1
|
Trelford CB, Shepherd TG. Insights into targeting LKB1 in tumorigenesis. Genes Dis 2025; 12:101402. [PMID: 39735555 PMCID: PMC11681833 DOI: 10.1016/j.gendis.2024.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 12/31/2024] Open
Abstract
Genetic alterations to serine-threonine kinase 11 (STK11) have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by STK11) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of STK11 genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.
Collapse
Affiliation(s)
- Charles B. Trelford
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Iosageanu A, Stefan LM, Craciunescu O, Cimpean A. Anti-Inflammatory and Wound Healing Properties of Different Honey Varieties from Romania and Correlations to Their Composition. Life (Basel) 2024; 14:1187. [PMID: 39337969 PMCID: PMC11432766 DOI: 10.3390/life14091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The complex composition of honey plays a crucial role in wound healing, exhibiting varying effects at different stages of the healing process. This study investigated seven honey varieties sourced from different regions of Romania using in vitro experimental models developed in macrophage-like, fibroblast, and keratinocyte cell lines to explore the mechanisms by which honey promoted the healing process. This study assessed the impact of honey on inflammatory cytokine production in macrophage-like cells, cell proliferation and collagen synthesis in fibroblasts, and cell proliferation and migration in keratinocytes. Additionally, correlation analysis was conducted to examine the relationship between honey composition and its biological properties. Honey varieties presented both anti- and pro-inflammatory effects. Moreover, they displayed dose-dependent pro-proliferative effects, stimulating collagen synthesis and cell migration, thereby enhancing the re-epithelialization process. The Pearson coefficient analysis indicated a strong positive correlation between biological activities and phenolic content. Additionally, there was a medium positive correlation with the ascorbic acid content and a medium negative correlation with the glucose content in the different honey varieties. Romanian honey varieties rich in phenolics showed potential in modulating inflammation, proliferation, collagen synthesis, and cell migration, suggesting their suitability for further evaluation and development of innovative dressings for skin tissue regeneration.
Collapse
Affiliation(s)
- Andreea Iosageanu
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Trelford CB, Shepherd TG. LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors. Cell Commun Signal 2024; 22:310. [PMID: 38844908 PMCID: PMC11155146 DOI: 10.1186/s12964-024-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.
Collapse
Affiliation(s)
- Charles B Trelford
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Trevor G Shepherd
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
5
|
Wu YN, Su X, Wang XQ, Liu NN, Xu ZW. The roles of phospholipase C-β related signals in the proliferation, metastasis and angiogenesis of malignant tumors, and the corresponding protective measures. Front Oncol 2023; 13:1231875. [PMID: 37576896 PMCID: PMC10419273 DOI: 10.3389/fonc.2023.1231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
PLC-β is widely distributed in eukaryotic cells and is the key enzyme in phosphatidylinositol signal transduction pathway. The cellular functions regulated by its four subtypes (PLC-β1, PLC-β2, PLC-β3, PLC-β4) play an important role in maintaining homeostasis of organism. PLC-β and its related signals can promote or inhibit the occurrence and development of cancer by affecting the growth, differentiation and metastasis of cells, while targeted intervention of PLC-β1-PI3K-AKT, PLC-β2/CD133, CXCR2-NHERF1-PLC-β3, Gαq-PLC-β4-PKC-MAPK and so on can provide new strategies for the precise prevention and treatment of malignant tumors. This paper reviews the mechanism of PLC-β in various tumor cells from four aspects: proliferation and differentiation, invasion and metastasis, angiogenesis and protective measures.
Collapse
Affiliation(s)
- Yu-Nuo Wu
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xing Su
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qin Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Na-Na Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
6
|
Chen X, Zhang H, Zhou X, Wang Y, Shi W. Autotaxin promotes the degradation of the mucus layer by inhibiting autophagy in mouse colitis. Mol Immunol 2023; 160:44-54. [PMID: 37356325 DOI: 10.1016/j.molimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Autotaxin (ATX or ENPP2) is an autocrine enzyme associated with the metabolism of various phospholipids. ATX has recently been identified as a regulatory factor in immune-related and inflammation-associated diseases, such as inflammatory bowel disease, but the exact mechanism is unclear. Here, we treated mice with recombinant ATX protein or an ATX inhibitor to investigate the effect of ATX on colitis in mice and the underlying mechanism. In a mouse model of colitis, ATX expression was increased, autophagy was impaired, and the mucus barrier was disrupted. Recombinant ATX protein promoted intestinal inflammation, inhibited autophagy, and disrupted the mucus barrier, while an ATX inhibitor had the opposite effect. Next, we treated mice that received ATX with an autophagy activator and an adenosine 5'-monophosphate-activated protein kinase (AMPK) agonist. We observed that autophagy activator and AMPK agonist could repair the mucus barrier and alleviate intestinal inflammation in ATX-treated mice. In vitro, we obtained consistent results. Thus, we concluded that ATX could inhibit autophagy through the AMPK pathway, which consequently disordered the mucus barrier and aggravated intestinal inflammation.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China; The State Key Laboratory of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Fei W, Yan J, Wu X, Yang S, Zhang X, Wang R, Chen Y, Xu J, Zheng C. Perturbing plasma membrane lipid: a new paradigm for tumor nanotherapeutics. Theranostics 2023; 13:2471-2491. [PMID: 37215569 PMCID: PMC10196822 DOI: 10.7150/thno.82189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is generally considered a result of genetic mutations that cause epigenetic changes, leading to anomalous cellular behavior. Since 1970s, an increasing understanding of the plasma membrane and specifically the lipid alterations in tumor cells have provided novel insights for cancer therapy. Moreover, the advances in nanotechnology offer a potential opportunity to target the tumor plasma membrane while minimizing side effects on normal cells. To further develop membrane lipid perturbing tumor therapy, the first section of this review demonstrates the association between plasma membrane physicochemical properties and tumor signaling, metastasis, and drug resistance. The second section highlights existing nanotherapeutic strategies for membrane disruption, including lipid peroxide accumulation, cholesterol regulation, membrane structure disruption, lipid raft immobilization, and energy-mediated plasma membrane perturbation. Finally, the third section evaluates the prospects and challenges of plasma membrane lipid perturbing therapy as a therapeutic strategy for cancers. The reviewed membrane lipid perturbing tumor therapy strategies are expected to bring about necessary changes in tumor therapy in the coming decades.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shan Yang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
8
|
Doutt SW, Longo JF, Carroll SL. LPAR1 and aberrantly expressed LPAR3 differentially promote the migration and proliferation of malignant peripheral nerve sheath tumor cells. Glia 2023; 71:742-757. [PMID: 36416236 PMCID: PMC9868101 DOI: 10.1002/glia.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Schwann cell-derived neoplasms known as malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy and the leading cause of death in individuals with neurofibromatosis Type 1. Using genome-scale shRNA screens, we have previously found evidence suggesting that lysophosphatidic acid receptors (LPARs) are essential for MPNST proliferation and/or survival. Here, we examine the expression and mutational status of all six LPA receptors in MPNSTs, assess the role that individual LPA receptors play in MPNST physiology and examine their ability to activate key neurofibromin-regulated signaling cascades. We found that human Schwann cells express LPAR1 and LPAR6, while MPNST cells express predominantly LPAR1 and LPAR3. Whole exome sequencing of 16 MPNST cell lines showed no evidence of mutations in any LPAR genes or ENPP2, a gene encoding a major LPA biosynthetic enzyme. Oleoyl-LPA, an LPA variant with an unsaturated side chain, promoted MPNST cell proliferation and migration. LPAR1 knockdown ablated the promigratory effect of LPA, while LPAR3 knockdown decreased proliferation. Inhibition of R-Ras signaling with a doxycycline-inducible dominant negative (DN) R-Ras mutant, which inhibits both R-Ras and R-Ras2, blocked LPA's promigratory effect. In contrast, DN R-Ras did not affect migration induced by neuregulin-1β (NRG1β), suggesting that LPA and NRG1β promote MPNST migration via distinct pathways. LPA-induced migration was also inhibited by Y27632, an inhibitor of the ROCK1/2 kinases that mediate R-Ras effects in MPNSTs. Thus, LPAR1 and aberrantly expressed LPAR3 mediate distinct effects in MPNSTs. These receptors and the signaling pathways that they regulate are potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Shannon Weber Doutt
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- The Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Ojasalu K, Lieber S, Sokol AM, Nist A, Stiewe T, Bullwinkel I, Finkernagel F, Reinartz S, Müller-Brüsselbach S, Grosse R, Graumann J, Müller R. The lysophosphatidic acid-regulated signal transduction network in ovarian cancer cells and its role in actomyosin dynamics, cell migration and entosis. Theranostics 2023; 13:1921-1948. [PMID: 37064875 PMCID: PMC10091871 DOI: 10.7150/thno.81656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 04/18/2023] Open
Abstract
Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.
