1
|
Andersen HM, Tai HC, Rubakhin SS, Yau PM, Sweedler JV. A novel series of metazoan L/D peptide isomerases. J Biol Chem 2024; 300:107458. [PMID: 38857862 PMCID: PMC11277431 DOI: 10.1016/j.jbc.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A. californica, and B. taurus tissues. These enzymes are both tissue and substrate-specific across all three organisms. Notably, the lungs of the mammalian species, and the central nervous system of the mollusk displayed the highest isomerase activity among the examined tissues. In vitro enzymatic conversion was observed for several endogenous peptides, such as the tetrapeptide GFFD in A. californica, and mammalian neuropeptide FF in R. norvegicus and B. taurus. To understand their mode of action, we explored the effects of several inhibitors on these enzymes, which suggest common active site residues. While further characterization of these enzymes is required, the investigations emphasize a widespread and overlooked enzyme activity related to the creation of bioactive peptides.
Collapse
Affiliation(s)
- Harvey M Andersen
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Hua-Chia Tai
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Peter M Yau
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
3
|
Koyama H, Takahashi Y, Matori S, Kuniyoshi H, Kurose K. A newly identified enzyme from Japanese common squid Todarodes pacificus has the ability to biosynthesize d-aspartate. Arch Biochem Biophys 2023; 750:109809. [PMID: 37925062 DOI: 10.1016/j.abb.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Amino acids exist in two chiral forms, namely L and D. Although l-amino acids are predominant in vivo, certain limited circumstances have reported the usage of d-amino acids. d-aspartate (Asp), among them, plays crucial physiological roles in living organisms and is biosynthesized from L-Asp by the enzyme named aspartate racemase (AspRase). D-Asp is known to accumulate in large amounts in the nervous system of cephalopods. To understand the function of D-Asp in nervous system in more detail, it is necessary to elucidate its metabolic pathway; however, AspRase gene has not been identified in cephalopods as in the case of mammals. In this study, we successfully identified a novel gene encoding AspRase from the optic ganglion of Japanese common squid Todarodes pacificus. Our discovery of the squid AspRase challenges the prevailing assumption that AspRases across different animals share similar structures. Surprisingly, the squid AspRase is a unique enzyme that differs significantly from known AspRases, being structurally and phylogenetically related to aspartate aminotransferase (AST) and possessing both AspRase and AST activities. The optimum pH and temperature for AspRase activity using L-Asp as a substrate are approximately 7.0 and 20 °C, respectively. Moreover, we have found that AspRase activity is enhanced in the presence of 2-oxoacids. These findings have far-reaching implications for the understanding of enzymology and suggest that yet-to-be-identified mammalian AspRases may also be phylogenetically related to AST, rather than conventional AspRases. Furthermore, our results provide valuable insights into the evolution of the D-Asp biosynthetic pathway.
Collapse
Affiliation(s)
- Hiroki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| | - Yui Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - San Matori
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Hisato Kuniyoshi
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| |
Collapse
|
4
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
5
|
Uda K, Moe LA. Distribution and evolution of the serine/aspartate racemase family in invertebrates. II. Frequent and widespread parallel evolution of aspartate racemase. J Biochem 2022; 172:303-311. [PMID: 35997160 DOI: 10.1093/jb/mvac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Our previous studies showed that invertebrate animal serine racemase (SerR) and aspartate racemase (AspR) evolved from a common ancestral gene and are widely distributed. However, the overall molecular evolutionary background of these genes has remained unclear. In the present study we have cloned, expressed and characterized five SerR and three AspR genes from six invertebrate species. The coexistence of SerR and AspR paralogs has been observed in some species, and the presence of both SerR and AspR is here confirmed in the flatworm Macrostomum lignano, the feather star Anneissia japonica, the ark shell Anadara broughtonii and the sea hare Aplysia californica. Comparison of the gene structures revealed the evolution of SerR and AspR. The ancestral species of metazoans probably had a single SerR gene, and the first gene duplication in the common ancestor species of the eumetazoans occurred after the divergence of porifera and eumetazoans, yielding two SerR genes. Most eumetazoans lost one of the two SerR genes, while the echinoderm Anneissia japonica retained both genes. Furthermore, it is clear that invertebrate AspR genes arose through parallel evolution by duplication of the SerR gene followed by substitution of amino acid residues necessary for substrate recognition in multiple lineages.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA
