1
|
Nsengimana B, Khan FA, Ngowi EE, Zhou X, Jin Y, Jia Y, Wei W, Ji S. Processing body (P-body) and its mediators in cancer. Mol Cell Biochem 2022; 477:1217-1238. [PMID: 35089528 DOI: 10.1007/s11010-022-04359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
In recent years, processing bodies (P-bodies) formed by liquid-liquid phase separation, have attracted growing scientific attention due to their involvement in numerous cellular activities, including the regulation of mRNAs decay or storage. These cytoplasmic dynamic membraneless granules contain mRNA storage and decay components such as deadenylase and decapping factors. In addition, different mRNA metabolic regulators, including m6A readers and gene-mediated miRNA-silencing, are also associated with such P-bodies. Cancerous cells may profit from these mRNA decay shredders by up-regulating the expression level of oncogenes and down-regulating tumor suppressor genes. The main challenges of cancer treatment are drug resistance, metastasis, and cancer relapse likely associated with cancer stem cells, heterogeneity, and plasticity features of different tumors. The mRNA metabolic regulators based on P-bodies play a great role in cancer development and progression. The dysregulation of P-bodies mediators affects mRNA metabolism. However, less is known about the relationship between P-bodies mediators and cancerous behavior. The current review summarizes the recent studies on P-bodies mediators, their contribution to tumor development, and their potential in the clinical setting, particularly highlighting the P-bodies as potential drug-carriers such as exosomes to anticancer in the future.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Xuefeng Zhou
- Department of Oncology, Dongtai Affiliated Hospital of Nantong University, Dongtai, 224200, Jiangsu, People's Republic of China
| | - Yu Jin
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| |
Collapse
|
2
|
Nomura W, Futamata R, Inoue Y. Role of RhoGAP Rgd1 in Pkc1 signaling-related actin repolarization under heat shock stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2021; 1865:129853. [PMID: 33508381 DOI: 10.1016/j.bbagen.2021.129853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND A serine/threonine kinase Pkc1 is the sole protein kinase C in the budding yeast Saccharomyces cerevisiae, and plays an important role in the regulation of polarized growth and stress responses such as those due to heat shock. Exposure of cells to high temperature transiently arrests polarized growth and leads to depolarization of the actin cytoskeleton, followed by actin repolarization during adaptation to heat shock stress. Actin repolarization is ensured by the activation of Pkc1 signaling; however, the molecular mechanisms underlying this phenomenon remain poorly understood. METHODS Using an overexpression construct of a constitutively active mutant of Pkc1 (Pkc1R398P), we explored the Pkc1 target molecules involved in actin repolarization. RESULTS PKC1R398P overexpression as well as heat shock stress increased the phosphorylation levels of Rho GTPase-activating protein (RhoGAP) Rgd1. Rgd1 was found to contribute to Pkc1-signaling-related actin repolarization during adaptation to heat shock stress in a GAP activity-independent manner, with Ser148 in Rgd1 playing a crucial role. Furthermore, Rgd1 was involved in the maintenance of phosphorylation status of the mitogen-activated protein (MAP) kinase Mpk1, a downstream effector of Pkc1, under heat shock stress. CONCLUSIONS Rgd1 is a target of Pkc1 signaling under conditions of heat shock stress, and required for the normal process of actin repolarization during adaptation to heat shock stress. GENERAL SIGNIFICANCE Our results provide insights into the molecular mechanism underlying Pkc1-mediated modulation of actin repolarization under heat shock stress.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan; Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Ryota Futamata
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
3
|
Amen T, Kaganovich D. Stress granules sense metabolic stress at the plasma membrane and potentiate recovery by storing active Pkc1. Sci Signal 2020; 13:13/623/eaaz6339. [DOI: 10.1126/scisignal.aaz6339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As the physical barrier between the cell and the outside environment, the plasma membrane is well-positioned to be the first responder to stress. The membrane is also highly vulnerable to many types of perturbation, including heat, force, osmotic pressure, lipid shortage, and starvation. To determine whether the structural changes in the plasma membrane of Saccharomyces cerevisiae brought about by nutrient stress can be communicated to regulatory networks within the cell, we identified proteins that interact with stress granules (SGs), subcellular structures composed of proteins, and nontranslated RNAs that form when cells are stressed. We found that SG proteins interacted with components of eisosomes, which are subcortical membrane structures with a distinct lipid and protein composition. In response to starvation-triggered phosphorylation of eisosome proteins, eisosomes clustered and recruited SG components, including active Pkc1. The absence of eisosomes impaired SG formation, resulting in delayed recovery from nutrient deprivation. Thus, eisosome clustering is an example of interdomain communication in response to stress and identifies a previously unknown mechanism of SG regulation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- 1Base Pharmaceuticals, Boston, MA 02129, USA
