisms underlying eukaryotic Ca2+ transport are well documented, an understanding of prokaryotic transport remains nascent. LMCA1, a Ca2+ adenosine triphosphatase (ATPase) from Listeria monocytogenes, has emerged as a prototype for elucidating structure and dynamics in prokaryotic Ca2+ transport. Here, we used a multidisciplinary approach integrating kinetics, structure, and dynamics to unravel the intricacies of LMCA1 function. A cryo-electron microscopy (cryo-EM) structure of a Ca2+-bound E1 state showed ion coordination by Asp720, Asn716, and Glu292. Time-resolved x-ray solution scattering experiments identified phosphorylation as the rate-determining step. A cryo-EM E2P state structure exhibited remarkable similarities to a SERCA1a E2-P* state, which highlights the essential role of the unique P-A domain interface in enhancing dephosphorylation rates and reconciles earlier proposed mechanisms. Our study underscores the distinctiveness between eukaryotic and prokaryotic Ca2+ ATPase transport systems and positions LMCA1 as a promising drug target for developing antimicrobial strategies.
Collapse
Affiliation(s)
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Kevin Pounot
- ESRF, The European Synchrotron CS40220, 38043 Grenoble Cedex 9, France
| | - Matteo Levantino
- ESRF, The European Synchrotron CS40220, 38043 Grenoble Cedex 9, France
| | | |
Collapse
|
4
|
Abeyrathna SS, Abeyrathna NS, Basak P, Irvine GW, Zhang L, Meloni G. Plastic recognition and electrogenic uniport translocation of 1 st-, 2 nd-, and 3 rd-row transition and post-transition metals by primary-active transmembrane P 1B-2-type ATPase pumps. Chem Sci 2023; 14:6059-6078. [PMID: 37293658 PMCID: PMC10246665 DOI: 10.1039/d3sc00347g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Transmembrane P1B-type ATPase pumps catalyze the extrusion of transition metal ions across cellular lipid membranes to maintain essential cellular metal homeostasis and detoxify toxic metals. Zn(ii)-pumps of the P1B-2-type subclass, in addition to Zn2+, select diverse metals (Pb2+, Cd2+ and Hg2+) at their transmembrane binding site and feature promiscuous metal-dependent ATP hydrolysis in the presence of these metals. Yet, a comprehensive understanding of the transport of these metals, their relative translocation rates, and transport mechanism remain elusive. We developed a platform for the characterization of primary-active Zn(ii)-pumps in proteoliposomes to study metal selectivity, translocation events and transport mechanism in real-time, employing a "multi-probe" approach with fluorescent sensors responsive to diverse stimuli (metals, pH and membrane potential). Together with atomic-resolution investigation of cargo selection by X-ray absorption spectroscopy (XAS), we demonstrate that Zn(ii)-pumps are electrogenic uniporters that preserve the transport mechanism with 1st-, 2nd- and 3rd-row transition metal substrates. Promiscuous coordination plasticity, guarantees diverse, yet defined, cargo selectivity coupled to their translocation.
Collapse
Affiliation(s)
- Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Priyanka Basak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Gordon W Irvine
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Limei Zhang
- Department of Biochemistry and Redox Biology Center and the Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
5
|
Dhankhar P, Trinh TKH, Qiu W, Guo Y. Characterization of Ca 2+-ATPase, LMCA1, with native cell membrane nanoparticles system. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184143. [PMID: 36863681 PMCID: PMC10375462 DOI: 10.1016/j.bbamem.2023.184143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Ca2+-ATPases are membrane pumps that transport calcium ions across the cell membrane and are dependent on ATP. The mechanism of Listeria monocytogenes Ca2+-ATPase (LMCA1) in its native environment remains incompletely understood. LMCA1 has been investigated biochemically and biophysically with detergents in the past. This study characterizes LMCA1 using the detergent-free Native Cell Membrane Nanoparticles (NCMNP) system. As demonstrated by ATPase activity assays, the NCMNP7-25 polymer is compatible with a broad pH range and Ca2+ ions. This result suggests that NCMNP7-25 may have a wider array of applications in membrane protein research.