| |
Collapse
|
6
|
Lee CJ, Qiu TA, Hong Z, Zhang Z, Min Y, Zhang L, Dai L, Zhao H, Si T, Sweedler JV. Profiling of d-alanine production by the microbial isolates of rat gut microbiota. FASEB J 2022; 36:e22446. [PMID: 35816159 DOI: 10.1096/fj.202101595r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
d-alanine (d-Ala) and several other d-amino acids (d-AAs) act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized d-serine in animals, d-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce d-Ala and other d-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their d-AA production in vitro, focusing on d-Ala. Serial dilutions of intestinal contents from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial d-AA production, combining a d-amino acid oxidase-based enzymatic assay for rapid assessment of non-acidic d-AA amount and chiral LC-MS/MS to quantify individual d-AAs, revealing 19 out of the 38 isolated strains as d-AA producers. LC-MS/MS analysis of the eight top d-AA producers showed high levels of d-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from the enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of d-glutamate and d-aspartate, which are poor substrates for this enzymatic assay. We observed large inter- and intra-species variation of d-AA production profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.
Collapse
Affiliation(s)
- Cindy J Lee
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tian A Qiu
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhao Min
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Linzixuan Zhang
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huimin Zhao
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan V Sweedler
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Krasovec G, Hozumi A, Yoshida T, Obita T, Hamada M, Shiraishi A, Satake H, Horie T, Mori H, Sasakura Y. d-Serine controls epidermal vesicle release via NMDA receptor, allowing tissue migration during the metamorphosis of the chordate Ciona. SCIENCE ADVANCES 2022; 8:eabn3264. [PMID: 35275721 PMCID: PMC8916719 DOI: 10.1126/sciadv.abn3264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Center for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
8
|
Wang C, Rubakhin SS, Enright MJ, Sweedler JV, Nuzzo RG. 3D Particle Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010246. [PMID: 34305503 PMCID: PMC8297588 DOI: 10.1002/adfm.202010246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 05/26/2023]
Abstract
Electrically conductive 3D periodic microscaffolds are fabricated using a particle-free direct ink writing approach for use as neuronal growth and electrophysiological recording platforms. A poly (2-hydroxyethyl methacrylate) (pHEMA)/pyrrole ink, followed by chemical in situ polymerization of pyrrole, enables hydrogel printing through nozzles as small as 1 μm. These conductive hydrogels can pattern complex 2D and 3D structures and have good biocompatibility with test cell cultures (~94.5% viability after 7 days). Hydrogel arrays promote extensive neurite outgrowth of cultured Aplysia californica pedal ganglion neurons. This platform allows extracellular electrophysiological recording of steady-state and stimulated electrical neuronal activities. In summation, this 3D conductive ink printing process enables preparation of biocompatible and micron-sized structures to create customized in vitro electrophysiological recording platforms.
Collapse
Affiliation(s)
- Chen Wang
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | - Michael J Enright
- Department of Chemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois, 71 RAL, Box 63-5, 600 South Mathews Avenue, Urbana, IL 61801
| | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
9
|
Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals. Biochem J 2020; 477:4221-4241. [DOI: 10.1042/bcj20200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.
