1
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
2
|
Effect of resolvin D1 on experimental bacterial keratitis to prevent corneal scar. Graefes Arch Clin Exp Ophthalmol 2022; 260:3293-3302. [PMID: 35522296 DOI: 10.1007/s00417-022-05686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The study aims to investigate the role of the lipid mediator resolvin D1 (RvD1) in bacterial keratitis in a murine model. METHODS The effect of RvD1 on Pseudomonas aeruginosa-stimulated human corneal epithelial cells (HCECs) and mouse macrophages and dendritic cells (DCs) was assessed. C57BL/6 mouse corneas were abraded and treated with RvD1 after stimulation with P. aeruginosa, following which cytokine production level in the cornea and drainage lymph nodes was compared with that in controls. Corneal opacity and thickness were assessed using anterior segment photographs, and optical coherence tomography and corneal infiltrates were analyzed using immunohistochemistry for neutrophils. RESULTS RvD1 significantly inhibited pro-inflammatory cytokine production in HCECs, mouse macrophages, and DCs. Corneal opacity and corneal thickness were reduced, and the development of corneal infiltrates, specifically neutrophils, was also significantly inhibited by RvD1 in response to stimulation with P. aeruginosa. CONCLUSIONS RvD1 inhibits P. aeruginosa-induced corneal inflammation. This finding supports a potential therapeutic approach for patients with bacterial keratitis.
Collapse
|
3
|
Kim SY, Lee JE. Resolvin D1 Inhibits Corneal Inflammation in Staphylococcus Aureus Keratitis. Ocul Immunol Inflamm 2022:1-8. [PMID: 35522258 DOI: 10.1080/09273948.2022.2070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the role of lipid mediator, resolvin D1 (RvD1), in corneal inflammation. METHODS The anti-inflammatory effect of RvD1 on stimulated human corneal epithelial cells (HCECs) was assessed. C57BL/6 mice corneas were abraded and treated with RvD1 after stimulation with Staphylococcus aureus. Cytokine levels in the corneas, cervical drainage lymph nodes (DLNs), and spleens were measured. Anterior segment photography and optical coherence tomography quantified the changes in corneal thickness and haziness. Neutrophil infiltration in the cornea was examined by haematoxylin and eosin (H&E) staining and immunohistochemistry. RESULTS RvD1 significantly inhibited cytokine production in HCECs and mouse corneas, cervical DLNs, and spleens while stimulating interleukin-10 (IL-10) production. Corneal opacity development, thickening, and neutrophil infiltration significantly reduced in response to RvD1 stimulation in the S. aureus-infected mice corneas. CONCLUSION RvD1 inhibited S. aureus-induced corneal inflammation. These results potentiate RvD1 as an anti-inflammatory therapy for patients with corneal inflammation induced by bacterial keratitis.
Collapse
Affiliation(s)
- Sang Yoon Kim
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, South Korea
| | - Ji Eun Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, South Korea.,Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
4
|
Sharma P, Elofsson M, Roy S. Attenuation of Pseudomonas aeruginosa infection by INP0341, a salicylidene acylhydrazide, in a murine model of keratitis. Virulence 2021; 11:795-804. [PMID: 32507000 PMCID: PMC7567437 DOI: 10.1080/21505594.2020.1776979] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PSEUDOMONAS AERUGINOSA is an opportunistic pathogen and a major cause of corneal infections worldwide. The bacterium secretes several toxins through its type III secretion system (T3SS) to subvert host immune responses. In addition, it is armed with intrinsic as well as acquired antibiotic resistance mechanisms that make treatment a significant challenge and new therapeutic interventions are needed. Type III secretion inhibitors have been studied as an alternative or in accompaniment to traditional antibiotics to inhibit virulence of bacteria. In this study, INP0341, a T3SS inhibitor, inhibited cytotoxicity by P. aeruginosa toward human corneal epithelial cells (HCEC) at 100 μM without affecting bacterial growth in the liquid media. An increased expression of antimicrobial peptides and reactive oxygen species generation was also observed in cells exposed to P. aeruginosa in the presence of INP0341. Furthermore, INP0341 efficiently attenuated corneal infection by P. aeruginosa in an experimental model of murine keratitis as evident from corneal opacity, clinical score and bacterial load. Thus, INP0341 appears to be a promising candidate to treat corneal infection caused by P. aeruginosa and can be further considered as an alternative therapeutic intervention.