Collapse
Affiliation(s)
- Kaire Ojasalu
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Anna M. Sokol
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Imke Bullwinkel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Bioinformatics Core Facility, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Robert Grosse
- Institut for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University, Freiburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Institute for Translational Proteomics, Philipps University, Marburg, Germany
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- ✉ Corresponding author: Rolf Müller, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany. . Phone: +49 6421 2866236
| |
Collapse
|
10
|
Chen A, Xu M, Chen J, Chen T, Wang Q, Zhang R, Qiu J. Plasma-Based Metabolomics Profiling of High-Risk Human Papillomavirus and their Emerging Roles in the Progression of Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6207701. [PMID: 36389117 PMCID: PMC9649303 DOI: 10.1155/2022/6207701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/18/2023]
Abstract
High-risk human papillomavirus (HR-HPV) is the main etiological factor for cervical cancer. Accumulating evidence has suggested the active role of metabolites in the initiation and progression of cancers. This study explored the plasma metabolic profiles of HPV-16 positive (HPV16 (+)), HPV-18 positive (HPV18 (+)), and HPV negative (CTL) individuals using a nontargeted metabolomics approach. C8 ceramide-1-Phosphate (d18 : 1/8 : 0) was found to inhibit cervical cancer cell proliferation and migration in vitro, evidenced by CCK8 experiments, a cell migration test, RT-qPCR, and western blotting. The underlying mechanism demonstrated that C8 inhibited proliferation and migration in cervical cancer cells via the MAPK/JNK1 signaling pathway. These findings may contribute to the clinical treatment of HR-HPV-induced cervical cancer by intervening in its initiation and progression.
Collapse
Affiliation(s)
- Aozheng Chen
- Hongqiao International Institute of Medicine, China
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Min Xu
- Hongqiao International Institute of Medicine, China
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Jing Chen
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Tingting Chen
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Qin Wang
- Hongqiao International Institute of Medicine, China
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Runjie Zhang
- Hongqiao International Institute of Medicine, China
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, XianXia Road, Shanghai 200336, China
| |
Collapse
|
11
|
Chen KJ, Hsu JW, Lee FJS. AMPK promotes Arf6 activation in a kinase-independent manner upon energy deprivation. J Cell Sci 2022; 135:276453. [PMID: 36017701 PMCID: PMC9584350 DOI: 10.1242/jcs.259609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a crucial cellular nutrient and energy sensor that maintains energy homeostasis. AMPK also governs cancer cell invasion and migration by regulating gene expression and activating multiple cellular signaling pathways. ADP-ribosylation factor 6 (Arf6) can be activated via nucleotide exchange by guanine-nucleotide-exchange factors (GEFs), and its activation also regulates tumor invasion and migration. By studying GEF-mediated Arf6 activation, we have elucidated that AMPK functions as a noncanonical GEF for Arf6 in a kinase-independent manner. Moreover, by examining the physiological role of the AMPK–Arf6 axis, we have determined that AMPK activates Arf6 upon glucose starvation and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) treatment. We have further identified the binding motif in the C-terminal regulatory domain of AMPK that is responsible for promoting Arf6 activation and, thus, inducing cell migration and invasion. These findings reveal a noncanonical role of AMPK in which its C-terminal regulatory domain serves as a GEF for Arf6 during glucose deprivation.
Collapse
Affiliation(s)
- Kuan-Jung Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Wei Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Song M, Suh P. O‐GlcNAcylation regulates lysophosphatidic acid‐induced cell migration by regulating ERM family proteins. FEBS Open Bio 2022; 12:1220-1229. [PMID: 35347892 PMCID: PMC9157403 DOI: 10.1002/2211-5463.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/04/2021] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
O‐GlcNAcylation of intracellular proteins (O‐GlcNAc) is a post‐translational modification that often competes with phosphorylation in diverse cellular signaling pathways. Recent studies on human malignant tumors have demonstrated that O‐GlcNAc is implicated in cellular features relevant to metastasis. Here, we report that lysophosphatidic acid (LPA)‐induced ovarian cancer cell (OVCAR‐3) migration is regulated by O‐GlcNAc. We found that O‐GlcNAc modification of ERM family proteins, a membrane‐cytoskeletal crosslinker, was inversely correlated with its phosphorylation status. Moreover, the LPA‐induced formation of membrane protrusion structures, as well as the migration of OVCAR‐3 cells, was reduced by the accumulation of O‐GlcNAc. Collectively, these findings suggest that O‐GlcNAc is an essential signaling element controlling ERM family proteins involved in OVCAR‐3 cell migration.
Collapse
Affiliation(s)
- Minseok Song
- Department of Life Sciences Yeungnam University Gyeongsan Gyeongbuk 38541 South Korea
| | - Pann‐Ghill Suh
- Korea Basic Science Research Institute (KBRI) Daegu Republic of Korea
| |
Collapse
|
13
|
Roy A, Sarkar T, Datta S, Maiti A, Chakrabarti M, Mondal T, Mondal C, Banerjee A, Roy S, Mukherjee S, Muley P, Chakraborty S, Banerjee M, Kundu M, Roy KK. Structure-based discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chem Biol Drug Des 2021; 99:496-503. [PMID: 34951520 DOI: 10.1111/cbdd.14017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of extracellular secreted enzyme autotaxin (ATX) represents an attractive strategy for the development of new therapeutics to treat various diseases and a few inhibitors entered in clinical trials. We herein describe structure-based design, synthesis, and biological investigations revealing a potent and orally bioavailable ATX inhibitor 1. During the molecular docking and scoring studies within the ATX enzyme (PDB-ID: 4ZGA), the S-enantiomer (Gscore = -13.168 kcal/mol) of the bound ligand PAT-494 scored better than its R-enantiomer (Gscore = -9.562 kcal/mol) which corroborated with the reported observation and analysis of the results suggested the scope of manipulation of the hydantoin substructure in PAT-494. Accordingly, the docking-based screening of a focused library of 10 compounds resulted in compound 1 as a better candidate for pharmacological studies. Compound 1 was synthesized from L-tryptophan and evaluated against ATX enzymatic activities with an IC50 of 7.6 and 24.6 nM in biochemical and functional assays, respectively. Further, ADME-PK studies divulged compound 1 as non-cytotoxic (19.02% cell growth inhibition at 20 μM in human embryonic kidney cells), metabolically stable against human liver microsomes (CLint = 15.6 μl/min/mg; T1/2 = 113.2 min) with solubility of 4.82 μM and orally bioavailable, demonstrating its potential to be used for in vivo experiments.