| |
Collapse
|
4
|
Eshleman N, Luo X, Capaldi A, Buchan JR. Alterations of signaling pathways in response to chemical perturbations used to measure mRNA decay rates in yeast. RNA (NEW YORK, N.Y.) 2020; 26:10-18. [PMID: 31601735 PMCID: PMC6913126 DOI: 10.1261/rna.072892.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Assessing variations in mRNA stability typically involves inhibiting transcription either globally or in a gene-specific manner. Alternatively, mRNA pulse-labeling strategies offer a means to calculate mRNA stability without inhibiting transcription. However, key stress-responsive cell signaling pathways, which affect mRNA stability, may themselves be perturbed by the approaches used to measure mRNA stability, leading to artifactual results. Here, we have focused on common strategies to measure mRNA half-lives in yeast and determined that commonly used transcription inhibitors thiolutin and 1,10 phenanthroline inhibit TORC1 signaling, PKC signaling, and partially activate HOG signaling. Additionally, 4-thiouracil (4tU), a uracil analog used in mRNA pulse-labeling approaches, modestly induces P-bodies, mRNA-protein granules implicated in storage and decay of nontranslating mRNA. Thiolutin also induces P-bodies, whereas phenanthroline has no effect. Doxycycline, which controls "Tet On/Tet Off" regulatable promoters, shows no impact on the above signaling pathways or P-bodies. In summary, our data argues that broad-acting transcriptional inhibitors are problematic for determining mRNA half-life, particularly if studying the impacts of the TORC1, HOG, or PKC pathway on mRNA stability. Regulatable promoter systems are a preferred approach for individual mRNA half-life studies, with 4tU labeling representing a good approach to global mRNA half-life analysis, despite modestly inducing P-bodies.
Collapse
Affiliation(s)
- Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Andrew Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
5
|
Abstract
Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens. Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1. Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.
Collapse
|
6
|
Fabri JHTM, Rocha MC, Malavazi I. Overview of the Interplay Between Cell Wall Integrity Signaling Pathways and Membrane Lipid Biosynthesis in Fungi: Perspectives for Aspergillus fumigatus. Curr Protein Pept Sci 2019; 21:265-283. [PMID: 31284857 DOI: 10.2174/1389203720666190705164203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.
Collapse
Affiliation(s)
| | - Marina C Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
7
|
Miller D, Brandt N, Gresham D. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. PLoS Genet 2018; 14:e1007406. [PMID: 29782489 PMCID: PMC5983874 DOI: 10.1371/journal.pgen.1007406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular responses to changing environments frequently involve rapid reprogramming of the transcriptome. Regulated changes in mRNA degradation rates can accelerate reprogramming by clearing or stabilizing extant transcripts. Here, we measured mRNA stability using 4-thiouracil labeling in the budding yeast Saccharomyces cerevisiae during a nitrogen upshift and found that 78 mRNAs are subject to destabilization. These transcripts include Nitrogen Catabolite Repression (NCR) and carbon metabolism mRNAs, suggesting that mRNA destabilization is a mechanism for targeted reprogramming of the transcriptome. To explore the molecular basis of destabilization we implemented a SortSeq approach to screen the pooled deletion collection library for trans factors that mediate rapid GAP1 mRNA repression. We combined low-input multiplexed Barcode sequencing with branched-DNA single-molecule mRNA FISH and Fluorescence-activated cell sorting (BFF) to identify the Lsm1-7p/Pat1p complex and general mRNA decay machinery as important for GAP1 mRNA clearance. We also find that the decapping modulators EDC3 and SCD6, translation factor eIF4G2, and the 5' UTR of GAP1 are factors that mediate rapid repression of GAP1 mRNA, suggesting that translational control may impact the post-transcriptional fate of mRNAs in response to environmental changes.