Collapse
Affiliation(s)
- Prerana Sharma
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India.,Department of Animal Biology, University of Hyderabad , Hyderabad, India
| | | | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India
| |
Collapse
|
5
|
Zhang P, Nguyen J, Abdulla F, Nelson AT, Beckman JD, Vercellotti GM, Belcher JD. Soluble MD-2 and Heme in Sickle Cell Disease Plasma Promote Pro-Inflammatory Signaling in Endothelial Cells. Front Immunol 2021; 12:632709. [PMID: 33841413 PMCID: PMC8033004 DOI: 10.3389/fimmu.2021.632709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Recent evidence indicates that hemolysis in sickle cell disease (SCD) promotes inflammation via innate immune signaling through toll-like receptor 4 (TLR4). Free heme released by hemolyzed red blood cells can bind to myeloid differentiation factor-2 (MD-2) and activate TLR4 pro-inflammatory signaling on endothelium to promote vaso-occlusion and acute chest syndrome in murine models of SCD. MD-2 is co-expressed with TLR4 on cell membranes, but in inflammatory conditions, soluble MD-2 (sMD-2) is elevated in plasma. sMD-2 levels were significantly increased in human and murine sickle (SS) plasma as compared to normal (AA) plasma. Human umbilical vein endothelial cells (HUVEC) and human lung microvascular endothelial cells incubated with human SS plasma had significant increases in pro-inflammatory IL-8, IL-6, and soluble VCAM-1 secretion compared to endothelial cells incubated with AA plasma. The increase in HUVEC IL-8 secretion was blocked by depletion of sMD-2 from SS plasma and enhanced by the addition of sMD-2 to AA plasma. The TLR4 signaling inhibitor, TAK-242, inhibited HUVEC IL-8 secretion in response to SS plasma by 85%. Heme-agarose pull-down assays and UV/Vis spectroscopy demonstrated that heme binds to sMD-2. Hemopexin, a high affinity heme-binding protein, inhibited HUVEC IL-8 secretion induced by SS plasma or SS and AA plasma supplemented with sMD-2. These data suggest that sMD-2 bound to heme might play an important role in pro-inflammatory signaling by endothelium in SCD.
Collapse
Affiliation(s)
- Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Alexander T Nelson
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Joan D Beckman
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Eshac Y, Redfern RL, Aakalu VK. The Role of Endogenous Antimicrobial Peptides in Modulating Innate Immunity of the Ocular Surface in Dry Eye Diseases. Int J Mol Sci 2021; 22:E721. [PMID: 33450870 PMCID: PMC7828360 DOI: 10.3390/ijms22020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The ocular surface has the challenging responsibility of maintaining a clear moist refractive surface while protecting the eye from exogenous pathogens and the environment. Homeostasis of the ocular surface, including its innate immune components, is altered in ocular surface disease states. In this review, we focus on antimicrobial peptides and the role they play in the immune response of the ocular surface during healthy states and dry eye diseases. Antimicrobial peptides are of special interest to the study of the ocular surface because of their various roles that include microbial threat neutralization, wound healing, and immune modulation. This review explores current literature on antimicrobial peptides in ocular surface diseases and discusses their therapeutic potential in ocular surface diseases and dry eye.
Collapse
Affiliation(s)
- Youssof Eshac
- Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX 77204, USA;
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Exploring the Key Genes and Pathways in the Formation of Corneal Scar Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6247489. [PMID: 32016117 PMCID: PMC6994212 DOI: 10.1155/2020/6247489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.