Collapse
Affiliation(s)
- Ashis Roy
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | - Arup Maiti
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences, UPES, Dehradun, India
| |
Collapse
|
14
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, Riaz A, Khalid R, Asrar M, Selamoglu Z, Adem Ş, Sarker SD. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities. Curr Drug Targets 2021; 22:488-504. [PMID: 33050858 DOI: 10.2174/1389450121999201013154542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rida Khalid
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Cankiri Karatekin University, UluyazI Campus Cankiri, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, England, United Kingdom
| |
Collapse
|
16
|
Burger CA, Albrecht NE, Jiang D, Liang JH, Poché RA, Samuel MA. LKB1 and AMPK instruct cone nuclear position to modify visual function. Cell Rep 2021; 34:108698. [PMID: 33535040 PMCID: PMC7906279 DOI: 10.1016/j.celrep.2021.108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cone photoreceptors detect light and are responsible for color vision. These cells display a distinct polarized morphology where nuclei are precisely aligned in the apical retina. However, little is known about the mechanisms involved in cone nuclear positioning or the impact of this organization on retina function. We show that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate cone nuclear positioning. In the absence of either molecule, cone nuclei are misplaced along the axon, resulting in altered nuclear lamination. LKB1 is required specifically in cones to mediate this process, and disruptions in nuclear alignment result in reduced cone function. Together, these results identify molecular determinants of cone nuclear position and indicate that cone nuclear position alignment enables proper visual function.
Collapse
Affiliation(s)
- Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
17
|
AMPKα1 Regulates Lung and Breast Cancer Progression by Regulating TLR4-Mediated TRAF6-BECN1 Signaling Axis. Cancers (Basel) 2020; 12:cancers12113289. [PMID: 33172060 PMCID: PMC7694660 DOI: 10.3390/cancers12113289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary TRAF6-BECN1 signaling axis in TLR4 signal plays an essential role for the autophagy induction, thereby it regulates cancer migration and invasion. Here we show that AMPKα1, one of the isoforms of AMPK, is functionally involved in autophagy induction by regulating the TRAF6-BECN1 signaling axis. In this context, AMPKα1-knockout lung or breast cancer cells exhibited the attenuation of cancer cell migration and invasion induced by TLR4 simulation. Additionally, we could find that the expression of AMPKα1 is positively associated with gene expressions related to autophagy, migration, and metastasis of cancer cells in primary non-small cell lung cancers (NSCLCs). These findings demonstrate that AMPKα1 plays a pivotal role in cancer progression by regulating the TRAF6-BECN1 signaling axis for autophagy induction. Abstract TRAF6-BECN1 signaling axis is critical for autophagy induction and functionally implicated in cancer progression. Here, we report that AMP-activated protein kinase alpha 1 (AMPKα1, PRKAA1) is positively involved in autophagy induction and cancer progression by regulating TRAF6-BECN1 signaling axis. Mechanistically, AMPKα1 interacted with TRAF6 and BECN1. It also enhanced ubiquitination of BECN1 and autophagy induction. AMPKα1-knockout (AMPKα1KO) HEK293T or AMPKα1-knockdown (AMPKα1KD) THP-1 cells showed impaired autophagy induced by serum starvation or TLR4 (Toll-like receptor 4) stimulation. Additionally, AMPKα1KD THP-1 cells showed decreases of autophagy-related and autophagosome-related genes induced by TLR4. AMPKα1KO A549 cells exhibited attenuation of cancer migration and invasion induced by TLR4. Moreover, primary non-small cell lung cancers (NSCLCs, n = 6) with low AMPKαl levels showed markedly decreased expression of genes related to autophagy, cell migration and adhesion/metastasis, inflammation, and TLRs whereas these genes were significantly upregulated in NSCLCs (n = 5) with high AMPKαl levels. Consistently, attenuation of cancer migration and invasion could be observed in AMPKα1KO MDA-MB-231 and AMPKα1KO MCF-7 human breast cancer cells. These results suggest that AMPKα1 plays a pivotal role in cancer progression by regulating the TRAF6-BECN1 signaling axis for autophagy induction.
Collapse
|
18
|
Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol 2020; 57:4754-4766. [PMID: 32783140 DOI: 10.1007/s12035-020-02056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tissue acidosis is a common feature in many pathological conditions. Activation of acid-sensing ion channel 1a (ASIC1a) plays a key role in acidosis-mediated neurotoxicity. Protein kinase C (PKC) activity has been proved to be associated with many physiological processes and pathological conditions; however, whether PKC activation regulates ASIC1a protein expression and channel function remains ill defined. In this study, we demonstrated that treatment with phorbol 12-myristate 13-acetate (PMA, a PKC activator) for 6 h significantly increased ASIC1a protein expression and ASIC currents in NS20Y cells, a neuronal cell line, and in primary cultured mouse cortical neurons. In contrast, treatment with Calphostin C (a nonselective PKC inhibitor) for 6 h or longer decreased ASIC1a protein expression and ASIC currents. Similar to Calphostin C, PKC α and βI inhibitor Go6976 exposure also reduced ASIC1a protein expression. The reduction in ASIC1a protein expression by PKC inhibition involves a change in ASIC1a protein degradation, which is mediated by ubiquitin-proteasome system (UPS)-dependent degradation pathway. In addition, we showed that PKC regulation of ASIC1a protein expression involves NF-κB signaling pathway. Consistent with their effects on ASIC1a protein expression and channel function, PKC inhibition protected NS20Y cells against acidosis-induced cytotoxicity, while PKC activation potentiated acidosis-induced cells injury. Together, these results indicate that ASIC1a protein expression and channel function are closely regulated by the activity of protein kinase C and its downstream signaling pathway(s).
