1
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
2
|
Liu X, Sato N, Yabushita T, Li J, Jia Y, Tamura M, Asada S, Fujino T, Fukushima T, Yonezawa T, Tanaka Y, Fukuyama T, Tsuchiya A, Shikata S, Iwamura H, Kinouchi C, Komatsu K, Yamasaki S, Shibata T, Sasaki AT, Schibler J, Wunderlich M, O'Brien E, Mizukawa B, Mulloy JC, Sugiura Y, Takizawa H, Shibata T, Miyake K, Kitamura T, Goyama S. IMPDH inhibition activates TLR-VCAM1 pathway and suppresses the development of MLL-fusion leukemia. EMBO Mol Med 2022; 15:e15631. [PMID: 36453131 PMCID: PMC9832838 DOI: 10.15252/emmm.202115631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Naru Sato
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Jingmei Li
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yuhan Jia
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Moe Tamura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan,The Institute of Laboratory Animals, Tokyo Women's Medical UniversityTokyoJapan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Shiori Shikata
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Hiroyuki Iwamura
- FUJIFILM Corporation: Pharmaceutical Products DivisionTokyoJapan
| | - Chieko Kinouchi
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Kensuke Komatsu
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal MedicineUniversity of CincinnatiCincinnatiOHUSA
| | - Janet Schibler
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Eric O'Brien
- Division of Oncology, Department of Pediatrics, University of CincinnatiCincinnatiOHUSA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Alby-Laurent F, Belaïdouni N, Blanchet B, Rousseau C, Llitjos JF, Sanquer S, Mira JP, Pène F, Toubiana J, Chiche JD. Low-dose mycophenolate mofetil improves survival in a murine model of Staphylococcus aureus sepsis by increasing bacterial clearance and phagocyte function. Front Immunol 2022; 13:939213. [PMID: 35936013 PMCID: PMC9351454 DOI: 10.3389/fimmu.2022.939213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of TLRs signaling pathways play an important role in the control of the pro-inflammatory response that contributes to sepsis-induced tissue injury. Mycophenolate mofetil, an immunosuppressive drug inhibiting lymphocyte proliferation, has been reported to be a regulator of TLRs signaling pathways. Whether MMF used at infra-immunosuppressive doses has an impact on survival and on innate immune response in sepsis is unknown.C57BL/6J mice were infected intraperitoneally with 108 CFU Staphylococcus aureus, and treated or not with low-dose of MMF (20mg/kg/day during 4 days). Survival rate and bacterial clearance were compared. Cytokine levels, quantitative and qualitative cellular responses were assessed. S. aureus – infected mice treated with MMF exhibited improved survival compared to non-treated ones (48% vs 10%, p<0.001). With the dose used for all experiments, MMF did not show any effect on lymphocyte proliferation. MMF treatment also improved local and systemic bacterial clearance, improved phagocytosis activity of peritoneal macrophages resulting in decreased inflammatory cytokines secretion. MMF-treated mice showed enhanced activation of NF-κB seemed with a suspected TLR4-dependent mechanism. These results suggest that infra-immunosuppressive doses of MMF improve host defense during S. aureus sepsis and protects infected mice from fatal outcome by regulating innate immune responses. The signaling pathways involved could be TLR4-dependent. This work brings new perspectives in pathogenesis and therapeutic approaches of severe infections.
Collapse
Affiliation(s)
- Fanny Alby-Laurent
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Nadia Belaïdouni
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Benoit Blanchet
- Department of Pharmocology and Toxicology, Cochin Hospital, Assistance Publique des hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Christophe Rousseau
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Jean-François Llitjos
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Sylvia Sanquer
- Metabolic and Proteomic Biochemistry Department, Necker-Enfants malades Hospital, Université de Paris, Paris, France
| | - Jean-Paul Mira
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Frédéric Pène
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Julie Toubiana
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Department of General Pediatrics and Infectious Diseases, Necker-Enfants malades Hospital, APHP, Université de Paris, Paris, France
| | - Jean-Daniel Chiche
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
- Department of Intensive Care Medicine, Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jean-Daniel Chiche,
| |
Collapse
|
4
|
Li TW, Kenney AD, Park JG, Fiches GN, Liu H, Zhou D, Biswas A, Zhao W, Que J, Santoso N, Martinez-Sobrido L, Yount JS, Zhu J. SARS-CoV-2 Nsp14 protein associates with IMPDH2 and activates NF-κB signaling. Front Immunol 2022; 13:1007089. [PMID: 36177032 PMCID: PMC9513374 DOI: 10.3389/fimmu.2022.1007089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Weiqiang Zhao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Jian Zhu,
| |
Collapse
|
5
|
Li T, Kenney AD, Liu H, Fiches GN, Zhou D, Biswas A, Que J, Santoso N, Yount JS, Zhu J. SARS-CoV-2 Nsp14 activates NF-κB signaling and induces IL-8 upregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.26.445787. [PMID: 34075374 PMCID: PMC8168382 DOI: 10.1101/2021.05.26.445787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) protein, which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and found that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14-mediated NF-κB activation and cytokine induction. Furthermore, IMDPH2 inhibitors (RIB, MPA) efficiently blocked SARS-CoV-2 infection, indicating that IMDPH2, and possibly NF-κB signaling, is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in causing the activation of NF-κB.