Collapse
|
8
|
Sharma P, Sharma N, Mishra P, Joseph J, Mishra DK, Garg P, Roy S. Differential Expression of Antimicrobial Peptides in Streptococcus pneumoniae Keratitis and STAT3-Dependent Expression of LL-37 by Streptococcus pneumoniae in Human Corneal Epithelial Cells. Pathogens 2019; 8:pathogens8010031. [PMID: 30845777 PMCID: PMC6470555 DOI: 10.3390/pathogens8010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial keratitis in the developing world with a growing trend of acquiring resistance against various antibiotics. In the current study, we determined the expression of different antimicrobial peptides (AMPs) in response to S. pneumoniae in patients, as well as in primary and immortalized human corneal epithelial cells. We further focused on LL-37 and determined its expression in human cornea infected with S. pneumoniae and studied the killing ability of LL-37 against S. pneumoniae. The expression of AMPs was determined by quantitative PCR and the phosphorylation of signaling proteins was evaluated by immunoblot analysis. LL-37 expression was also determined by immunofluorescence and Western blot method and the killing ability of LL-37 against S. pneumoniae was determined by colony-forming units. Differential expression of antimicrobial peptides was observed in patients with S. pneumoniae keratitis. Although S. pneumoniae induced expression of the AMPs in human corneal epithelial cells (HCEC), it did not induce AMP expression in U937, a human monocyte cell line. S. pneumoniae also caused activation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB)and mitogen activated protein kinase (MAPK) pathways in corneal epithelial cells. LL-37 was found to be effective against both laboratory and clinical strains of S. pneumoniae. LL-37 induction by S. pneumoniae in human corneal epithelial cells was mediated by signal transducer and activator of transcription 3 (STAT3) activation, and inhibition of STAT3 activation significantly reduced LL-37 expression. Our study determines an extensive profile of AMPs expressed in the human cornea during S. pneumoniae infection, and suggests the potential of LL-37 to be developed as an alternative therapeutic intervention to fight increasing antibiotic resistance among bacteria.
Collapse
Affiliation(s)
- Prerana Sharma
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India.
- Department of Animal Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Natalia Sharma
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India.
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India.
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India.
| | - Dilip K Mishra
- Pathology Department, LV Prasad Eye Institute, Hyderabad 500034, India.
| | - Prashant Garg
- Tej Kohli Cornea Institute, Hyderabad 500034, India.
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India.
- Tej Kohli Cornea Institute, Hyderabad 500034, India.
| |
Collapse
|
9
|
Clark HL, Minns MS, Sun Y, de Jesus T, Ghannoum MG, Pearlman E. Atovaquone Impairs Growth of Aspergillus and Fusarium Keratitis Isolates by Modulating Mitochondrial Function and Zinc Homeostasis. Invest Ophthalmol Vis Sci 2018; 59:1589-1598. [PMID: 29625485 PMCID: PMC5863689 DOI: 10.1167/iovs.17-22585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Aspergillus and Fusarium molds cause blinding corneal infections as a consequence of ocular trauma and in association with contact lens wear. As these fungi require zinc for fungal growth, we examined the effect of atovaquone, a ubiquinone analog that disrupts zinc homeostasis, on fungal growth in vitro and in vivo. Methods In vitro: Aspergillus and Fusarium germinating conidia were incubated overnight with atovaquone, and hyphal growth was measured by fluorimetry. In vivo: C57BL/6 mouse corneas were infected with Aspergillus or Fusarium conidia. Atovaquone was added topically and corneal opacification and fungal growth were quantified. Results Atovaquone has antifungal activity against Aspergillus and Fusarium clinical isolates, with Fusarium species being more sensitive to atovaquone than Aspergillus species. Atovaquone also reduced labile intracellular zinc levels and increased the sensitivity of Aspergillus to metal shock. Atovaquone reduced vacuolar acidification, which regulates storage of intracellular free zinc, and also acted synergistically with voriconazole and itraconazole to kill hyphae. Furthermore, mitochondrial potential and ATP production were reduced in both Aspergillus and Fusarium following atovaquone treatment. Finally, topical application of atovaquone to the ocular surface significantly inhibited fungal growth and corneal opacification in murine models of fungal keratitis. Conclusions These studies demonstrate that atovaquone has pronounced in vitro and in vivo antifungal activity against filamentous fungi by disrupting both metal homeostasis and mitochondrial function, and therefore has potential as a novel antifungal agent.