Collapse
|
19
|
Zhang X, Ou X, Kuang X, Li Z, Fu N, Zhou J. Diallyl disulfide regulates energy metabolism by targeting AMP-activated protein kinase alpha1 in human gastric cancer cells. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gong D, Li Y, Wang Y, Chi B, Zhang J, Gu J, Yang J, Xu X, Hu S, Min L. AMPK α1 Downregulates ROS Levels Through Regulating Trx Leading to Dysfunction of Apoptosis in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:5967-5977. [PMID: 32606805 PMCID: PMC7320905 DOI: 10.2147/ott.s236235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/17/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose AMP-activated protein kinase α1 (AMPK α1) associates closely with cancers. However, the relationship between AMPK α1 and non-small cell lung cancer (NSCLC) is not fully understood. In this study, we aim to explore the role and mechanism of AMPK α1 in NSCLC initiation and progression. Materials and Methods A total of 165 clinical NSCLC specimens were included in the formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays. The expression levels of AMPK α1 and thioredoxin (Trx) in NSCLC cancer tissues and adjacent non-tumor lung tissues were measured through using immunohistochemistry. MTT assay was used to detect cell proliferation. Intracellular ROS levels were measured by using H2DCFDA reagent. Lentiviruses including LV-PRKAA1-RNAi, LV-PRKAA1 and a negative LV-control were used to infect A549 cells to modulate AMPK α1 expression in vitro. Immunoblotting was used to determine the modulation relationship between AMPK α1 and Trx. Log rank test and Kaplan–Meier survival analysis were performed to evaluate the significances of AMPK α1 and Trx expression levels on NSCLC patients’ prognoses. Results AMPK α1 was highly expressed in NSCLC cancer tissues and correlated with poor prognosis in patients with NSCLC. In A549 cells, overexpression of AMPK α1 promoted proliferation, suppressed ROS levels and inhibited apoptosis. Moreover, inhibition of AMPK α1 expression achieved the opposite effects. Trx was significantly overexpressed in NSCLC cancer tissues; furthermore, Trx expressed much more in cytoplasm when compared with cell nucleus. Trx expression levels were positively correlated with AMPK α1 expression levels in NSCLC tissues. AMPK α1 could regulate Trx in A549 cells. No significant correlations were observed between Trx expression variances and prognoses in NSCLC patients. Combination of AMPK α1 and Trx had no advantage in predicting prognoses of NSCLC patients. Conclusion These results suggest that AMPK α1 serves a carcinogenic role at least in part through the regulation of Trx expression, and thus represents a potential treatment target in patients with NSCLC.
Collapse
Affiliation(s)
- Daohui Gong
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Ying Li
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yuxiu Wang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Beiyuan Chi
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jianjun Gu
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - JunJun Yang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xingxiang Xu
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Suwei Hu
- Medical Genetic Center, Yangzhou Maternal and Child Health Care Service Centre, The Affiliated Hospital of Yangzhou University Medical College, Yangzhou, Jiangsu, People's Republic of China
| | - Lingfeng Min
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
22
|
Chen J, Zhou Q, Feng J, Zheng W, Du J, Meng X, Wang Y, Wang J. Activation of AMPK promotes thyroid cancer cell migration through its interaction with PKM2 and β-catenin. Life Sci 2019; 239:116877. [PMID: 31669575 DOI: 10.1016/j.lfs.2019.116877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is induced by the exhaustion of cellular energy and activates adaptive alterations in cellular metabolism, which is the basis for cell survival during different environmental stresses. We aimed to investigate the biological functions of AMPK and its molecular mechanism in regulating thyroid cancer (TC) progression. In current study, we found that activation of AMPK by multiple agonists suppresses TC cell proliferation. However, AMPK activation also led to TC cell migration at the same time. Depletion of AMPK abolished the effect of its agonist on cell multiplication and migration. Mechanistic investigations revealed that the impact of AMPK in terms of cell migration is dependent on its nuclear translocation, since site mutation of AMPK in its nuclear translocation domain (K244A) abolished TC cell migration but did not affect the inhibition of cell proliferation by AMPK agonist. Moreover, the nuclear AMPK recruits PKM2 and β-catenin by their interaction, which promotes the transcription of cell migration related genes, including MMP7 and c-Myc. Furthermore, depletion of PKM2/β-catenin abolished the migration effect of AMPK agonists, but did not affect their effects on suppression of cell proliferation. Our results provided a novel function of AMPK in cancer migration, and suggested that a combination of AMPK activation and PKM2 depletion or inhibition can be a new strategy to achieve better therapeutic effects for TC patients.
Collapse
Affiliation(s)
- Jun Chen
- Department of Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qinyi Zhou
- Department of Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jialin Feng
- Department of Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenjie Zheng
- Department of Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Du
- Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiangchao Meng
- Department of Bone and Joint Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - You Wang
- Department of Bone and Joint Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiadong Wang
- Department of Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Mangukiya HB, Negi H, Merugu SB, Sehar Q, Mashausi DS, Yunus FUN, Wu Z, Li D. Paracrine signalling of AGR2 stimulates RhoA function in fibroblasts and modulates cell elongation and migration. Cell Adh Migr 2019; 13:332-344. [PMID: 31710263 PMCID: PMC6844563 DOI: 10.1080/19336918.2019.1685928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The most prominent cancer-associated fibroblasts (CAFs) in tumor stroma is known to form a protective structure to support tumor growth. Anterior gradient-2 (AGR2), a tumor secretory protein is believed to play a pivotal role during tumor microenvironment (TME) development. Here, we report that extracellular AGR2 enhances fibroblasts elongation and migration significantly. The early stimulation of RhoA showed the association of AGR2 by upregulation of G1-S phase-regulatory protein cyclin D1 and FAK phosphorylation through fibroblasts growth factor receptor (FGFR) and vascular endothelial growth factor receptor (VEGFR). Our finding indicates that secretory AGR2 alters fibroblasts elongation, migration, and organization suggesting the secretory AGR2 as a potential molecular target that might be responsible to alter fibroblasts infiltration to support tumor growth.