Collapse
Affiliation(s)
- Taiwei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
He Y, Zheng Z, Xu Y, Weng H, Gao Y, Qin K, Rong J, Chen C, Yun M, Zhang J, Ye S. Over-expression of IMPDH2 is associated with tumor progression and poor prognosis in hepatocellular carcinoma. Am J Cancer Res 2018; 8:1604-1614. [PMID: 30210928 PMCID: PMC6129487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023] Open
Abstract
Inosine monophosphate dehydrogenase type II (IMPDH2) has been found to play critical roles in the development and progression of several human cancers. However, the expression of IMPDH2 and its clinical significance in hepatocellular carcinoma (HCC) is little known. The expression of IMPDH2 in HCC cell lines and tissues were evaluated by Western blotting (WB), quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). We found that the expression of IMPDH2 was significantly up-regulated in HCC tissues than in adjacent non-tumorous tissues, and this was correlated with several clinicopathological features, including tumor multiplicity (P=0.001), TNM stage (P<0.001). Moreover, the Cox regression analysis suggested that the expression of IMPDH2 was an independent prognostic factor for overall survival (P<0.0001) and progression-free survival (P<0.0001). Further study showed that up-regulation of IMPDH2 expression increased the proliferation and tumorigenicity of HCC cells in vitro, by promoting cell growth rate, colony formation. Together, our results demonstrated that the over-expression of IMPDH2 was closely associated with poor survival outcome in patients with HCC and may present a novel prognostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Ying He
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong Province, P. R. China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
| | - Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
- Department of Oncology, Zhongshan People’s HospitalZhongshan 528400, Guangdong Province, P. R. China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong Province, P. R. China
| | - Kai Qin
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong Province, P. R. China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong Province, P. R. China
- Department of Ultrasound, Cancer Center, Sun Yat-sen UniversityGuangzhou 510060, Guangdong Province, P. R. China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong Province, P. R. China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Guangdong Province, P. R. China
| |
Collapse
|
7
|
Ichii M, Oritani K, Murase M, Komatsu K, Yamazaki M, Kyoden R, Kito N, Nozaki Y, Saito M, Iwamura H, Kanakura Y. Molecular targeting of inosine-5'-monophosphate dehydrogenase by FF-10501 promotes erythropoiesis via ROS/MAPK pathway. Leuk Lymphoma 2017; 59:448-459. [PMID: 28730859 DOI: 10.1080/10428194.2017.1339878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the major symptoms of myelodysplastic syndromes (MDS) is severe cytopenia. Despite cytokine therapies, such as erythropoiesis-stimulating agents, many patients still require blood transfusions, and the development of new therapeutic approaches is needed. In this work, we studied the effects of the inosine-5'-monophosphate (IMP) dehydrogenase (IMPDH) inhibitor FF-10501 on erythropoiesis of human hematopoietic cells. Differentiation of K562 chronic myeloid leukemia cells to an erythroid lineage was promoted by FF-10501 in a dose-dependent manner. Interestingly, we found that metabolic conversion of IMP to hypoxanthine leads to elevation of reactive oxygen species (ROS). The differentiative effects of FF-10501 were abolished by the ROS scavenger dimethylthiourea or the p38 MAPK inhibitor SB203580. Furthermore, FF-10501 promoted erythropoiesis from CD34+ hematopoietic stem/progenitor cells, accompanied with ROS accumulation, while high-dose FF-10501 mainly showed cytotoxic effects. These findings denote the potential of IMPDH inhibition therapy with FF-10501 in amelioration of anemia in MDS patients.
Collapse
Affiliation(s)
- Michiko Ichii
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Kenji Oritani
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| | - Motohiko Murase
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Kensuke Komatsu
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Mao Yamazaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Rie Kyoden
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Nobuko Kito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Yusuke Nozaki
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Motoki Saito
- b Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters , Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation , Kanagawa , Japan
| | - Hiroyuki Iwamura
- c Pharmaceutical Products Division , FUJIFILM Corporation , Minato-ku , Tokyo , Japan
| | - Yuzuru Kanakura
- a Department of Hematology and Oncology , Osaka University Graduate School of Medicine , Suita, Osaka , Japan
| |
Collapse
|
8
|
Zhang YW, Guo YS, Bao XQ, Sun H, Zhang D. Bicyclol promotes toll-like 2 receptor recruiting inosine 5'-monophosphate dehydrogenase II to exert its anti-inflammatory effect. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:475-485. [PMID: 26744808 DOI: 10.1080/10286020.2015.1131678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The aim was to investigate potential targets and anti-inflammatory mechanisms of bicyclol, which has been extensively used in clinic for decades in China. Tar-Fis-Dock, virtual molecular docking system, showed that inosine 5'-monophosphate dehydrogenase II (IMPDH II) has the highest probability of binding to bicyclol. To investigate the possible role of IMPDH II in mechanisms of bicyclol, recombinant enzyme models, mice splenic lymphocytes, and human lymphocytes were used. Bicyclol (1-5 μM) significantly inhibited the proliferation of mice splenic lymphocytes stimulated by concanavalin A (conA). However, bicyclol did not show inhibitory effects on proliferation of human peripheral blood mononuclear cells (hPBMC) induced by phytohemagglutinin (PHA). IMPDH II enzyme kinetic model showed that bicyclol only had a slight regulatory effect on IMPDH II enzyme activity. These results revealed that bicyclol may be not a conventional inhibitor of IMPDH II. Further studies showed that bicyclol could promote recruitment of IMPDH II by active toll-like 2 receptor (TLR2) complex. Such effects lead to the reduction of nuclear factor κB (NF-κB) expression, increase in I-κB expression, and decrease in cytokine release, including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). It may be a new mechanism of bicyclol for its anti-inflammatory effect.
