1
|
Atri Y, Bharti H, Sahani N, Sarkar DP, Nag A. CUL4A silencing attenuates cervical carcinogenesis and improves Cisplatin sensitivity. Mol Cell Biochem 2024; 479:1041-1058. [PMID: 37285039 DOI: 10.1007/s11010-023-04776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
CUL4A is an ubiquitin ligase deregulated in numerous pathologies including cancer and even hijacked by viruses for facilitating their survival and propagation. However, its role in Human papilloma virus (HPV)-mediated cervical carcinogenesis remains elusive. The UALCAN and GEPIA datasets were analyzed to ascertain the transcript levels of CUL4A in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients. Subsequently, various biochemical assays were employed to explore the functional contribution of CUL4A in cervical carcinogenesis and to shed some light on its involvement in Cisplatin resistance in cervical cancer. Our UALCAN and GEPIA datasets analyses reveal elevated CUL4A transcript levels in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients that correlate with adverse clinicopathological parameters such as tumor stage and lymph node metastasis. Kaplan-Meier plot and GEPIA assessment depict poor prognosis of CESC patients having high CUL4A expression. Varied biochemical assays illustrate that CUL4A inhibition severely curtails hallmark malignant properties such as cellular proliferation, migration, and invasion of cervical cancer cells. We also show that CUL4A knockdown in HeLa cells causes increased susceptibility and better apoptotic induction toward Cisplatin, a mainstay drug used in cervical cancer treatment. More interestingly, we find reversion of Cisplatin-resistant phenotype of HeLa cells and an augmented cytotoxicity towards the platinum compound upon CUL4A downregulation. Taken together, our study underscores CUL4A as a cervical cancer oncogene and illustrates its potential as a prognosis indicator. Our investigation provides a novel avenue in improving current anti-cervical cancer therapy and overcoming the bottle-neck of Cisplatin resistance.
Collapse
Affiliation(s)
- Yama Atri
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Sahani
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
2
|
Zhang Y, Zhou H, Chen X, Wang N, Zhan Y, Huang Z, Ruan K, Qi Q, Deng M, Jiang Y. A novel tRNA-derived fragment tRF-3023b suppresses inflammation in RAW264.7 cells by targeting Cul4a through NF-κB signaling. Funct Integr Genomics 2024; 24:9. [PMID: 38221594 DOI: 10.1007/s10142-024-01285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
The role of transfer RNA (tRNA)-derived fragment (tRF) in various diseases has been established. However, the effect of tRF-3023b on inflammation remains unclear. Inflammation was imitated in RAW264.7 cells by adding Lipopolysaccharide (LPS). Cells were first divided into control, LPS, and LPS + Bulleyaconitine A (BLA) groups. The contents of TNF-α, IL-6, and MCP-1 were quantified using ELISA. The levels of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), and the phosphorylation of nuclear factor-kappa B (NF-κB)-P65 (p-P65) were detected by Western blotting. RNA sequencing was utilized to find differentially expressed tRFs (DE-tRFs) among three groups. The levels of various tRFs were checked by quantitative real-time PCR (qRT-PCR). Cell cycle and apoptosis were checked by flow cytometry. Dluciferase reporter assay was applied to predict and confirm the interaction between tRF-3023b and Cullin 4A (Cul4a), subsequently RNA pull-down followed by mass spectrometry analysis were conducted. BLA treatment decreased the contents of TNF-α, IL-6, MCP-1, and the expression levels of COX2, iNOS, p-P65. We found 6 DE-tRFs in LPS + BLA group compared to LPS group, tRF-3023b was high expression in control and BLA groups, and the lowest in LPS group. Cul4a was a direct target of tRF-3023b. tRF-3023b mimic affected the cell cycle distribution, promoted cells apoptosis, and suppressed the TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. The suppression of Cul4a affected the cell cycle distribution, resulted in an increase of cell apoptosis while a decrease of TNF-α, IL-6, MCP-1, COX2, iNOS and p-P65. Furthermore, Cul4a overexpression reversed the effect of tRF-3023b mimic. Cul4a knockdown reversed the effect of tRF-3023b inhibitor. Our study positions tRF-3023b as a compelling candidate, through its interaction with Cul4a, the underlying mechanism on inflammation maybe related to NF-κB pathway. The study provides a basis for exploring new therapeutic strategies for inflammation.