Collapse
Affiliation(s)
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qudsia Sehar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Ma M, Xu H, Liu G, Wu J, Li C, Wang X, Zhang S, Xu H, Ju S, Cheng W, Dai L, Wei Y, Tian Y, Fu X. Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis. Hepatology 2019; 70:215-230. [PMID: 30839115 DOI: 10.1002/hep.30602] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 02/05/2023]
Abstract
Metastasis is the main cause of cancer-related death, yet the underlying mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) are emerging as crucial regulators of malignancies; however, their functions in tumor metastasis remain largely unexplored. In this study, we identify a lncRNA, termed metabolism-induced tumor activator 1 (MITA1), which is up-regulated in hepatocellular carcinoma (HCC) and contributes to metastasis. MITA1, a chromatin-enriched lncRNA discovered by our nuclear RNA sequencing, is significantly induced by energy stress. This induction of MITA1 is governed by the liver kinase B1-adenosine monophosphate-activated protein kinase (LKB1-AMPK) pathway and DNA methylation. Knockdown of MITA1 dramatically inhibits the migration and invasion of liver cancer cells in vitro and HCC metastasis in vivo. Mechanistically, MITA1 promotes the epithelial-mesenchymal transition, an early and central step of metastasis, which may partly attribute to an increase in Slug (snail family zinc finger 2) transcription. MITA1 deficiency reduces the expression of the mesenchymal cell markers, especially Slug, whereas Slug overexpression greatly impairs the effects of MITA1 deficiency on HCC migration and invasion. Correspondingly, there is a positive correlation between the levels of MITA1 and Slug precursors in HCC tissues. Conclusion: Our data reveal MITA1 as a crucial driver of HCC metastasis, and highlight the identified AMPK-MITA1-Slug axis as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Meilin Ma
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Haixia Xu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Geng Liu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Wu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunhua Li
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiuxuan Wang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Sifan Zhang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shenggen Ju
- College of Computer Science, Sichuan University, Chengdu, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
25
|
Meng J, Fan X, Zhang M, Hao Z, Liang C. Do polymorphisms in protein kinase catalytic subunit alpha-1 gene associated with cancer susceptibility? a meta-analysis and systematic review. BMC MEDICAL GENETICS 2018; 19:189. [PMID: 30340465 PMCID: PMC6194619 DOI: 10.1186/s12881-018-0704-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
Background Currently, several studies have demonstrated that PRKAA1 polymorphisms conduce to the development of cancer. PRKAA1 gene encodes the AMP-activated protein kinase summit-α1, and plays an important role in cell metabolism. Thus, we performed a systematic review and meta-analysis of all enrolled eligible case-control studies to obtain a precise correlation between PRKAA1 polymorphism and cancer susceptibility. Methods Extensive retrieve was performed in Web of Science, Google Scholar, PubMed, EMbase, CNKI and Wanfang databases up to August 26, 2018. Odds ratios (ORs) and 95% CIs were performed to evaluate the overall strength of the associations in five models, as well as in subgroup analyses, stratified by ethnicity, cancer type or source of control. Q-test, Egger’s test and Begg’s funnel plot were applied to evaluate the heterogeneity and publication bias. In-silico analysis was performed to demonstrate the relationship of PRKAA1 expression correlated with cancer tissues and survival time. Results Twenty-two case-control studies from 14 publications were enrolled, with 17,068 cases and 20,871 controls for rs13361707, and 2514 cases and 3193 controls for rs10074991. Overall, we identified that the PRKAA1 rs13361707 polymorphism is not significantly associated with cancer susceptibility under all five genetic models. For rs10074991, we revealed a significant decrease risk in allelic comparison model (B vs. A: OR = 0.774, 95% CI = 0.642–0.931, PAdjust = 3.376*10− 2), heterozygote comparison model (BA vs. AA: OR = 0.779 95%CI = 0.691–0.877, PAdjust = 9.86*10− 10;), and dominant genetic model (BB + BA vs. AA: OR = 0.697 95%CI = 0.533–0.912, PAdjust = 4.211*10− 2;). Evidence from TCGA database and GTEx projects indicated that the expression of PRKAA1 in gastric cancer tissue is higher, compared to normal stomach tissue, as well as it in breast cancer and esophageal squamous cell carcinoma. However, the Kaplan-Meier estimate showed that there is no significant difference of OS and RFS between the low and high PRKAA1 TPM groups in gastric cancer, breast cancer, and esophageal carcinoma. Conclusions To sum up, PRKAA1 rs13361707 polymorphism is not participant with the increased risk of cancer, while the A allele of PRKAA1 rs10074991 revealed a significant decrease risk. Electronic supplementary material The online version of this article (10.1186/s12881-018-0704-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Xinyao Fan
- Graduate School of Anhui Medical University, No. 81th, Meishan Road, Hefei, 230032, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China. .,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
26
|
Fisher N, Edwards MG, Hemming R, Allin SM, Wallis JD, Bulman Page PC, Mckenzie MJ, Jones SM, Elsegood MRJ, King-Underwood J, Richardson A. Synthesis and Activity of a Novel Autotaxin Inhibitor-Icodextrin Conjugate. J Med Chem 2018; 61:7942-7951. [PMID: 30059212 DOI: 10.1021/acs.jmedchem.8b00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer; however, low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 μg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability, and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Natalie Fisher
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K.,Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Michael G Edwards
- Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Ryan Hemming
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - Steven M Allin
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - John D Wallis
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | | | - Michael J Mckenzie
- Charnwood Molecular Ltd. , The Heritage Building, Prince William Road , Loughborough LE11 5DA , U.K
| | - Stefanie M Jones
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| | - Mark R J Elsegood
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - John King-Underwood
- Computational Chemistry Resource , Old Cottage Hospital , Ledbury HR8 1ED , U.K
| | - Alan Richardson
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| |
Collapse
|
27
|
Saxena M, Balaji SA, Deshpande N, Ranganathan S, Pillai DM, Hindupur SK, Rangarajan A. AMP-activated protein kinase promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation. J Cell Sci 2018; 131:jcs.208314. [PMID: 29950484 PMCID: PMC6080604 DOI: 10.1242/jcs.208314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
The developmental programme of epithelial-mesenchymal transition (EMT), involving loss of epithelial and acquisition of mesenchymal properties, plays an important role in the invasion-metastasis cascade of cancer cells. In the present study, we show that activation of AMP-activated protein kinase (AMPK) using A769662 led to a concomitant induction of EMT in multiple cancer cell types, as observed by enhanced expression of mesenchymal markers, decrease in epithelial markers, and increase in migration and invasion. In contrast, inhibition or depletion of AMPK led to a reversal of EMT. Importantly, AMPK activity was found to be necessary for the induction of EMT by physiological cues such as hypoxia and TGFβ treatment. Furthermore, AMPK activation increased the expression and nuclear localization of Twist1, an EMT transcription factor. Depletion of Twist1 impaired AMPK-induced EMT phenotypes, suggesting that AMPK might mediate its effects on EMT, at least in part, through Twist1 upregulation. Inhibition or depletion of AMPK also attenuated metastasis. Thus, our data underscore a central role for AMPK in the induction of EMT and in metastasis, suggesting that strategies targeting AMPK might provide novel approaches to curb cancer spread. Highlighted Article: Pharmacological and physiological activation of AMPK promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation and its increased nuclear localization.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Neha Deshpande
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhalakshmi Ranganathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Divya Mohan Pillai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sravanth Kumar Hindupur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
28
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
29
|
Park J, Jang JH, Oh S, Kim M, Shin C, Jeong M, Heo K, Park JB, Kim SR, Oh YS. LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA 1 and LPA 2. Cell Signal 2018; 44:138-147. [PMID: 29329782 DOI: 10.1016/j.cellsig.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Seojin Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minhye Kim
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Changhoon Shin
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minseok Jeong
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea.
| |
Collapse
|
30
|
Slik K, Kurki S, Korpela T, Carpén O, Korkeila E, Sundström J. Ezrin expression combined with MSI status in prognostication of stage II colorectal cancer. PLoS One 2017; 12:e0185436. [PMID: 28953975 PMCID: PMC5617236 DOI: 10.1371/journal.pone.0185436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Currently used factors predicting disease recurrence in stage II colorectal cancer patients are not optimal for risk stratification. Thus, new biomarkers are needed. In this study the applicability of ezrin protein expression together with MSI status and BRAF mutation status were tested in predicting disease outcome in stage II colorectal cancer. The study population consisted of 173 stage II colorectal cancer patients. Paraffin-embedded cancer tissue material from surgical specimens was used to construct tissue microarrays (TMAs) with next-generation technique. The TMA-slides were subjected to following immunohistochemical stainings: MLH1, MSH2, MSH6, PMS2, ezrin and anti-BRAF V600E antibody. The staining results were correlated with clinicopathological variables and survival. In categorical analysis, high ezrin protein expression correlated with poor disease-specific survival (p = 0.038). In univariate analysis patients having microsatellite instabile / low ezrin expression tumors had a significantly longer disease-specific survival than patients having microsatellite stable / high ezrin expression tumors (p = 0.007). In multivariate survival analysis, the presence of BRAF mutation was associated to poor overall survival (p = 0.028, HR 3.29, 95% CI1.14–9.54). High ezrin protein expression in patients with microsatellite stable tumors was linked to poor disease-specific survival (p = 0.01, HR 5.68, 95% CI 1.53–21.12). Ezrin protein expression is a promising biomarker in estimating the outcome of stage II colorectal cancer patients. When combined with microsatellite status its ability in predicting disease outcome is further improved.