Collapse
|
10
|
Shibata K, Sugaya N, Kuboki Y, Matsuda H, Abe K, Takahashi S, Kera Y. Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Biosci Biotechnol Biochem 2020; 84:95-102. [DOI: 10.1080/09168451.2019.1660614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
d-Aspartate, aspartate racemase activity, and d-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of d-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and d-aspartate in testicular maturation in echinoderm starfish.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Noriko Sugaya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Yuko Kuboki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Hiroko Matsuda
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
11
|
Uda K, Edashige Y, Nishimura R, Shikano Y, Matsui T, Radkov AD, Moe LA. Distribution and evolution of the serine/aspartate racemase family in plants. PHYTOCHEMISTRY 2020; 169:112164. [PMID: 31622858 DOI: 10.1016/j.phytochem.2019.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that several d-amino acids are widely present in plants, and serine racemase (SerR), which synthesizes d-serine in vivo, has already been identified from three plant species. However, the full picture of the d-amino acid synthesis pathway in plants is not well understood. To clarify the distribution of amino acid racemases in plants, we have cloned, expressed and characterized eight SerR homologous genes from five plant species, including green alga. These SerR homologs exhibited racemase activity towards serine or aspartate and were identified on the basis of their maximum activity as SerR or aspartate racemase (AspR). The plant AspR gene is identified for the first time from Medicago truncatula, Manihot esculenta, Solanum lycopersicum, Sphagnum girgensohnii and Spirogyra pratensis. In addition to the AspR gene, three SerR genes are identified in the former three species. Phylogenetic tree analysis showed that SerR and AspR are widely distributed in plants and form a serine/aspartate racemase family cluster. The catalytic efficiency (kcat/Km) of plant AspRs was more than 100 times higher than that of plant SerRs, suggesting that d-aspartate, as well as d-serine, can be synthesized in vivo by AspR. The amino acid sequence alignment and comparison of the chromosomal gene arrangement have revealed that plant AspR genes independently evolved from SerR in each ancestral lineage of plant species by gene duplication and acquisition of two serine residues at position 150 to 152.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.
| | - Yumika Edashige
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Rie Nishimura
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Yuuna Shikano
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Tohru Matsui
- Laboratory of Plant Taxonomy, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Atanas D Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
12
|
Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019; 11:nu11092205. [PMID: 31547425 PMCID: PMC6770864 DOI: 10.3390/nu11092205] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Collapse
Affiliation(s)
- Jacco J.A.J. Bastings
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Hans M. van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Correspondence:
| |
Collapse
|
13
|
Uda K, Ishizuka N, Edashige Y, Kikuchi A, Radkov AD, Moe LA. Cloning and characterization of a novel aspartate/glutamate racemase from the acorn worm Saccoglossus kowalevskii. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:87-92. [DOI: 10.1016/j.cbpb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
|
14
|
Kang S, Badea A, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Quantitative Reflection Imaging for the Morphology and Dynamics of Live Aplysia californica Pedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8640-8650. [PMID: 28235182 PMCID: PMC5585034 DOI: 10.1021/acs.langmuir.6b04454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a reflection imaging system that consists of a plasmonic crystal, a common laboratory microscope, and band-pass filters for use in the quantitative imaging and in situ monitoring of live cells and their substrate interactions. Surface plasmon resonance (SPR) provides a highly sensitive method to monitor changes in physicochemical properties occurring at metal-dielectric interfaces. Polyelectrolyte thin films deposited using the layer-by-layer (LBL) self-assembly method provide a reference system for calibrating the reflection contrast changes that occur when the polyelectrolyte film thickness changes and provide insight into the optical responses that originate from the multiple plasmonic features supported by this imaging system. Finite-difference time-domain (FDTD) simulations of the optical responses measured experimentally from the polyelectrolyte reference system are used to provide a calibration of the optical system for subsequent use in quantitative studies investigating live cell dynamics in cultures supported on a plasmonic crystal substrate. Live Aplysia californica pedal ganglion neurons cultured in artificial seawater were used as a model system through which to explore the utility of this plasmonic imaging technique. Here, the morphology of cellular peripheral structures ≲80 nm in thickness were quantitatively analyzed, and the dynamics of their trypsin-induced surface detachment were visualized. These results illustrate the capacities of this system for use in investigations of the dynamics of ultrathin cellular structures within complex bioanalytical environments.
Collapse
Affiliation(s)
- Somi Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Adina Badea
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - John A. Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Ralph G. Nuzzo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States of America
| |
Collapse
|
15
|
Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family. Amino Acids 2017; 49:1743-1754. [PMID: 28744579 DOI: 10.1007/s00726-017-2472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.