Collapse
Affiliation(s)
- Poonam Dhankhar
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
6
|
Grønberg C, Hu Q, Mahato DR, Longhin E, Salustros N, Duelli A, Lyu P, Bågenholm V, Eriksson J, Rao KU, Henderson DI, Meloni G, Andersson M, Croll T, Godaly G, Wang K, Gourdon P. Structure and ion-release mechanism of P IB-4-type ATPases. eLife 2021; 10:73124. [PMID: 34951590 PMCID: PMC8880997 DOI: 10.7554/elife.73124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here we present structures and complementary functional analyses of an archetypal PIB‑4‑ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy metal binding domains, and provides fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turn-over of PIB‑ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in e.g. drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.
Collapse
Affiliation(s)
- Christina Grønberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Qiaoxia Hu
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Elena Longhin
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Salustros
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pin Lyu
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States
| | | | - Tristan Croll
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Gabriela Godaly
- Department of Laboratory Medicine, Umeå University, Umeå, Sweden
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Abeyrathna N, Abeyrathna S, Morgan MT, Fahrni CJ, Meloni G. Transmembrane Cu(I) P-type ATPase pumps are electrogenic uniporters. Dalton Trans 2021; 49:16082-16094. [PMID: 32469032 DOI: 10.1039/d0dt01380c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 μM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.
Collapse
Affiliation(s)
- Nisansala Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | | | | | | |
Collapse
|
8
|
Hansen SB, Dyla M, Neumann C, Quistgaard EMH, Andersen JL, Kjaergaard M, Nissen P. The Crystal Structure of the Ca 2+-ATPase 1 from Listeria monocytogenes reveals a Pump Primed for Dephosphorylation. J Mol Biol 2021; 433:167015. [PMID: 33933469 DOI: 10.1016/j.jmb.2021.167015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022]
Abstract
Many bacteria export intracellular calcium using active transporters homologous to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Here we present three crystal structures of Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3- mimicking a phosphoenzyme state reveal a closed state, which is intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. It suggests that LMCA1 in the E2P state is pre-organized for dephosphorylation upon Ca2+ release, consistent with the rapid dephosphorylation observed in single-molecule studies. An arginine side-chain occupies the position equivalent to calcium binding site I in SERCA, leaving a single Ca2+ binding site in LMCA1, corresponding to SERCA site II. Observing no putative transport pathways dedicated to protons, we infer a direct proton counter transport through the Ca2+ exchange pathways. The LMCA1 structures provide insight into the evolutionary divergence and conserved features of this important class of ion transporters.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Caroline Neumann
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Esben Meldgaard Hoegh Quistgaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Jacob Lauwring Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark; Aarhus Institute of Advanced Studies (AIAS), Denmark; The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark; The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Denmark.
| |
Collapse
|
9
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Garg R, Borbora SM, Bansia H, Rao S, Singh P, Verma R, Balaji KN, Nagaraja V. Mycobacterium tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front Cell Infect Microbiol 2020; 10:461. [PMID: 33042857 PMCID: PMC7525011 DOI: 10.3389/fcimb.2020.00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of Mycobacterium tuberculosis (Mtb) in the pathogen's interaction with the host. Among its uncanny ways of dealing with the host with umpteen strategies for survival and persistence in humans, CtpF is identified as a new player. The levels of ctpF are upregulated in macrophage stresses like hypoxia, high nitric oxide levels and acidic pH. Using confocal microscopy and fluorimetry, we show that CtpF effluxes calcium in macrophages in early stages of Mtb infection. Downregulation of ctpF expression by conditional knockdown resulted in perturbation of host calcium levels and consequent decreased activation of mTOR. We present a mechanism how calcium efflux by the pathogen inhibits mTOR-dependent autophagy and enhances bacterial survival. Our work highlights how Mtb engages its metal efflux pumps to exploit host autophagic process for its proliferation.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhya Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prakruti Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