Collapse
Affiliation(s)
- Khadija Slik
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, Turku, Finland
- Department of Pathology, Misurata Cancer Center, University of Misurata, Faculty of Dentistry, Department of Basic Sciences, Misurata, Libya
| | - Samu Kurki
- Auria Biobank, University of Turku and Turku University Hospital, Kiinamyllynkatu 8, Turku, Finland
| | - Taina Korpela
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, Turku, Finland
| | - Olli Carpén
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, Turku, Finland
- Department of Pathology and Genome Scale Biology Research Program, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Eija Korkeila
- Department of Oncology, Turku University Hospital, Hämeentie 11, Turku, Finland
| | - Jari Sundström
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, Turku, Finland
- Department of Pathology, Turku University Hospital, Kiinamyllynkatu 10, Turku, Finland
- * E-mail:
| |
Collapse
|
31
|
Chen H, Liu S, Liu X, Yang J, Wang F, Cong X, Chen X. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats. Front Physiol 2017; 8:153. [PMID: 28377726 PMCID: PMC5359218 DOI: 10.3389/fphys.2017.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery.
Collapse
Affiliation(s)
- Haibo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Si Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xuewen Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Jinjing Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| |
Collapse
|
32
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
33
|
Chen X, Guo H, Li F, Fan D. Physcion 8-O-β-glucopyranoside suppresses the metastasis of breast cancer in vitro and in vivo by modulating DNMT1. Pharmacol Rep 2017; 69:36-44. [DOI: 10.1016/j.pharep.2016.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023]
|
34
|
Yuan J, Zhang Y, Yan FT, Zheng X. Association of PRKAA1 gene polymorphisms with chronic hepatitis B virus infection in Chinese Han population. Braz J Infect Dis 2016; 20:564-568. [PMID: 27612659 PMCID: PMC9427558 DOI: 10.1016/j.bjid.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Studies have indicated that AMPK play critical roles in the regulation of innate immunity and inflammatory responses. However, the role of the polymorphisms of PRKAA1 gene in immune-response to infectious organisms remains unknown. To evaluate the potential role of PRKAA1/AMPKα1 in the immune-response to HBV, we conducted this case-control study. METHODS We recruited 276 patients (145 men and 131 women; average age, 51.6 years) with chronic HBV infection (CHB) and 303 healthy controls (166 men and 137 women; average age, 54.2 years). All the subjects were unrelated individuals of Chinese Han Population. Three SNPs of PRKAA1gene were tested. RESULTS Rs1002424 polymorphism showed significant difference in the allele frequencies, but no difference in the genotype frequencies (allele: p=0.039411, OR95%CI=0.783479 [0.621067-0.988362]; genotype: p=0.104758); rs13361707 polymorphism showed significance in allele analysis, but not in genotype analysis (allele: p=0.034749, OR95%CI=1.284303 [1.017958-1.620335]; genotype: p=0.098027); rs3792822 polymorphism was demonstrated to have significant differences in both genotype and allele frequencies between cases and controls (allele: p=0.029286, OR95%CI= 0.741519 [0.566439-0.970716]; genotype: p=0.034560). The haplotype results showed that CTG and TCA in the rs13361707-rs1002424-rs3792822 block were significantly associated with the happening of HBV (CTG: p=0.036854, OR95%CI=1.281 [1.015-1.617]; p=0.030841, OR95%CI=0.743 [0.568-0.973]). CONCLUSION These findings suggest that PRKAA1 polymorphisms may contribute to the susceptibility of chronic HBV infection in Chinese Han origin.
Collapse
Affiliation(s)
- Jun Yuan
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China.
| | - Yan Zhang
- Shaanxi Provincial People's Hospital, Department of CT, Xi'an, China
| | - Fu-Tang Yan
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China
| | - Xiao Zheng
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China
| |
Collapse
|
35
|
Cunniff B, McKenzie AJ, Heintz NH, Howe AK. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell 2016; 27:2662-74. [PMID: 27385336 PMCID: PMC5007087 DOI: 10.1091/mbc.e16-05-0286] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023] Open
Abstract
Mitochondria infiltrate leading edge lamellipodia, increasing local mitochondrial mass and relative ATP concentration. AMPK regulates infiltration of mitochondria into the leading edge of 2D lamellipodia and 3D invadopodia, coupling local metabolic sensing to subcellular targeting of mitochondria during cell movement. Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont, Burlington, VT 05405 University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405
| | - Andrew J McKenzie
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405 Department of Pharmacology, University of Vermont, Burlington, VT 05405
| | - Nicholas H Heintz
- Department of Pathology, University of Vermont, Burlington, VT 05405 University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405
| | - Alan K Howe
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405 Department of Pharmacology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
36
|
The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine Growth Factor Rev 2016; 31:37-48. [PMID: 27079372 DOI: 10.1016/j.cytogfr.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Adipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast. In this review, the potential link between obesity and female-specific malignancies is comprehensively presented by discussing significant features of the intriguing and complex molecule, adiponectin, with a focus on recent findings highlighting its molecular mechanism of action in female-specific carcinogenesis.
Collapse
|
37
|
Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta Pharmacol Sin 2015; 37:264-75. [PMID: 26707141 DOI: 10.1038/aps.2015.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Physcion, an anthraquinone derivative, exhibits hepatoprotective, anti-inflammatory, anti-microbial and anti-cancer activities. In this study we examined whether and how physcion inhibited metastatic potential of human colorectal cancer cells in vitro. METHODS Human colorectal cancer cell line SW620 was tested. Cell migration and invasion were assessed using a wound healing and Transwell assay, respectively. The expression levels of transcription factor SOX2 in the cells were modulated with shRNA targeting SOX2 and SOX2 overexpressing plasmid. The expression of target molecules involved in epithelial-mesenchymal transition (EMT) process and the signaling pathways was determined with Western blots or qRT-PCR. ROS levels were measured using DCF-DA. RESULTS Physcion (2.5, 5 mol/L) did not affect the cell viability, but dose-dependently inhibited the cell adhesion, migration and invasion. Physcion also inhibited the EMT process in the cells, as evidenced by the increased epithelial marker E-cadherin expression, and by decreased expression of mesenchymal markers N-cadherin, vimentin, fibronectin and α-SMA, as well as transcriptional repressors Snail, Slug and Twist. Physcion suppressed the expression of SOX2, whereas overexpression of SOX2 abrogated the inhibition of physcion on metastatic behaviors. Physcion markedly increased ROS production and phosphorylation of AMPK and GSK3β in the cells, whereas the AMPK inhibitor compound C or the ROS inhibitor NAC abolished the inhibition of physcion on metastatic behaviors. CONCLUSION Physcion inhibits the metastatic potential of human colorectal cancer cells in vitro via activating ROS/AMPK/GSK3β signaling pathways and suppressing SOX2.