Collapse
Affiliation(s)
- Ying Zhang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Hua Zhou
- Department of Physiology, Anhui Medical College, Hefei, China
| | - Xu Chen
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Ningning Wang
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Yunfei Zhan
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Ziyi Huang
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Kaiyi Ruan
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China
| | - Qiulan Qi
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
| | - Min Deng
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Nanhu District, Jiaxing, 314000, China.
| | - Yuxin Jiang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
- Department of Pathogen Biology and Immunology, Jiaxing University School of Medicine, No. 118 Jiahang Road, Nanhu District, Jiaxing, 314001, China.
| |
Collapse
|
3
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
4
|
Lung J, Chen YC, Lin YC, Li YC, You L, Jablons DM, Mao JH, Yang CT, Hung MS. The effect of cullin 4A on lung cancer cell chemosensitivity to paclitaxel through p33ING1b regulation. Am J Transl Res 2021; 13:11194-11208. [PMID: 34786051 PMCID: PMC8581858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cullin 4A (Cul4A) reportedly has oncogenic roles in several cancer types by regulating tumor suppressors through the ubiquitination and proteolysis of the tumor suppressor. In addition, Cul4A is associated with chemosensitivity to chemotherapy drugs. This study investigated the association between Cul4A and lung cancer cell chemosensitivity to paclitaxel, particularly with respect to the role of the p33 inhibitor of the growth 1 (p33ING1b) tumor suppressor. The results showed that the Cul4A knockdown upregulated the p33ING1b expression in lung cancer cells and increased the lung cancer cell and mice tumor xenograft chemosensitivity to paclitaxel. The Cul4A knockdown also inhibited the growth and increased the apoptosis in the tumor xenografts treated with paclitaxel. Notably, the p33ING1b overexpression increased the lung cancer cell chemosensitivity to paclitaxel, but the p33ING1b knockdown reduced the chemosensitivity. A further analysis demonstrated that Cul4A regulates the expression of p33ING1b through protein-protein interactions, ubiquitination, and protein degradation. In conclusion, the present findings suggest that Cul4A mediates the chemosensitivity of lung cancer cells to paclitaxel by regulating p33ING1b. These findings may offer novel insights into future therapeutic strategies for lung cancer that target Cul4A.
Collapse
Affiliation(s)
- Jrhau Lung
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi BranchChiayi 61363, Taiwan
| | - Yi-Chuan Chen
- Department of Emergency Medicine, Madou Sin-Lau Hospital, The Presbyterian Church in TaiwanTainan 72100, Taiwan
| | - Yu-Ching Lin
- Department of Medicine, College of Medicine, Chang Gung UniversityTaoyuan 33323, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi BranchChiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi CampusChiayi 61363, Taiwan
| | - Ya-Chin Li
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi BranchChiayi 61363, Taiwan
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of CaliforniaSan Francisco, CA 94143, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of CaliforniaSan Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Life Sciences DivisionOne Cyclotron Road, Berkeley, California, CA 94720, USA
| | - Cheng-Ta Yang
- Department of Respiratory Care, College of Medicine, Chang Gung UniversityTaoyuan 33323, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan BranchTaoyuan 33378, Taiwan
| | - Ming-Szu Hung
- Department of Medicine, College of Medicine, Chang Gung UniversityTaoyuan 33323, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi BranchChiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi CampusChiayi 61363, Taiwan
| |
Collapse
|
5
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
6
|
Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis 2019; 10:928. [PMID: 31804463 PMCID: PMC6895193 DOI: 10.1038/s41419-019-2169-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The Ras association domain family protein1 isoform A (RASSF1A) is a well-known tumor-suppressor protein frequently inactivated in various human cancers. Consistent with its function as a molecular scaffold protein, referred to in many studies, RASSF1A prevents initiation of tumorigenesis, growth, and dissemination through different biological functions, including cell cycle arrest, migration/metastasis inhibition, microtubular stabilization, and apoptosis promotion. As a regulator of key cancer pathways, namely Ras/Rho GTPases and Hippo signaling without ignoring strong interaction with microtubules, RASSF1A is indeed one of the guardians of cell homeostasis. To date, as we approach the two decade anniversary of RASSF1A's discovery, this review will summarize our current knowledge on the RASSF1A key interactions as a tumor suppressor and discuss their impact on cell fate during carcinogenesis. This could facilitate a deeper understanding of tumor development and provide us with new strategies in cancer treatment by targeting the RASSF1A pathway.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- U830 INSERM "Genetics and biology of cancers, A.R.T group", Curie Institute, Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