11
|
Zhang T, Sui D, Zhang C, Cole L, Hu J. Asymmetric functions of a binuclear metal center within the transport pathway of a human zinc transporter ZIP4. FASEB J 2019; 34:237-247. [PMID: 31914589 DOI: 10.1096/fj.201902043r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
Metal clusters are exploited by numerous metalloenzymes for catalysis, but it is not common to utilize a metal cluster for substrate transport across membrane. The recent crystal structure of a prototypic Zrt-/Irt-like protein (ZIP) metal transporter from Bordetella bronchiseptica (BbZIP) revealed an unprecedented binuclear metal center (BMC) within the transport pathway. Here, through a combination of bioinformatics, biochemical and structural approaches, we concluded that the two physically associated metal-binding sites in the BMC of human ZIP4 (hZIP4) zinc transporter exert different functions: one conserved transition metal-binding site acts as the transport site essential for activity, whereas the variable metal-binding site is required for hZIP4's optimal activity presumably by serving as a secondary transport site and modulating the properties of the primary transport site. Sequential soaking experiments on BbZIP crystals clarified the process of metal release from the BMC to the bulky solvent. This work provides important insights into the transport mechanism of the ZIPs broadly involved in transition metal homeostasis and signaling, and also a paradigm on a novel function of metal cluster in metalloproteins.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Logan Cole
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Maya-Hoyos M, Rosales C, Novoa-Aponte L, Castillo E, Soto CY. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 2019; 5:e02852. [PMID: 31788573 PMCID: PMC6879984 DOI: 10.1016/j.heliyon.2019.e02852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Among the 12 P-type ATPases encoded by the genome of Mycobacterium tuberculosis (Mtb), CtpF responds to the greatest number of stress conditions, including oxidative stress, hypoxia, and infection. CtpF is the mycobacterial homolog of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) of higher eukaryotes. Its expression is regulated by the global regulator of latency, DosR. However, the role that CtpF plays in the mycobacterial plasma membrane remains unknown. In this study, different functional analyses showed that CtpF is associated with calcium pumping from mycobacterial cells. Specifically, Mtb CtpF expression in Mycobacterium smegmatis cells prevents Ca2+ accumulation compared with wild type (WT) cells. In addition, plasma membrane vesicles from recombinant membranes, in which the direction of ion transport is inverted, accumulate more Ca2+ compared with vesicles obtained from the WT strain. This findings support the hypothesis that CtpF contributes to calcium efflux from mycobacterial cells. Accordingly, Mtb cells defective in ctpF (MtbΔctpF) accumulate more Ca2+ compared with WT cells, while the Ca2+-dependent ATPase activity is significantly lower in the mutant cells. Interestingly, the deletion of ctpF in Mtb impairs the tolerance of the bacteria to oxidative and nitrosative stress. Overall, our results indicate that CtpF is associated with calcium pumping from mycobacterial cells and the response to oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Y. Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
13
|
Transcriptional activation by MafR, a global regulator of Enterococcus faecalis. Sci Rep 2019; 9:6146. [PMID: 30992530 PMCID: PMC6467988 DOI: 10.1038/s41598-019-42484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/01/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins that act as global transcriptional regulators play key roles in bacterial adaptation to new niches. These proteins recognize multiple DNA sites across the bacterial genome by different mechanisms. Enterococcus faecalis is able to survive in various niches of the human host, either as a commensal or as a leading cause of serious infections. Nonetheless, the regulatory pathways involved in its adaptive responses remain poorly understood. We reported previously that the MafR protein of E. faecalis causes genome-wide changes in the transcriptome. Here we demonstrate that MafR functions as a transcription activator. In vivo, MafR increased the activity of the P12294 and P11486 promoters and also the transcription levels of the two genes controlled by those promoters. These genes are predicted to encode a calcium-transporting P-type ATPase and a QueT transporter family protein, respectively. Thus, MafR could have a regulatory role in calcium homeostasis and queuosine synthesis. Furthermore, MafR recognized in vitro specific DNA sites that overlap the −35 element of each target promoter. The MafR binding sites exhibit a low sequence identity, suggesting that MafR uses a shape readout mechanism to achieve DNA-binding specificity.