Collapse
|
38
|
Li N, Huang D, Lu N, Luo L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol Rep 2015; 34:2821-6. [PMID: 26398719 DOI: 10.3892/or.2015.4288] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Liver kinase B1 (LKB1), also known as serine/threo-nine kinase 11 (STK11), is a tumor suppressor that is inactivated in Peutz-Jeghers familial cancer syndrome. LKB1 phosphorylates and activates AMP-activated protein kinase (AMPK), which negatively regulates cancer cell proliferation and metabolism. However, recent evidence demonstrates that the LKB1/AMPK pathway is involved in the process of tumor invasion and migration, which is an important hallmark of carcinoma progression to higher pathological grades of malignancy. This review focuses on the function of the LKB1/AMPK pathway in the invasion and migration of cancer cells and provides an overview of therapeutic strategies aimed at this pathway in malignant tumors.
Collapse
Affiliation(s)
- Nianshuang Li
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nonghua Lu
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
39
|
Zhang Y, Fang N, You J, Zhou Q. [Advances in the relationship between tumor cell metabolism and tumor metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:812-8. [PMID: 25404272 PMCID: PMC6000352 DOI: 10.3779/j.issn.1009-3419.2014.11.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Intracellular nutrients and the rate of energy flowing in tumor cells are often higher than that in normal cells due to the prolonged stress of tumor-specific microenvironment. In this context, the metabolism of tumor cells provides the fuel of bio-synthesis and energy required for tumor metastasis. Consistent with this, the abnormal metabolism such as extremely active glucose metabolism and excessive accumulating of fatty acid is also discovered in metastatic tumors. Previous Studies have confirmed that the regulation of tumor metabolism can affect the tumor metastasis, and some of these have been successfully applied in clinical effective, positive way. Thus, targeting metabolism of tumor cells might be an effectively positive way to prevent the metastasis of tumor. So, our review is focused on the research development of the relationship between tumor metabolism and metastasis as well as the underlying mechanism.
Collapse
Affiliation(s)
- Yalong Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Nianzhen Fang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiacong You
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
40
|
Tsai CH, Tsai HC, Huang HN, Hung CH, Hsu CJ, Fong YC, Hsu HC, Huang YL, Tang CH. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget 2015; 6:258-70. [PMID: 25404641 PMCID: PMC4381593 DOI: 10.18632/oncotarget.2724] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 11/06/2014] [Indexed: 12/28/2022] Open
Abstract
Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ho-Ning Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hung Hung
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Chaung Hsu
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7. Mol Cancer 2015; 14:123. [PMID: 26116564 PMCID: PMC4482031 DOI: 10.1186/s12943-015-0379-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
Background Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells. Methods Production of superoxide anion was measured by lucigenin chemiluminescence assay using whole cells and protein extracts (NADPH oxidase activity), and intracellular reactive oxygen species (ROS) by fluorescence microscopy using 2’,7’-dichlorofluorescein diacetate (DCF-DA). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to measure mRNA and protein levels, respectively. siRNA transfection was used to assess involvement of genes in cancer invasion, which were identified by Matrigel transwell invasion assay. Luciferase reporter assay was performed to identify transcription factors linked to gene expression. Results Under basal conditions, less invasive human colon cancer cells (HT29 and Caco-2) showed low MMP-7 expression but high NOX1 expression and AMPK phosphorylation. Treatment of HT29 and Caco-2 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced an invasive phenotype response along with corresponding increases in ROS production and NOX2 and MMP-7 expression as well as reduced AMPK phosphorylation, which resemble basal conditions of highly invasive human colon cancer cells (SW620 and HCT116). In addition, inverse regulation between AMPK phosphorylation and NOX2 and MMP-7 expression was observed in HT29 cells treated with different concentrations of exogenous hydrogen peroxide. TPA-induced invasive phenotype in HT29 cells was abolished by treatment with Vit. E, DPI, apocynin, and NOX2 siRNA but not NOX1 siRNA, indicating NOX2-derived ROS production induced an invasive phenotype. TPA-induced induction of MMP-7 expression was suppressed by AP-1, NF-κB, and MAPK (ERK, p38, and JNK) inhibitors, whereas TPA-induced expression of NOX2 and its regulators, p47phox and p67phox, was blocked by p38 and NF-κB inhibitors. Conclusions Molecular switch from NOX1 to NOX2 in colon cancer cells induces ROS production and subsequently enhances MMP-7 expression by deactivating AMPK, which otherwise inhibits stimulus-induced autoregulation of ROS and NOX2 gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0379-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhrid Banskota
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Sushil C Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
42
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
43
|
Kim HS, Lim J, Lee DY, Ryu JH, Lim JS. Kazinol C from Broussonetia kazinoki activates AMP-activated protein kinase to induce antitumorigenic effects in HT-29 colon cancer cells. Oncol Rep 2014; 33:223-9. [PMID: 25394483 DOI: 10.3892/or.2014.3601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 11/05/2022] Open
Abstract
Kazinol C is a 1,3-diphenylpropane, obtained from Broussonetia kazinoki, that has been employed in folk medicine as an edema suppressant. It exerts beneficial effects in oxidative stress-related diseases, such as cancer. However, the molecular mechanism involved in the anticancer effects remains to be determined. AMP-activated protein kinase (AMPK) has emerged as a possible anticancer target molecule. The present study investigated the effect of kazinol C on AMPK activation as well as subsequent HT-29 colon cancer cell viability, apoptosis and migration. Kazinol C markedly induced AMPK phosphorylation and significantly attenuated HT-29 colon cancer cell growth and viability. Compound C, as a well‑known AMPK inhibitor, blocked the kazinol C-induced cell death, and stable transduction of dominant-negative (DN) AMPK in colon cancer cells also inhibited kazinol C-induced cell apoptosis. In addition, kazinol C inhibited HT-29 cell migration and anchorage-independent growth. AMPK inhibition using stable transduction with DN AMPK significantly abrogated the kazinol C-induced inhibition of cancer cell migration. Thus, AMPK is a critical and novel regulator of kazinol C-mediated cancer cell apoptosis and inhibition of migration, suggesting that AMPK is a prime cancer target.
Collapse
Affiliation(s)
- Hak-Su Kim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Da Yeon Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| |
Collapse
|
44
|
Mao J, Yuan XR, Xu SS, Jiang XC, Zhao XT. Expression and functional significance of ezrin in human brain astrocytoma. Cell Biochem Biophys 2014; 67:1507-11. [PMID: 23712870 DOI: 10.1007/s12013-013-9653-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ezrin is overexpressed in a variety of neoplastic cells and is involved in the later stages of tumor progression and metastasis. The present study investigated the expression and functional significance of ezrin in human brain astrocytoma. Ezrin expression was examined in specimens from healthy human brains (10 autopsies) or human astrocytoma (107 cases) by immunohistochemistry. All healthy specimens were negative for ezrin expression, while this expression was positive in a great majority of human astrocytoma tissues (96/107; 89.7%; p < 0.05 vs. healthy). Ezrin expression was positively correlated with tumor grade (r = 0.551, p < 0.01). Analysis of clinicopathologic data revealed that the post-operation disease-free survival times were significantly (p < 0.001) different between those with a strong positive ezrin expression and those with a weak or negative expression. Specifically, median DFS in patients with a strongly positive ezrin expression was 13 months (range 2-46 months), while it was significantly (p < 0.001) longer in patients with weakly positive or negative expression (median of 28 months, range 6-56 months). In conclusion, there is a strong association between ezrin expression and increased malignancy in astrocytoma. Thus, enhanced ezrin expression may play an important role in the development of astrocytoma. Our results further indicate that ezrin may be useful for grading of astrocytoma and as a molecular marker for the prognosis.