| |
Collapse
|
7
|
Okumoto K, Miyata N, Fujiki Y. Identification of Peroxisomal Protein Complexes with PTS Receptors, Pex5 and Pex7, in Mammalian Cells. Subcell Biochem 2019; 89:287-298. [PMID: 30378028 DOI: 10.1007/978-981-13-2233-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Hung MS, Chen YC, Lin P, Li YC, Hsu CC, Lung JH, You L, Xu Z, Mao JH, Jablons DM, Yang CT. Cul4A Modulates Invasion and Metastasis of Lung Cancer Through Regulation of ANXA10. Cancers (Basel) 2019; 11:cancers11050618. [PMID: 31052599 PMCID: PMC6562482 DOI: 10.3390/cancers11050618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
: Cullin 4A (Cul4A) is overexpressed in a number of cancers and has been established as an oncogene. This study aimed to elucidate the role of Cul4A in lung cancer invasion and metastasis. We observed that Cul4A was overexpressed in non-small cell lung cancer (NSCLC) tissues and the overexpression of Cul4A was associated with poor prognosis after surgical resection and it also decreased the expression of the tumor suppressor protein annexin A10 (ANXA10). The knockdown of Cul4A was associated with the upregulation of ANXA10, and the forced expression of Cul4A was associated with the downregulation of ANXA10 in lung cancer cells. Further studies showed that the knockdown of Cul4A inhibited the invasion and metastasis of lung cancer cells, which was reversed by the further knockdown of ANXA10. In addition, the knockdown of Cul4A inhibited lung tumor metastasis in mouse tail vein injection xenograft models. Notably, Cul4A regulated the degradation of ANXA10 through its interaction with ANXA10 and ubiquitination in lung cancer cells. Our findings suggest that Cul4A is a prognostic marker in NSCLC patients, and Cul4A plays important roles in lung cancer invasion and metastasis through the regulation of the ANXA10 tumor suppressor.
Collapse
Affiliation(s)
- Ming-Szu Hung
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi 61363, Taiwan.
| | - Yi-Chuan Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - PaulYann Lin
- Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan.
| | - Ya-Chin Li
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Chia-Chen Hsu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Jr-Hau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Cheng-Ta Yang
- Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan branch 33378, Taiwan.
| |
Collapse
|
9
|
Lu G, Yi J, Gubas A, Wang YT, Wu Y, Ren Y, Wu M, Shi Y, Ouyang C, Tan HWS, Wang T, Wang L, Yang ND, Deng S, Xia D, Chen RH, Tooze SA, Shen HM. Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation. Autophagy 2019; 15:1917-1934. [PMID: 30898011 DOI: 10.1080/15548627.2019.1596484] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macroautophagy/autophagy is a cellular process in which cytosolic contents are degraded by lysosome in response to various stress conditions. Apart from its role in the maintenance of cellular homeostasis, autophagy also involves in regulation of cell cycle progression under nutrient-deprivation conditions. However, whether and how autophagy is regulated by the cell cycle especially during mitosis remains largely undefined. Here we show that WIPI2/ATG18B (WD repeat domain, phosphoinositide interacting 2), an autophagy-related (ATG) protein that plays a critical role in autophagosome biogenesis, is a direct substrate of CUL4-RING ubiquitin ligases (CRL4s). Upon mitosis induction, CRL4s are activated via neddylation, and recruit WIPI2 via DDB1 (damage specific DNA binding protein 1), leading to polyubiquitination and proteasomal degradation of WIPI2 and suppression of autophagy. The WIPI2 protein level and autophagy during mitosis could be rescued by knockdown of CRL4s or treatment with MLN4924/Pevonedistat, a selective inhibitor of CRLs, via suppression of NAE1 (NEDD8 activating enzyme E1 subunit 1). Moreover, restoration of WIPI2 rescues autophagy during mitosis and leads to mitotic slippage and cell senescence. Our study thus discovers a novel function of CRL4s in autophagy by targeting WIPI2 for polyubiquitination and proteasomal degradation during mitosis. Abbreviations: ACTB, actin beta; ATG, autophagy-related; AMPK, AMP-activated protein kinase; AURKB/ARK2, aurora kinase