Collapse
|
14
|
Dyla M, Terry DS, Kjaergaard M, Sørensen TLM, Lauwring Andersen J, Andersen JP, Rohde Knudsen C, Altman RB, Nissen P, Blanchard SC. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature 2017; 551:346-351. [PMID: 29144454 DOI: 10.1038/nature24296] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Phosphorylation-type (P-type) ATPases are ubiquitous primary transporters that pump cations across cell membranes through the formation and breakdown of a phosphoenzyme intermediate. Structural investigations suggest that the transport mechanism is defined by conformational changes in the cytoplasmic domains of the protein that are allosterically coupled to transmembrane helices so as to expose ion binding sites to alternate sides of the membrane. Here, we have used single-molecule fluorescence resonance energy transfer to directly observe conformational changes associated with the functional transitions in the Listeria monocytogenes Ca2+-ATPase (LMCA1), an orthologue of eukaryotic Ca2+-ATPases. We identify key intermediates with no known crystal structures and show that Ca2+ efflux by LMCA1 is rate-limited by phosphoenzyme formation. The transport process involves reversible steps and an irreversible step that follows release of ADP and extracellular release of Ca2+.
Collapse
Affiliation(s)
- Mateusz Dyla
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York 10021, USA
| | - Magnus Kjaergaard
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas L-M Sørensen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jacob Lauwring Andersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York 10021, USA
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York 10021, USA
| |
Collapse
|
15
|
A Novel Calcium Uptake Transporter of Uncharacterized P-Type ATPase Family Supplies Calcium for Cell Surface Integrity in Mycobacterium smegmatis. mBio 2017; 8:mBio.01388-17. [PMID: 28951477 PMCID: PMC5615198 DOI: 10.1128/mbio.01388-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca2+ plays an important role in the physiology of bacteria. Intracellular Ca2+ concentrations are tightly maintained in the nanomolar range. Molecular mechanisms of Ca2+ uptake in bacteria remain elusive. Here we show that CtpE is responsible for Ca2+ uptake in Mycobacterium smegmatis. It represents a previously uncharacterized P-type ATPase family in bacteria. Disruption of ctpE in M. smegmatis resulted in a mutant with impaired growth under Ca2+-deficient conditions. The growth defect of the mutant could be rescued by Ca2+ or by ectopic expression of ctpE from M. smegmatis or the orthologous gene (Rv0908) from Mycobacterium tuberculosis H37Rv. Radioactive transport assays revealed that CtpE is a Ca2+-specific transporter. Ca2+ deficiency increased expression of ctpE, resulting in increased 45Ca2+ accumulation in cells. ctpE is a gene that is part of an operon, which is negatively regulated by Ca2+. The ctpE mutant also showed hypersensitivity to polymyxin B, increased biofilm formation, and higher cell aggregation, indicating cell envelope defects. Our work establishes, for the first time, the presence of Ca2+ uptake pumps of the energy-dependent P-type ATPase superfamily in bacteria and also implicates that intracellular Ca2+ is essential for growth and cell envelope integrity in M. smegmatis. Ca2+ is essential for gene regulation, enzymatic activity, and maintenance of structural integrity of cell walls in bacteria. Bacteria maintain intracellular calcium concentrations in a narrow range, creating a gradient with low cytoplasmic calcium concentration and high extracellular calcium concentration. Due to this steep gradient, active pumps belonging to family 2 of P-type ATPases and antiporters are used for Ca2+ efflux, whereas Ca2+ uptake is usually carried out by channels. Molecular mechanisms of Ca2+ uptake in bacteria are still elusive and are mainly limited to a nonproteinaceous channel in Escherichia coli and a pH-dependent channel protein from Bacillus subtilis. Energy-dependent active transporters are not reported for Ca2+ uptake from any organism. Here we show that CtpE belonging to a family of previously uncharacterized bacterial P-type ATPases is involved in specific uptake of Ca2+ into Mycobacterium smegmatis. We also demonstrate that intracellular Ca2+ obtained through CtpE is essential for growth and maintenance of cell surface properties under Ca2+-deficient conditions.
Collapse
|
16
|
Dyla M, Andersen JL, Kjaergaard M, Birkedal V, Terry DS, Altman RB, Blanchard SC, Nissen P, Knudsen CR. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies. Bioconjug Chem 2016; 27:2176-87. [PMID: 27501274 DOI: 10.1021/acs.bioconjchem.6b00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase.