Collapse
Affiliation(s)
- Jie Mao
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, 2 West Zheshan Road, Wuhu, 241001, People's Republic of China,
| | | | | | | | | |
Collapse
|
45
|
Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry. Sci Rep 2014; 4:4376. [PMID: 24625528 PMCID: PMC3953747 DOI: 10.1038/srep04376] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/26/2014] [Indexed: 12/23/2022] Open
Abstract
The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication.
Collapse
|
46
|
Yang CC, Chang SF, Chao JK, Lai YL, Chang WE, Hsu WH, Kuo WH. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin. BMC Cancer 2014; 14:112. [PMID: 24555415 PMCID: PMC3936704 DOI: 10.1186/1471-2407-14-112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/12/2014] [Indexed: 01/12/2023] Open
Abstract
Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Results Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. Conclusions These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wu-Hsien Kuo
- Division of Gastroenterology, Department of Internal Medicine, Armed-Forces Hualien General Hospital, Hualien 97144, Taiwan.
| |
Collapse
|
47
|
Hwang H, Kim EK, Park J, Suh PG, Cho YK. RhoA and Rac1 play independent roles in lysophosphatidic acid-induced ovarian cancer chemotaxis. Integr Biol (Camb) 2014; 6:267-76. [PMID: 24469268 DOI: 10.1039/c3ib40183a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lysophosphatidic acid (LPA), which is a bioactive phospholipid existing at high level in ascites and plasma of ovarian cancer patients, is known to be involved in cell survival, proliferation, adhesion, and migration. Small guanosine triphosphatases (GTPases) such as RhoA and Rac1 are intracellular signaling molecules which affect morphology and chemotactic behavior of cells. In this research, we first investigated roles of RhoA and Rac1 in the LPA-induced chemotaxis of SKOV3 human ovarian cancer cells using a multilevel microfluidic platform. The multilevel microfluidic device was fabricated by a rapid prototyping method based on soft lithography using multi-layered adhesive tapes. This platform allows us to conduct the on-chip chemotaxis assays in conventional biology laboratories without any huge and expensive equipment for fabrication and fluidic manipulation. Based on image-based analysis of single cell trajectories in the microfluidic device, the chemotaxis of SKOV3 cells could be quantitatively analyzed in two independent parameters-migration speed and directional persistence. Inhibition of the RhoA/ROCK pathways reduced the directional persistence, not the migration speed, of the cells, while only the migration speed was decreased when the activity of Rac1/PAK pathways was suppressed. These results suggest that RhoA and Rac1 signaling pathways potentially play independent roles in the chemotactic migration of SKOV3 ovarian cancer cells in the linear and stable LPA concentration gradient. Our microfluidic platform would provide a rapid, low cost, easy-to-use, and versatile way for research of cancer cell migration which is crucial for tumor metastasis.
Collapse
Affiliation(s)
- Hyundoo Hwang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | | | | | | | | |
Collapse
|
48
|
Jiang S, Park DW, Stigler WS, Creighton J, Ravi S, Darley-Usmar V, Zmijewski JW. Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis. J Biol Chem 2013; 288:26013-26026. [PMID: 23897815 DOI: 10.1074/jbc.m113.489468] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defective clearance of apoptotic cells is frequently associated with perpetuation of inflammatory conditions. Our results show a rapid activation of AMP-activated kinase (AMPK) in macrophages upon exposure to apoptotic cells or lysophosphatidylcholine, a specific phospholipid that is produced and released from dying cells. AMPK activation resulted from inhibition of mitochondrial oxygen consumption and ATP production and further depended on Ca(2+) mobilization and mitochondrial reactive oxygen species generation. Once activated, AMPK increased microtubule synthesis and chemokinesis and provided adaptation to energy demand during tracking and engulfment. Uptake of apoptotic cells was increased in lungs of mice that received lysophosphatidylcholine. Furthermore, inhibition of AMPK diminished clearance of apoptotic thymocytes in vitro and in dexamethasone-treated mice. Taken together, we conclude that the mitochondrial AMPK axis is a sensor and enhancer of tracking and removal of apoptotic cell, processes crucial to resolution of inflammatory conditions and a return to tissue homeostasis.
Collapse
Affiliation(s)
| | - Dae Won Park
- From the Department of Medicine,; the Division of Infectious Diseases, Korea University Ansan Hospital, Ansan 425-707, Republic of Korea
| | | | | | | | - Victor Darley-Usmar
- Department of Pathology, and; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012 and
| | - Jaroslaw W Zmijewski
- From the Department of Medicine,; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012 and.
| |
Collapse
|
49
|
Adada M, Canals D, Hannun YA, Obeid LM. Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:727-37. [PMID: 23850862 DOI: 10.1016/j.bbalip.2013.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Mohamad Adada
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Canals
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
50
|
Zhao G, Zhang JG, Liu Y, Qin Q, Wang B, Tian K, Liu L, Li X, Niu Y, Deng SC, Wang CY. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2012; 12:83-93. [PMID: 23171948 DOI: 10.1158/1535-7163.mct-12-0534-t] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
miRNAs are small noncoding RNAs that participate in a variety of biologic processes, and dysregulation of miRNA is always associated with cancer development and progression. Aberrant expression of miR-148b has been found in some types of cancer, but its expression and potential biologic role in pancreatic cancer are still largely unknown. In this study, our data showed that miR-148b was significantly downregulated in 48 pairs of human pancreatic cancer tissues and five cell lines. Furthermore, the deregulated miR-148b was correlated with increased tumor size, late tumor-node-metastasis stage, lymphatic invasion, distant metastasis, and worse prognosis in pancreatic cancer. Functional studies indicated overexpression of miR-148b dramatically suppressed the growth of cancer cells, attributable to induction of apoptosis and cell-cycle arrest at S-phase. Meanwhile, miR-148b remarkably inhibited invasion and enhanced chemosensitivity of pancreatic cancer cells. Moreover, ectopic expression of miR-148b was able to inhibit tumorigenicity in nude mice. Further studies revealed that AMPKα1 might be the direct target gene of miR-148b, and overexpressed AMPKα1 inversely correlated with miR-148b in pancreatic cancer. Silencing of AMPKα1 with RNA interference inhibited the growth of pancreatic cancer cells in vitro and in vivo and also induced apoptosis, cell-cycle arrest, and inhibited invasion of cancer cells, which is consistent with the effects of miR-148b overexpression. In conclusion, miR-148b can inhibit cell proliferation, invasion, and enhance chemosensitivity of pancreatic cancer by targeting AMPKα1. Our present results implicate the potential effects of miR-148b on prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Jiefang Avenue 1277, Wuhan, Hubei Province 430022, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|