B; BafA1, bafilomycin A1; CCNB1, cyclin B1; CDK1, cyclin dependent kinase 1; CHX, cycloheximide; CQ, chloroquine; CRL4s, CUL4-RING ubiquitin ligases; DDB1, damage specific DNA binding protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione S-transferase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; STK11/LKB1,serine/threonine kinase 11; MTORC1/MTOR complex 1, mechanistic target of rapamycin kinase complex 1; NAE1, NEDD8 activating enzyme E1 subunit 1; NOC, nocodazole; RING, really interesting new gene; RBX1, ring-box 1; SA-GLB1/β-gal, senescence-associated galactosidase beta 1; TSC2, TSC complex subunit 2; TUBA, tubulin alpha; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Juan Yi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Andrea Gubas
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Ya-Ting Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Yihua Wu
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Man Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yin Shi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Chenxi Ouyang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Tianru Wang
- Life Sciences Program, Faculty of Arts and Sciences, University of Toronto , Toronto , Canada
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Nai-Di Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Dajing Xia
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
10
|
Resistance to anti-microtubule drug-induced cell death is determined by regulation of BimEL expression. Oncogene 2019; 38:4352-4365. [PMID: 30770899 DOI: 10.1038/s41388-019-0727-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 11/09/2022]
Abstract
Anti-microtubule agents are frequently used as anticancer therapeutics. Cell death induced by these agents is considered to be due to sustained mitotic arrest caused by the activation of spindle assembly checkpoint (SAC). However, some cell types are resistant to mitotic cell death. Cells' ability to escape mitotic arrest (mitotic slippage) is thought to be a major mechanism contributing to this resistance. Here, we show that resistance to cell death induced by anti-mitotic agents is not linked to cells' capacity to undergo mitotic slippage as generally believed but is dependent on the state of BimEL regulation during mitosis. While transcriptional repression of BimEL in the mitotic death-resistant cells involves polycomb repressive complex 2 (PRC2)-mediated histone trimethylation, the BimEL protein is destabilized by cullin 1/4A-βTrCP-dependent degradation involving activation of cullin 1/4A by neddylation. These results imply that pharmacological augmentation of BimEL activity in anti-microtubule drug-resistant tumors may have important therapeutic implications.
Collapse
|
11
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun 2016; 480:675-681. [PMID: 27983981 DOI: 10.1016/j.bbrc.2016.10.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Cullin 4A (CUL4A), as a well-defined oncogene, has been reported to be upregulated in ovarian cancer clinically. However, the biological functions of CUL4A and the molecular mechanism underlying its upregulation in ovarian cancer remains unknown throughly. Here, we show that expression of CUL4A is significantly higher in ovarian cancer tissues compared to corresponding non-cancerous tissues. Moreover, silencing of CUL4A by siRNA markedly inhibits cell proliferation, invasion and epithelial-mesenchymal transition (EMT). We identified CUL4A as a novel target gene of miR-494. Further investigations showed that miR-494 was remarkably downregulated and correlated with poor prognosis in ovarian cancer. Overexpression of miR-494 inhibited proliferation, migration, invasion and EMT of ovarian cancer cells by directly suppressing CUL4A expression. Therefore, our findings indicate that miR-494/CUL4A axis is important in the control of ovarian cancer tumorigenesis.
Collapse
Affiliation(s)
- Xiaoni Han
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330003, Jiangxi Province, China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Heng Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rongfang Jiao
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330003, Jiangxi Province, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, 330003, Jiangxi Province, China
| | - Nian Fang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University, Nanchang, 330003, Jiangxi Province, China.
| |
Collapse
|
13
|
Pefani DE, Pankova D, Abraham AG, Grawenda AM, Vlahov N, Scrace S, O' Neill E. TGF-β Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation. Mol Cell 2016; 63:156-66. [PMID: 27292796 DOI: 10.1016/j.molcel.2016.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 03/11/2016] [Accepted: 05/06/2016] [Indexed: 02/01/2023]
Abstract
Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function.