Collapse
|
16
|
Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H. Serine racemase is involved in d-aspartate biosynthesis. J Biochem 2016; 160:345-353. [DOI: 10.1093/jb/mvw043] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/08/2016] [Indexed: 02/02/2023] Open
|
17
|
Katane M, Nakayama K, Kawata T, Yokoyama Y, Matsui Y, Kaneko Y, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Homma H. A sensitive assay for measuring aspartate-specific amino acid racemase activity. J Pharm Biomed Anal 2015; 116:109-15. [DOI: 10.1016/j.jpba.2014.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 11/16/2022]
|
18
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
19
|
Katane M, Yamada S, Kawaguchi G, Chinen M, Matsumura M, Ando T, Doi I, Nakayama K, Kaneko Y, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Yamaotsu N, Hirono S, Homma H. Identification of Novel D-Aspartate Oxidase Inhibitors by in Silico Screening and Their Functional and Structural Characterization in Vitro. J Med Chem 2015; 58:7328-40. [PMID: 26322531 DOI: 10.1021/acs.jmedchem.5b00871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
D-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for acidic D-amino acids, including D-aspartate, a potential agonist of the N-methyl-D-aspartate (NMDA) receptor. Dysfunction of NMDA receptor-mediated neurotransmission has been implicated in the onset of various mental disorders, such as schizophrenia. Hence, a DDO inhibitor that increases the brain levels of D-aspartate and thereby activates NMDA receptor function is expected to be a useful compound. To search for potent DDO inhibitor(s), a large number of compounds were screened in silico, and several compounds were identified as candidates. They were then characterized and evaluated as novel DDO inhibitors in vitro (e.g., the inhibitor constant value of 5-aminonicotinic acid for human DDO was 3.80 μM). The present results indicate that some of these compounds may serve as lead compounds for the development of a clinically useful DDO inhibitor and as active site probes to elucidate the structure-function relationships of DDO.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shota Yamada
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Go Kawaguchi
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mana Chinen
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Maya Matsumura
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takemi Ando
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Issei Doi
- Laboratory of Physical Chemistry for Drug Design, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuusuke Kaneko
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satsuki Matsuda
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriyuki Yamaotsu
- Laboratory of Physical Chemistry for Drug Design, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- Laboratory of Physical Chemistry for Drug Design, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical and Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
20
|
Biosynthesis of D-aspartate in mammals: the rat and human homologs of mouse aspartate racemase are not responsible for the biosynthesis of D-aspartate. Amino Acids 2015; 47:975-85. [PMID: 25646960 DOI: 10.1007/s00726-015-1926-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022]
Abstract
D-Aspartate (D-Asp) has important physiological functions, and recent studies have shown that substantial amounts of free D-Asp are present in a wide variety of mammalian tissues and cells. Biosynthesis of D-Asp has been observed in several cultured rat cell lines, and a murine gene (glutamate-oxaloacetate transaminase 1-like 1, Got1l1) that encodes Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, was proposed recently. The product of this gene is homologous to mammalian glutamate-oxaloacetate transaminase (GOT). Here, we tested the hypothesis that rat and human homologs of mouse GOT1L1 are involved in Asp synthesis. The following two approaches were applied, since the numbers of attempts were unsuccessful to prepare soluble GOT1L1 recombinant proteins. First, the relationship between the D-Asp content and the expression levels of the mRNAs encoding GOT1L1 and D-Asp oxidase, a primary degradative enzyme of D-Asp, was examined in several rat and human cell lines. Second, the effect of knockdown of the Got1l1 gene on D-Asp biosynthesis during culture of the cells was determined. The results presented here suggest that the rat and human homologs of mouse GOT1L1 are not involved in D-Asp biosynthesis. Therefore, D-Asp biosynthetic pathway in mammals is still an urgent issue to be resolved.