Collapse
Affiliation(s)
- Darach Miller
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tomioka M, Shimobayashi M, Kitabatake M, Ohno M, Kozutsumi Y, Oka S, Takematsu H. Ribosomal protein uS7/Rps5 serine-223 in protein kinase-mediated phosphorylation and ribosomal small subunit maturation. Sci Rep 2018; 8:1244. [PMID: 29352143 PMCID: PMC5775349 DOI: 10.1038/s41598-018-19652-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/05/2018] [Indexed: 01/11/2023] Open
Abstract
Cellular translation should be precisely controlled in response to extracellular cues. However, knowledge is limited concerning signal transduction-regulated translation. In the present study, phosphorylation was identified in the 40S small subunit ribosomal protein uS7 (Yjr123w/previously called as Rps5) by Ypk1 and Pkc1, AGC family protein kinases in yeast Saccharomyces cerevisiae. Serine residue 223 (Ser223) of uS7 in the conserved C-terminal region was crucial for this phosphorylation event. S223A mutant uS7 caused severe reduction of small ribosomal subunit production, likely due to compromised interaction with Rio2, resulting in both reduced translation and reduced cellular proliferation. Contrary to optimal culture conditions, heat stressed S223A mutant cells exhibited increased heat resistance and induced heat shock proteins. Taken together, an intracellular signal transduction pathway involving Ypk1/Pkc1 seemed to play an important role in ribosome biogenesis and subsequent cellular translation, utilizing uS7 as a substrate.
Collapse
Affiliation(s)
- Makoto Tomioka
- Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mitsugu Shimobayashi
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Biozentrum - Center for Molecular Life Sciences, University of Basel, Basel, Switzerland
| | - Makoto Kitabatake
- Laboratory of RNA System, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mutsuhito Ohno
- Laboratory of RNA System, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasunori Kozutsumi
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shogo Oka
- Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Takematsu
- Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
10
|
Nomura W, Ito Y, Inoue Y. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cell Signal 2017; 31:146-153. [DOI: 10.1016/j.cellsig.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
11
|
New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:119-80. [PMID: 27241220 DOI: 10.1016/bs.ircmb.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of biological membranes into structurally and functionally distinct lateral microdomains is generally accepted. From bacteria to mammals, laterally compartmentalized membranes seem to be a vital attribute of life. The crucial fraction of our current knowledge about the membrane microdomains has been gained from studies on fungi. In this review we summarize the evidence of the microdomain organization of membranes from fungal cells, with accent on their enormous diversity in composition, temporal dynamics, modes of formation, and recognized engagement in the cell physiology. A special emphasis is laid on the fact that in addition to their other biological functions, membrane microdomains also mediate the communication among different membranes within a eukaryotic cell and coordinate their functions. Involvement of fungal membrane microdomains in stress sensing, regulation of lipid homeostasis, and cell differentiation is discussed more in detail.
Collapse
|
12
|
Evolutionarily conserved 5'-3' exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One 2015; 10:e0122770. [PMID: 25811606 PMCID: PMC4374687 DOI: 10.1371/journal.pone.0122770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/18/2015] [Indexed: 11/30/2022] Open
Abstract
Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.
Collapse
|
13
|
Martínez JP, Pérez-Vilaró G, Muthukumar Y, Scheller N, Hirsch T, Diestel R, Steinmetz H, Jansen R, Frank R, Sasse F, Meyerhans A, Díez J. Screening of small molecules affecting mammalian P-body assembly uncovers links with diverse intracellular processes and organelle physiology. RNA Biol 2014; 10:1661-9. [PMID: 24418890 DOI: 10.4161/rna.26851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2α and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.
Collapse
Affiliation(s)
- Javier P Martínez
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Yazh Muthukumar
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Nicoletta Scheller
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Tatjana Hirsch
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Randi Diestel
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Heinrich Steinmetz
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| |
Collapse
|
14
|
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| |
Collapse
|
15
|
Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane. MEMBRANES 2014; 1:394-411. [PMID: 22368779 PMCID: PMC3285718 DOI: 10.3390/membranes1040394] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on the budding yeast Saccharomyces cerevisiae have revealed that fungal plasma membranes are organized into different subdomains. One new domain termed MCC/eisosomes consists of stable punctate patches that are distinct from lipid rafts. The MCC/eisosome domains correspond to furrows in the plasma membrane that are about 300 nm long and 50 nm deep. The MCC portion includes integral membrane proteins, such as the tetraspanners Sur7 and Nce102. The adjacent eisosome includes proteins that are peripherally associated with the membrane, including the BAR domains proteins Pil1 and Lsp1 that are thought to promote membrane curvature. Genetic analysis of the MCC/eisosome components indicates these domains broadly affect overall plasma membrane organization. The mechanisms regulating the formation of MCC/eisosomes in model organisms will be reviewed as well as the role of these plasma membrane domains in fungal pathogenesis and response to antifungal drugs.