Collapse
Affiliation(s)
- Dafni-Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Daniela Pankova
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Aswin G Abraham
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Anna M Grawenda
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Nikola Vlahov
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Simon Scrace
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK
| | - Eric O' Neill
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ UK.
| |
Collapse
|
14
|
RASSF1A Site-Specific Methylation Hotspots in Cancer and Correlation with RASSF1C and MOAP-1. Cancers (Basel) 2016; 8:cancers8060055. [PMID: 27294960 PMCID: PMC4931620 DOI: 10.3390/cancers8060055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 01/26/2023] Open
Abstract
Epigenetic silencing of RASSF1A is frequently observed in numerous cancers and has been previously reported. The promoter region of RASSF1A is predicted to have 75 CpG sites, and very few studies demonstrate how the methylation of these sites affects expression. In addition, the expression relationship between RASSF1A and its downstream target, modulator of apoptosis 1 (MOAP-1), is poorly understood. In this study, we have explored the mRNA expression of RASSF1A, MOAP-1 and the well-characterized splice variant of RASSF1, RASSF1C, in cancer cell lines and primary tumors. We confirmed that the RASSF1A promoter is robustly methylated within a 32-CpG region in solid tumors and results in lower mRNA expression. The MOAP-1 promoter contains ~110 CpG sites, but was not found to be methylated in cancer cell lines when 19 predicted CpG sites were explored. Interestingly, MOAP-1 mRNA expression positively correlated with RASSF1A expression in numerous cancers, whereas RASSF1C expression remained the same or was increased in cell lines or tissues with epigenetic loss of RASSF1A. We speculate that MOAP-1 and RASSF1A may be more intimately connected than originally thought, and the expression of both are warranted in experimental designs exploring the biology of the RASSF1A/MOAP-1 molecular pathway.
Collapse
|
15
|
Hung MS, Chen IC, You L, Jablons DM, Li YC, Mao JH, Xu Z, Lung JH, Yang CT, Liu ST. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells. J Cell Mol Med 2016; 20:1295-306. [PMID: 26969027 PMCID: PMC4929302 DOI: 10.1111/jcmm.12811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Szu Hung
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - I-Chuan Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ya-Chin Li
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jr-Hau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ta Yang
- Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Li X, Xu R, Liu H, Fang K. CUL4A expression in pediatric osteosarcoma tissues and its effect on cell growth in osteosarcoma cells. Tumour Biol 2015; 37:8139-44. [DOI: 10.1007/s13277-015-4715-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/20/2015] [Indexed: 11/24/2022] Open
|
17
|
CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal transition. Sci Rep 2015; 5:17006. [PMID: 26593394 PMCID: PMC4655319 DOI: 10.1038/srep17006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
CUL4A, a member of the CULLIN family, functions as a scaffold protein for an E3 ubiquitin ligase. It was reported that the CUL4A gene showed amplification in some human primary hepatocellular carcinomas (HCC). However, the exact role of CUL4A in HCC remains unknown. Here, we aimed to investigate the expression and function of CUL4A in HCC development. Through immunohistochemistry study, we showed increased CUL4A expression in HCC tissues. Statistical analysis disclosed an inverse correlation between CUL4A expression and tumor differentiation grade, and patient survival, but a positive correlation with hepatocyte proliferation as well as lymphatic and venous invasion. CUL4A expression in HCC tissues was associated with HBeAg status in patients and upregulated by HBV in HCC cell lines. Further functional assay showed that CUL4A overexpression significantly promoted growth of H22 tumor homografts in BALB/c mice. Consistently, CUL4A knockdown inhibited the proliferation of established HCC cells, accompanied by S-phase reduction and Cyclin A and Cyclin B1 repression. Furthermore, CUL4A siRNA ameliorated the motility of HCC cell lines with altered expression of epithelial-mesenchymal transition (EMT)-associated molecules. Taken together, our findings indicate that CUL4A plays a pivotal role in HCC progression and may serve as a potential marker for clinical diagnosis and target for therapy.