Collapse
|
21
|
Is D-aspartate produced by glutamic-oxaloacetic transaminase-1 like 1 (Got1l1): a putative aspartate racemase? Amino Acids 2014; 47:79-86. [PMID: 25287256 PMCID: PMC4282708 DOI: 10.1007/s00726-014-1847-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/25/2014] [Indexed: 12/23/2022]
Abstract
D-Aspartate is an endogenous free amino acid in the brain, endocrine tissues, and exocrine tissues in mammals, and it plays several physiological roles. In the testis, D-aspartate is detected in elongate spermatids, Leydig cells, and Sertoli cells, and implicated in the synthesis and release of testosterone. In the hippocampus, D-aspartate strongly enhances N-methyl-D-aspartate receptor-dependent long-term potentiation and is involved in learning and memory. The existence of aspartate racemase, a candidate enzyme for D-aspartate production, has been suggested. Recently, mouse glutamic-oxaloacetic transaminase 1-like 1 (Got1l1) has been reported to synthesize substantially D-aspartate from L-aspartate and to be involved in adult neurogenesis. In this study, we investigated the function of Got1l1 in vivo by generating and analyzing Got1l1 knockout (KO) mice. We also examined the enzymatic activity of recombinant Got1l1 in vitro. We found that Got1l1 mRNA is highly expressed in the testis, but it is not detected in the brain and submandibular gland, where D-aspartate is abundant. The D-aspartate contents of wild-type and Got1l1 KO mice were not significantly different in the testis and hippocampus. The recombinant Got1l1 expressed in mammalian cells showed L-aspartate aminotransferase activity, but lacked aspartate racemase activity. These findings suggest that Got1l1 is not the major aspartate racemase and there might be an as yet unknown D-aspartate-synthesizing enzyme.
Collapse
|
22
|
D-Alanine in the islets of Langerhans of rat pancreas. Biochem Biophys Res Commun 2014; 447:328-33. [PMID: 24721429 DOI: 10.1016/j.bbrc.2014.03.153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
Relatively high levels of D-alanine (D-Ala), an endogenous D-amino acid, have been found in the endocrine systems of several animals, especially in the anterior pituitary; however, its functional importance remains largely unknown. We observed D-Ala in islets of Langerhans isolated from rat pancreas in significantly higher levels than in the anterior/intermediate pituitary; specifically, 180±60 fmol D-Ala per islet (300±100 nmol/gislet), and 10±2.5 nmol/g of wet tissue in pituitary. Additionally, 12±5% of the free Ala in the islets was in the d form, almost an order of magnitude higher than the percentage of D-Ala found in the pituitary. Surprisingly, glucose stimulation of the islets resulted in D-Ala release of 0.6±0.5 fmol per islet. As D-Ala is stored in islets and released in response to changes in extracellular glucose, D-Ala may have a hormonal role.
Collapse
|
23
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Le AP, Kang S, Thompson LB, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Quantitative reflection imaging of fixed Aplysia californica pedal ganglion neurons on nanostructured plasmonic crystals. J Phys Chem B 2013; 117:13069-81. [PMID: 23647567 DOI: 10.1021/jp402731f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the interactions between cells and surrounding environment including cell culture surfaces and their responses to distinct chemical and physical cues are essential to understanding the regulation of cell growth, migration, and differentiation. In this work, we demonstrate the capability of a label-free optical imaging technique-surface plasmon resonance (SPR)-to quantitatively investigate the relative thickness of complex biomolecular structures using a nanoimprinted plasmonic crystal and laboratory microscope. Polyelectrolyte films of different thicknesses deposited by layer-by-layer assembly served as the model system to calibrate the reflection contrast response originating from SPRs. The calibrated SPR system allows quantitative analysis of the thicknesses of the interface formed between the cell culture substrate and cellular membrane regions of fixed Aplysia californica pedal ganglion neurons. Bandpass filters were used to isolate spectral regions of reflected light with distinctive image contrast changes. Combining of the data from images acquired using different bandpass filters leads to increase image contrast and sensitivity to topological differences in interface thicknesses. This SPR-based imaging technique is restricted in measurable thickness range (∼100-200 nm) due to the limited plasmonic sensing volume, but we complement this technique with an interferometric analysis method. Described here simple reflection imaging techniques show promise as quantitative methods for analyzing surface thicknesses at nanometer scale over large areas in real-time and in physicochemical diverse environments.