Collapse
|
16
|
Pastor-Flores D, Schulze JO, Bahí A, Giacometti R, Ferrer-Dalmau J, Passeron S, Engel M, Süß E, Casamayor A, Biondi RM. PIF-pocket as a target for C. albicans Pkh selective inhibitors. ACS Chem Biol 2013; 8:2283-92. [PMID: 23911092 DOI: 10.1021/cb400452z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases (e.g., Ypk, Tpk, Pkc1, and Sch9). Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals.
Collapse
Affiliation(s)
- Daniel Pastor-Flores
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Jörg O. Schulze
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Anna Bahí
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Romina Giacometti
- Cátedra de
Bioquímica,
Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE
Buenos Aires, Argentina
| | - Jofre Ferrer-Dalmau
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Susana Passeron
- Cátedra de
Bioquímica,
Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE
Buenos Aires, Argentina
| | - Matthias Engel
- Pharmaceutical and Medicinal
Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken,
Germany
| | - Evelyn Süß
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Antonio Casamayor
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Ricardo M. Biondi
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| |
Collapse
|
17
|
Bloom ALM, Solomons JTG, Havel VE, Panepinto JC. Uncoupling of mRNA synthesis and degradation impairs adaptation to host temperature in Cryptococcus neoformans. Mol Microbiol 2013; 89:65-83. [PMID: 23659661 DOI: 10.1111/mmi.12258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome multiple stressors to cause disease in its human host. In this study, we report that C. neoformans rapidly and transiently repressed ribosomal protein (RP) transcripts during a transition from 30°C to host temperature. This repression was accompanied by accelerated mRNA degradation mediated by the major deadenylase, Ccr4, and influenced by the dissociable RNA polymerase II subunit, Rpb4. Destabilization and deadenylation of RP transcripts were impaired in an rpb4Δ mutant, suggesting that Rpb4 may be involved in host temperature-induced Ccr4-mediated decay. Accelerated decay of ER stress transcripts 1 h following a shift to host temperature was also impaired in the rpb4Δ mutant. In response to host temperature, Rpb4 moved from the nucleus to the cytoplasm, supporting a role for Rpb4 in coupling transcription and degradation. The PKH signalling pathway was implicated as a regulator of accelerated degradation of the RP transcripts, but not of the ER stress transcripts, revealing a further level of specificity. When transcription and degradation were uncoupled by deletion of Rpb4, growth at host temperature was impaired and virulence was attenuated. These data suggest that mRNA synthesis and decay are coupled in C. neoformans via Rpb4, and this tight coordination promotes host-temperature adaptation and pathogenicity.
Collapse
Affiliation(s)
- Amanda L M Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|
18
|
Messier V, Zenklusen D, Michnick S. A Nutrient-Responsive Pathway that Determines M Phase Timing through Control of B-Cyclin mRNA Stability. Cell 2013; 153:1080-93. [DOI: 10.1016/j.cell.2013.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 03/14/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023]
|
19
|
Mascaraque V, Hernáez ML, Jiménez-Sánchez M, Hansen R, Gil C, Martín H, Cid VJ, Molina M. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components. Mol Cell Proteomics 2012; 12:557-74. [PMID: 23221999 DOI: 10.1074/mcp.m112.020438] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1-cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module.
Collapse
Affiliation(s)
- Victoria Mascaraque
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Plaza de Ramón y Cajal s/n, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cryptococcus neoformans phosphoinositide-dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes. EUKARYOTIC CELL 2012; 12:12-22. [PMID: 23087368 DOI: 10.1128/ec.00235-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans PKH2-01 and PKH2-02 are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied in S. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show that PKH2-02 but not PKH2-01 is required for C. neoformans to tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion of PKH2-02 leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress. PKH2-02 function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using a Galleria mellonella model of low-temperature cryptococcosis, we found that PKH2-02 is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of the pkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion of PKH2-02 affects the interaction between C. neoformans and phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling in C. neoformans is crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence.
Collapse
|
21
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
22
|
Montefusco DJ, Newcomb B, Gandy JL, Brice SE, Matmati N, Cowart LA, Hannun YA. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability. J Biol Chem 2012; 287:9280-9. [PMID: 22277656 DOI: 10.1074/jbc.m111.313445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Buckingham M, Liu JL. U bodies respond to nutrient stress in Drosophila. Exp Cell Res 2011; 317:2835-44. [DOI: 10.1016/j.yexcr.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|