Collapse
|
18
|
HUNG MINGSZU, CHEN ICHUAN, YOU LIANG, JABLONS DAVIDM, LI YACHIN, MAO JIANHUA, XU ZHIDONG, HSIEH MENGJER, LIN YUCHING, YANG CHENGTA, LIU SHIHTUNG, TSAI YINGHUANG. Knockdown of Cul4A increases chemosensitivity to gemcitabine through upregulation of TGFBI in lung cancer cells. Oncol Rep 2015; 34:3187-95. [DOI: 10.3892/or.2015.4324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/11/2015] [Indexed: 11/06/2022] Open
|
19
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|
20
|
Song J, Zhang J, Shao J. Knockdown of CUL4A inhibits invasion and induces apoptosis in osteosarcoma cells. Int J Immunopathol Pharmacol 2015; 28:263-9. [PMID: 26055549 DOI: 10.1177/0394632015586656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 11/17/2022] Open
Abstract
Cullin4A (CUL4A) is implicated in many cellular events including cell survival and growth. However, the specific function and underlying mechanisms of CUL4A in cancer invasion have not yet been elucidated. In this work, we were focused on investigating the role of CUL4A in human osteosarcoma (OS). The expression level of CUL4A was evaluated by immunohistochemical (IHC) assay in human OS tissues. Lentivirus-mediated CUL4A shRNA (Lv-shCUL4A) constructed by us was transfected into OS cells for assessing its effects on cell proliferation and invasive potential, respectively detected by MTT and Transwell assays. It was demonstrated that the expression of CUL4A protein was markedly increased in OS tissues compared with the adjacent non-cancerous tissues (ANCT) (57.8% vs. 25.6%, P = 0.019), and was associated with the distant metastases in OS patients (P = 0.016). In vitro, silencing of CUL4A gene inhibited OS cell proliferation and invasion, and induced cell apoptosis, followed by increased expression of p27 and p53 and decreased expression of MMP-2. Therefore, these findings indicate that elevated expression of CUL4A is positively correlated with distant metastases in OS patients, and knockdown of CUL4A suppresses invasion and induces apoptosis in OS cells, suggesting that CUL4A may serve as a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Jia Song
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jing Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jiang Shao
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
21
|
Chen Z, Sui J, Zhang F, Zhang C. Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer 2015; 6:233-42. [PMID: 25663940 PMCID: PMC4317758 DOI: 10.7150/jca.11076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
Cullin family proteins function as scaffolds to form numerous E3 ubiquitin ligases with RING proteins, adaptor proteins and substrate recognition receptors. These E3 ligases further recognize numerous substrates to participate in a variety of cellular processes, such as DNA damage and repair, cell death and cell cycle progression. Clinically, cullin-associated E3 ligases have been identified to involve numerous human diseases, especially with regard to multiple cancer types. Over the past few years, our understanding of cullin proteins and their functions in genome stability and tumorigenesis has expanded enormously. Herein, this review briefly provides current perspectives on cullin protein functions, and mainly summarizes and discusses molecular mechanisms of cullin proteins in tumorigenesis.
Collapse
Affiliation(s)
- Zhi Chen
- 1. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China, 200433
| | - Jie Sui
- 2. Orthopedics Department, 102 Hospital of People's Liberation Army, Changzhou, Jiangsu, China, 213003
| | - Fan Zhang
- 1. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China, 200433
| | - Caiguo Zhang
- 3. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
22
|
Abstract
Pex7p is the cytosolic receptor for peroxisomal matrix proteins harbouring PTS2 (peroxisome-targeting signal type-2). Mutations in the PEX7 gene cause RCDP (rhizomelic chondrodysplasia punctata) type 1, a distinct PTS2-import-defective phenotype of peroxisome biogenesis disorders. The mechanisms by which the protein level and quality of Pex7p are controlled remain largely unknown. In the present study we show that dysfunctional Pex7p, including mutants from RCDP patients, is degraded by a ubiquitin-dependent proteasomal pathway involving the CRL4A (Cullin4A-RING ubiquitin ligase) complex. Furthermore, we demonstrate that the degradation of dysfunctional Pex7p is essential for maintaining normal PTS2 import, thereby suggesting that CRL4A functions as an E3 ligase in the quality control of Pex7p. Our results define a mechanism underlying Pex7p homoeostasis and highlight its importance for regulating PTS2 import. These findings may lead to a new approach to Pex7p-based therapies for the treatment of peroxisome biogenesis disorders such as RCDP.
Collapse
|
23
|
Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett 2014; 588:2671-84. [DOI: 10.1016/j.febslet.2014.02.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
|
24
|
Abstract
The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.