Collapse
Affiliation(s)
- An-Phong Le
- Department of Chemistry, ‡Department of Materials Science and Engineering, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
D-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 2012; 43:1873-86. [PMID: 22872108 DOI: 10.1007/s00726-012-1364-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
D-Aspartate (D-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of D-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of D-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by D-Asp application. D-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that D-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter-that the molecule's biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for D-Asp's biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although D-Asp receptors remain to be characterized, the postsynaptic response of D-Asp has been studied and several L-glutamate receptors are known to respond to D-Asp. In this review, we discuss the current status of research on D-Asp in neuronal and neuroendocrine systems, and highlight results that support D-Asp's role as a signaling molecule.
Collapse
|
26
|
Birner-Gruenberger R, Darnhofer B, Chen WQ, Monje FJ, Lubec G. Proteomic characterization of the abdominal ganglion of Aplysia californica-a protein resource for neuroscience. Proteomics 2012; 12:2482-6. [PMID: 22696492 DOI: 10.1002/pmic.201100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/08/2022]
Abstract
Aplysia californica (AC) is a widely used model for testing learning and memory. Although ESTs have been generated, proteomics studies on AC proteins are limited. Studies at the protein level, however, are mandatory, not only due to the fact that studies at the nucleic acid level are not allowing conclusions about PTMs. A gel-based proteomics method was therefore applied to carry out protein profiling in abdominal ganglia from AC. Abdominal ganglia were extirpated, proteins extracted and run on 2DE with subsequent in-gel digestion with trypsin, chymotrypsin, and partially by subtilisin. Peptides were identified using a nano-LC-ESI-LTQ-FT-mass spectrometer. MS/MS data were analyzed by searching the NCBI nonredundant public AC EST database and the NCBI nonredundant public AC protein database. A total of 477 different proteins represented by 363 protein spots were detected and were assigned to different protein pathways as for instance signaling (receptors, protein kinases, and phosphatases), metabolism, protein synthesis, handling and degradation, cytoskeleton and structural, oxido-redox, heat shock and chaperone, hypothetical, predicted and unnamed proteins. The generation of a protein map of soluble proteins shows the existence of so far hypothetical and predicted proteins and is allowing and challenging further work at the protein level, in particular in the field of neuroscience.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Proteomics Core Facility, Center for Medical Research and Institute of Pathology, Medical University of Graz, Austria
| | | | | | | | | |
Collapse
|
27
|
Moini M, Klauenberg K, Ballard M. Dating silk by capillary electrophoresis mass spectrometry. Anal Chem 2011; 83:7577-81. [PMID: 21913691 DOI: 10.1021/ac201746u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.
Collapse
Affiliation(s)
- Mehdi Moini
- Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746-2863, USA.
| | | | | |
Collapse
|
28
|
Carlson SL, Fieber LA. Physiological evidence that D-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons. J Neurophysiol 2011; 106:1629-36. [PMID: 21753031 DOI: 10.1152/jn.00403.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
D-Aspartate (D-Asp) activates an excitatory current in neurons of Aplysia californica. Although D-Asp is presumed to activate a subset of L-glutamate (L-Glu) channels, the identities of putative d-Asp receptors and channels are unclear. Whole cell voltage- and current-clamp studies using primary cultures of Aplysia buccal S cluster (BSC) neurons were executed to characterize D-Asp-activated ion channels. Both D-Asp and L-Glu evoked currents with similar current-voltage relationships, amplitudes, and relatively slow time courses of activation and inactivation when agonists were pressure applied. D-Asp-induced currents, however, were faster and desensitized longer, requiring 40 s to return to full amplitude. Of cells exposed to both agonists, 25% had D-Asp- but not L-Glu-induced currents, suggesting a receptor for D-Asp that was independent of l-Glu receptors. D-Asp channels were permeable to Na(+) and K(+), but not Ca²⁺, and were vulnerable to voltage-dependent Mg²⁺ block similarly to vertebrate NMDA receptor (NMDAR) channels. d-Asp may activate both NMDARs and non-l-Glu receptors in the nervous system of Aplysia.
Collapse
Affiliation(s)
- Stephen L Carlson
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | | |
Collapse
|