Collapse
Affiliation(s)
- Mateusz Dyla
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN. Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Jacob Lauwring Andersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN. Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Magnus Kjaergaard
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN. Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,AIAS, Aarhus Institute of Advanced Studies, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medicine , New York, New York 10021, United States
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine , New York, New York 10021, United States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine , New York, New York 10021, United States
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN. Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN. Danish National Research Foundation & Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Mattle D, Zhang L, Sitsel O, Pedersen LT, Moncelli MR, Tadini-Buoninsegni F, Gourdon P, Rees DC, Nissen P, Meloni G. A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 2015; 16:728-40. [PMID: 25956886 PMCID: PMC4467857 DOI: 10.15252/embr.201439927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 11/09/2022] Open
Abstract
Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway.
Collapse
Affiliation(s)
- Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Limei Zhang
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Oleg Sitsel
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Lotte Thue Pedersen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Maria Rosa Moncelli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | | | - Pontus Gourdon
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Gabriele Meloni
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 2015; 57:123-32. [DOI: 10.1016/j.ceca.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
|
19
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
20
|
Wang K, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T, Nielsen AM, Rees DC, Nissen P, Gourdon P. Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 2014; 514:518-22. [PMID: 25132545 PMCID: PMC4259247 DOI: 10.1038/nature13618] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022]
Abstract
Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2·Pi) of ZntA from Shigella sonnei, determined at 3.2 Å and 2.7 Å resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2·Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.
Collapse
Affiliation(s)
- Kaituo Wang
- 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden (P.G.). [3]
| | - Oleg Sitsel
- 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2]
| | - Gabriele Meloni
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Henriette Elisabeth Autzen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Magnus Andersson
- Science for Life Laboratory, Department of Theoretical Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Tetyana Klymchuk
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Anna Marie Nielsen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Pontus Gourdon
- 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden (P.G.)
| |
Collapse
|
21
|
Berney M, Greening C, Hards K, Collins D, Cook GM. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 2014; 16:318-30. [PMID: 24536093 DOI: 10.1111/1462-2920.12320] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.
Collapse
|
22
|
Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 2013; 54:350-61. [PMID: 24074964 DOI: 10.1016/j.ceca.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/21/2013] [Accepted: 08/30/2013] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca(2+)) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca(2+), we characterized Ca(2+) homeostasis in P. aeruginosa PAO1 cells. By using Ca(2+)-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca(2+) ([Ca(2+)]in) is 0.14±0.05μM. In response to external Ca(2+), the [Ca(2+)]in quickly increased at least 13-fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca(2+) modulated this response. Treatment with inhibitors known to affect Ca(2+) channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca(2+)]in response, suggesting the importance of the corresponding mechanisms in Ca(2+) homeostasis. To identify Ca(2+) transporters maintaining this homeostasis, bioinformatic and LC-MS/MS-based membrane proteomic analyses were used. [Ca(2+)]in homeostasis was monitored for seven Ca(2+)-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca(2+) homeostasis. The lack of PA3920 and vanadate treatment abolished Ca(2+)-induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca(2+).
Collapse
|
23
|
Kotšubei A, Gorgel M, Morth JP, Nissen P, Andersen JL. Probing determinants of cyclopiazonic acid sensitivity of bacterial Ca2+-ATPases. FEBS J 2013; 280:5441-9. [PMID: 23621633 DOI: 10.1111/febs.12310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 01/15/2023]
Abstract
Cyclopiazonic acid (CPA) is a specific and potent inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a). Despite high sequence similarity to SERCA1a, Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1) is not inhibited by CPA. To test whether a CPA binding site could be created while maintaining the functionality of the ATPase we targeted four amino acid positions in LMCA1 for mutational studies based on a multiple sequence alignment of SERCA-like Ca(2+)-ATPases and structural analysis of the CPA site. The identification of CPA-sensitive gain-of-function mutants pinpointed key determinants of the CPA binding site. The importance of these determinants was further underscored by the characterization of the CPA sensitivity of two additional bacterial Ca(2+)-ATPases from Lactococcus lactis and Bacillus cereus. The CPA sensitivity was predicted from their sequence compared with the LMCA1 results, and this was experimentally confirmed. Interestingly, a cluster of Lactococcus bacteria applied in the production of fermented cheese display Ca(2+)-ATPases that are predictably CPA insensitive and may originate from their coexistence with CPA-producing Penicillum and Aspergillus fungi in the cheese. The differences between bacterial and mammalian binding pockets encompassing the CPA site suggest that CPA derivatives that are specific for bacteria or other pathogens can be developed.