Collapse
Affiliation(s)
- Puneet Sharma
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | | |
Collapse
|
25
|
Kocmarek AL, Ferguson MM, Danzmann RG. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics 2014; 15:57. [PMID: 24450799 PMCID: PMC3931318 DOI: 10.1186/1471-2164-15-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, University of Guelph, 50 Stone Rd, East, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
26
|
CUL4A is overexpressed in human pituitary adenomas and regulates pituitary tumor cell proliferation. J Neurooncol 2014; 116:625-32. [PMID: 24420924 DOI: 10.1007/s11060-013-1349-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Cullin 4A (CUL4A) encodes a core subunit of an E3 ubiquitin ligase that targets proteins for ubiquitin-mediated degradation, and aberrant expression of the CUL4A is found in many tumor types. However, its roles and clinicopathologic significance in pituitary adenomas are not clear. The aim of this study was to investigate the possible role of CUL4A in pituitary tumorigenesis. Immunohistochemistry was used to examine CUL4A expression in human normal pituitaries and pituitary tumors with respect to various clinicopathologic factors in pituitary adenomas. Cell proliferation was assessed by MTT and colony formation, and migration and invasion were analyzed by Transwell and Matrigel assays after CUL4A overexpression or knockdown in pituitary tumor cells. Overexpression of CUL4A was frequently observed in pituitary adenomas compared with normal adenohypophysial tissue and significantly associated with tumor progressiveness and invasion. CUL4A overexpression in GH3 adenoma cells increased colony numbers, cell viability and cell invasion and silencing CUL4A in AtT20 adenoma cells decreased cell proliferation, migration and invasion. Mechanistically, CUL4A could modulate the expression of p53, p21, and p27 in pituitary tumor cells. In addition, high levels of CUL4A expression also significantly inversely correlated with the p53 protein level in human pituitary adenomas. Our results indicate that CUL4A enhances pituitary cell proliferation, migration and invasion and may thus contribute to pituitary tumor development and progression.
Collapse
|
27
|
Jiang L, Rong R, Sheikh MS, Huang Y. Mitotic Arrest by Tumor Suppressor RASSF1A Is Regulated via CHK1 Phosphorylation. Mol Cancer Res 2013; 12:119-29. [DOI: 10.1158/1541-7786.mcr-13-0482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Choi SY, Jang H, Roe JS, Kim ST, Cho EJ, Youn HD. Phosphorylation and ubiquitination-dependent degradation of CABIN1 releases p53 for transactivation upon genotoxic stress. Nucleic Acids Res 2013; 41:2180-90. [PMID: 23303793 PMCID: PMC3575827 DOI: 10.1093/nar/gks1319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CABIN1 acts as a negative regulator of p53 by keeping p53 in an inactive state on chromatin. Genotoxic stress causes rapid dissociation of CABIN1 and activation of p53. However, its molecular mechanism is still unknown. Here, we reveal the phosphorylation- and ubiquitination-dependent degradation of CABIN1 upon DNA damage, releasing p53 for transcriptional activation. The DNA-damage-signaling kinases, ATM and CHK2, phosphorylate CABIN1 and increase the degradation of CABIN1 protein. Knockdown or overexpression of these kinases influences the stability of CABIN1 protein showing that their activity is critical for degradation of CABIN1. Additionally, CABIN1 was found to undergo ubiquitin-dependent proteasomal degradation mediated by the CRL4DDB2 ubiquitin ligase complex. Both phosphorylation and ubiquitination of CABIN1 appear to be relevant for controlling the level of CABIN1 protein upon genotoxic stress.
Collapse
Affiliation(s)
- Soo-Youn Choi
- Department of Biomedical Sciences, Department of Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Gordon M, El-Kalla M, Baksh S. RASSF1 Polymorphisms in Cancer. Mol Biol Int 2012; 2012:365213. [PMID: 22701175 PMCID: PMC3371342 DOI: 10.1155/2012/365213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022] Open
Abstract
Ras association domain family 1A (RASSF1A) is one of the most epigenetically silenced elements in human cancers. Localized on chromosome 3, it has been demonstrated to be a bone fide tumor suppressor influencing cell cycle events, microtubule stability, apoptosis, and autophagy. Although it is epigenetically silenced by promoter-specific methylation in cancers, several somatic nucleotide changes (polymorphisms) have been identified in RASSF1A in tissues from cancer patients. We speculate that both nucleotide changes and epigenetic silencing result in loss of the RASSF1A tumor suppressor function and the appearance of enhanced growth. This paper will summarize what is known about the origin of these polymorphisms and how they have helped us understand the biological role of RASSF1A.