Collapse
Affiliation(s)
- You-Wen Zhang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Yan-Shen Guo
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Xiu-Qi Bao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Hua Sun
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Dan Zhang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
9
|
Toubiana J, Rossi AL, Belaidouni N, Grimaldi D, Pene F, Chafey P, Comba B, Camoin L, Bismuth G, Claessens YE, Mira JP, Chiche JD. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway. Innate Immun 2015; 21:685-97. [DOI: 10.1177/1753425915586075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.
Collapse
Affiliation(s)
- Julie Toubiana
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Anne-Lise Rossi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Nadia Belaidouni
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - David Grimaldi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Frederic Pene
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Philippe Chafey
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Béatrice Comba
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - Luc Camoin
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Yann-Erick Claessens
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Paul Mira
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Jean-Daniel Chiche
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
10
|
Li Y, Li G, Görling B, Luy B, Du J, Yan J. Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle. PLoS Comput Biol 2015; 11:e1004086. [PMID: 25714999 PMCID: PMC4340947 DOI: 10.1371/journal.pcbi.1004086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023] Open
Abstract
Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms.
Collapse
Affiliation(s)
- Ying Li
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guang Li
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Benjamin Görling
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Jiulin Du
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Zhou X, Wang H, Burg MB, Ferraris JD. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol 2013; 305:F362-9. [PMID: 23720348 DOI: 10.1152/ajprenal.00218.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the transcription factor NFAT5 by high NaCl involves changes in phosphorylation. By siRNA screening, we previously found that protein targeting to glycogen (PTG), a regulatory subunit of protein phosphatase1 (PP1), contributes to regulation of high NaCl-induced NFAT5 transcriptional activity. The present study addresses the mechanism involved. We find that high NaCl-induced inhibition of PTG elevates NFAT5 activity by increasing NFAT5 transactivating activity, protein abundance, and nuclear localization. PTG acts via a catalytic subunit PP1γ. PTG associates physically with PP1γ, and NaCl reduces both this association and remaining PTG-associated PP1γ activity. High NaCl-induced phosphorylation of p38, ERK, and SHP-1 contributes to activation of NFAT5. Knockdown of PTG does not affect phosphorylation of p38 or ERK. However, PTG and PP1γ bind to SHP-1, and knockdown of either PTG or PP1γ increases high NaCl-induced phosphorylation of SHP-1-S591, which inhibits SHP-1. Mutation of SHP-1-S591 to alanine, which cannot be phosphorylated, increases inhibition of NFAT5 by SHP-1. Thus high NaCl reduces the stimulatory effect of PTG and PP1γ on SHP-1, which in turn reduces the inhibitory effect of SHP-1 on NFAT5. Our findings add to the known functions of PTG, which was previously recognized only for its glycogenic activity.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
12
|
Nakayasu ES, Brown RN, Ansong C, Sydor MA, Imtiaz S, Mihai C, Sontag R, Hixson KK, Monroe ME, Sobreira TJP, Orr G, Petyuk VA, Yang F, Smith RD, Adkins JN. Multi-omic data integration links deleted in breast cancer 1 (DBC1) degradation to chromatin remodeling in inflammatory response. Mol Cell Proteomics 2013; 12:2136-47. [PMID: 23639857 DOI: 10.1074/mcp.m112.026138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study investigated the dynamics of ubiquitinated proteins after the inflammatory stimulation of RAW 264.7 macrophage-like cells with bacterial lipopolysaccharide. Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. We demonstrated that levels of global ubiquitination and K48 and K63 polyubiquitin chains change after lipopolysaccharide stimulation. Quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which exhibited significant changes in ubiquitination levels following stimulation. Integrating the ubiquitinome data with global proteomic and transcriptomic results allowed us to identify a subset of 88 proteins that were targeted for degradation after lipopolysaccharide stimulation. Using cellular assays and Western blot analyses, we biochemically validated DBC1 (a histone deacetylase inhibitor) as a degradation substrate that is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|