Collapse
Affiliation(s)
- Aljona Kotšubei
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Aarhus University, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark; Department of Gene Technology, Tallinn University of Technology, Estonia
| | | | | | | | | |
Collapse
|
24
|
Thøgersen L, Nissen P. Flexible P-type ATPases interacting with the membrane. Curr Opin Struct Biol 2012; 22:491-9. [PMID: 22749193 DOI: 10.1016/j.sbi.2012.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023]
Abstract
Cation pumps and lipid flippases of the P-type ATPase family maintain electrochemical gradients and asymmetric lipid distributions across membranes, and offer significant insight of protein:membrane interactions. The sarcoplasmic reticulum Ca(2+)-ATPase features flexible and adaptive interactions with the surrounding membrane, while the Na(+),K(+)-ATPase complex is modulated by membrane components and a role for the γ-subunit as a stabilizer of a specific lipid interaction with the α-subunit has been proposed. The first crystal structure of a heavy-metal transporting ATPase shows a markedly amphipathic helix at the cytoplasmic membrane surface, highlighting this structure as a general motif of all P-type ATPases although with specialization to different membranes. Residues of central importance for the lipid flippase activity of the P4-type ATPase subfamily have been pinpointed by mutational studies, but the transport pathway and mechanism remain unknown.
Collapse
Affiliation(s)
- Lea Thøgersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
25
|
Abstract
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.
Collapse
|
26
|
Hein KL, Nissen P, Morth JP. Purification, crystallization and preliminary crystallographic studies of a PacL homologue from Listeria monocytogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:424-7. [PMID: 22505411 PMCID: PMC3325811 DOI: 10.1107/s1744309112004046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/30/2012] [Indexed: 11/10/2022]
Abstract
Ca(2+)-ATPases are members of a large family of membrane proteins that maintain the selective movement of cations across biological membranes. A putative Listeria monocytogenes Ca(2+)-ATPase (Lmo0818) was crystallized in an unknown functional state. The crystal belonged to space group P2(1)2(1)2(1) and a complete data set was collected to 3.2 Å resolution. The molecular-replacement solution obtained revealed that Lmo0818 is likely to adopt an E2-like state mimicking the phosphorylated intermediate in the functional cycle of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and a stacked bilayer `type I' packing in the crystal.
Collapse
Affiliation(s)
- Kim Langmach Hein
- Centre for Molecular Medicine Norway, University of Oslo, PO Box 1137 Blindern, 0318 Oslo, Norway.
| | | | | |
Collapse
|
27
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
28
|
Cai X, Clapham DE. Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 2011; 29:91-100. [PMID: 21680871 PMCID: PMC4037924 DOI: 10.1093/molbev/msr149] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology.
Collapse
Affiliation(s)
- Xinjiang Cai
- Molecular Pathogenesis Program, The Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY, USA.
| | | |
Collapse
|
29
|
Andersen JL, Gourdon P, Møller JV, Morth JP, Nissen P. Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca(2+)-ATPase LMCA1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:718-22. [PMID: 21636921 DOI: 10.1107/s174430911101548x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/24/2011] [Indexed: 11/10/2022]
Abstract
Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals belonged to space group P2(1)2(1)2 and a complete data set extending to 4.3 Å resolution was collected. A molecular-replacement solution was obtained, revealing type I packing of the molecules in the crystal. Unbiased electron-density features were observed for AlF(4)(-) and for shifts of the helices, which were indicative of a reliable structure determination.
Collapse
Affiliation(s)
- Jacob Lauwring Andersen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Aarhus, Gustav Wieds Vej 10C, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|