Collapse
Affiliation(s)
- Marilyn Gordon
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| | - Mohamed El-Kalla
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| | - Shairaz Baksh
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| |
Collapse
|
30
|
Lee J, Zhou P. Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Front Oncol 2012; 2:21. [PMID: 22649780 PMCID: PMC3355902 DOI: 10.3389/fonc.2012.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
The cullin 4-RING ubiquitin ligase (CRL4) family employs multiple DDB1–CUL4 associated factors substrate receptors to direct the degradation of proteins involved in a wide spectrum of cellular functions. Aberrant expression of the cullin 4A (CUL4A) gene is found in many tumor types, while mutations of the cullin 4B (CUL4B) gene are causally associated with human X-linked mental retardation. This focused review will summarize our current knowledge of the two CUL4 family members in the pathogenesis of human malignancy and neuronal disease, and discuss their potential as new targets for cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | | |
Collapse
|
31
|
Amin KS, Banerjee PP. The cellular functions of RASSF1A and its inactivation in prostate cancer. J Carcinog 2012; 11:3. [PMID: 22438769 PMCID: PMC3307426 DOI: 10.4103/1477-3163.93000] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/18/2022] Open
Abstract
Epigenetic events significantly impact the transcriptome of cells and often contribute to the onset and progression of human cancers. RASSF1A (Ras-association domain family 1 isoform A), a well-known tumor suppressor gene, is frequently silenced by epigenetic mechanisms such as promoter hypermethylation in a wide range of cancers. In the past decade a vast body of literature has emerged describing the silencing of RASSF1A expression in various cancers and demonstrating its ability to reverse the cancerous phenotype when re-expressed in cancer cells. However, the mechanisms by which RASSF1A exerts its tumor suppressive properties have not been entirely defined. RASSF1A appears to mediate three important cellular processes: microtubule stability, cell cycle progression, and the induction of apoptosis through specific molecular interactions with key factors involved in these processes. Loss of function of RASSF1A leads to accelerated cell cycle progression and resistance to apoptotic signals, resulting in increased cell proliferation. In this review, we attempt to summarize the current understanding of the biological functions of RASSF1A and provide insight that the development of targeted drugs to restore RASSF1A function holds promise for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Karishma S Amin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
32
|
Chow C, Wong N, Pagano M, Lun SWM, Nakayama KI, Nakayama K, Lo KW. Regulation of APC/CCdc20 activity by RASSF1A-APC/CCdc20 circuitry. Oncogene 2011; 31:1975-87. [PMID: 21874044 PMCID: PMC3325600 DOI: 10.1038/onc.2011.372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RASSF1A is a key tumor-suppressor gene that is often inactivated in a wide variety of solid tumors. Studies have illustrated that RASSF1A plays vital roles in the regulation of cell-cycle progression and functions as a guardian of mitosis. Nevertheless, the precise mechanism of RASSF1A-dependent regulation of mitosis remains largely unclear. APC/CCdc20 is the master switch and regulator of mitosis. The activity of APC/CCdc20 is tightly controlled by phosphorylation and specific inhibitors to ensure the sequential ubiquitination of downstream targets. Here, we report on the novel finding of a regulated circuitry that controls the timely expression and hence activity of APC/CCdc20 during mitosis. Our study showed that RASSF1A and APC/CCdc20 form a molecular relay that regulates the APC/CCdc20 activity at early mitosis. We found that RASSF1A inhibits APC/CCdc20 function through its D-box motifs. Paradoxically, RASSF1A was also demonstrated to be ubiquitinated by APC/CCdc20in vitro and degraded at prometaphase despite of active spindle checkpoint presence. The first two unique D-boxes at the N-terminal of RASSF1A served as specific degron recognized by APC/CCdc20. Importantly, we found that Aurora A and Aurora B directly phosphorylate RASSF1A, a critical step by which RASSF1A switches from being an inhibitor to a substrate of APC/CCdc20 during the course of mitotic progression. As a result of RASSF1A degradation, APC/CCdc20 can then partially activate the ubiquitination of Cyclin A in the presence of spindle checkpoint. This circuitry is essential for the timely degradation of Cyclin A. To conclude, our results propose a new model for RASSF1A–APC/CCdc20 interaction in ensuring the sequential progression of mitosis.
Collapse
Affiliation(s)
- C Chow
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|