Collapse
Affiliation(s)
- Heather L Clark
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| | - Martin S Minns
- Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Tristan de Jesus
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mahmoud G Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| |
Collapse
|
10
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
11
|
Sharma P, Guha S, Garg P, Roy S. Differential expression of antimicrobial peptides in corneal infection and regulation of antimicrobial peptides and reactive oxygen species by type III secretion system of Pseudomonas aeruginosa. Pathog Dis 2018; 76:4794940. [DOI: 10.1093/femspd/fty001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/06/2018] [Indexed: 11/14/2022] Open
|
12
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
13
|
Lee JE, Sun Y, Gjorstrup P, Pearlman E. Inhibition of Corneal Inflammation by the Resolvin E1. Invest Ophthalmol Vis Sci 2015; 56:2728-36. [PMID: 25758817 DOI: 10.1167/iovs.14-15982] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate the role of the lipid mediator, resolvin E1 (RvE1), in corneal inflammation. METHODS The effect of RvE1 on stimulated human corneal epithelial cells (HCECs) and neutrophils, and mouse macrophage was assessed. C57BL/6 mouse corneas were abraded and treated with RvE1 either before or after stimulation with lipopolysaccharide (LPS) and antibiotic-killed Pseudomonas aeruginosa and Staphylococcus aureus. The levels of CXC chemokines in the cornea were quantified, and the presence of neutrophils in corneal infiltrates was detected by immunohistochemistry and by in vivo confocal microscopy. The effect of RvE1 on apoptosis in the corneal epithelium was assessed using the TUNEL assay. RESULTS RvE1 significantly inhibited cytokine production in HCECs and neutrophils, and mouse macrophages and cornea. The development of corneal infiltrates, specifically neutrophils, in response to stimulation with LPS, P. aeruginosa, and S. aureus was also significantly reduced. There was no apoptotic effect of RvE1 on mouse corneal epithelial cells. CONCLUSIONS RvE1 inhibits corneal inflammation induced by LPS, Gram negative (P. aeruginosa) and Gram positive (S. aureus) bacteria. These findings indicate that RvE1 as a potential anti-inflammatory therapy for patients with corneal inflammation and also, when given together with antibiotics, for bacterial keratitis.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Ophthalmology and Visual Sciences Case Western Reserve University, Cleveland, Ohio, United States
| | - Yan Sun
- Department of Ophthalmology, School of Medicine, Pusan National University, Pusan, Korea
| | - Per Gjorstrup
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Eric Pearlman
- Resolvyx Pharmaceuticals, Inc., Bedford, Massachusetts, United States
| |
Collapse
|
14
|
Taube MA, del Mar Cendra M, Elsahn A, Christodoulides M, Hossain P. Pattern recognition receptors in microbial keratitis. Eye (Lond) 2015; 29:1399-415. [PMID: 26160532 DOI: 10.1038/eye.2015.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/31/2015] [Indexed: 12/12/2022] Open
Abstract
Microbial keratitis is a significant cause of global visual impairment and blindness. Corneal infection can be caused by a wide variety of pathogens, each of which exhibits a range of mechanisms by which the immune system is activated. The complexity of the immune response to corneal infection is only now beginning to be elucidated. Crucial to the cornea's defences are the pattern-recognition receptors: Toll-like and Nod-like receptors and the subsequent activation of inflammatory pathways. These inflammatory pathways include the inflammasome and can lead to significant tissue destruction and corneal damage, with the potential for resultant blindness. Understanding the immune mechanisms behind this tissue destruction may enable improved identification of therapeutic targets to aid development of more specific therapies for reducing corneal damage in infectious keratitis. This review summarises current knowledge of pattern-recognition receptors and their downstream pathways in response to the major keratitis-causing organisms and alludes to potential therapeutic approaches that could alleviate corneal blindness.
Collapse
Affiliation(s)
- M-A Taube
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M del Mar Cendra
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Elsahn
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Christodoulides
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Hossain
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
15
|
Roy S, Marla S, Praneetha DC. Recognition of Corynebacterium pseudodiphtheriticum by Toll-like receptors and up-regulation of antimicrobial peptides in human corneal epithelial cells. Virulence 2015; 6:716-21. [PMID: 26125127 DOI: 10.1080/21505594.2015.1066063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bacterial keratitis is a major cause of corneal ulcers in developing and industrialized nations. In this study, we examined the host innate immune responses to Corynebacterium pseudodiphtheriticum, often overlooked as commensal, in human corneal epithelial cells. The expressions of innate immune mediators were determined by quantitative PCR from corneal ulcers of patients and immortalized human corneal epithelial cells (HCEC). We have found an elevated expression of Toll like receptors (TLRs) along with IL-6 and IL-1β from both ulcers and epithelial cells infected with C. pseudodiphtheriticum. Activation of NF-κB and MAPK signaling pathways were also observed in HCEC in response to C. pseudodiphtheriticum. In addition, we found a significant increase in the expression of antimicrobial peptides S100A8, S100A9 and human β-defensin 1 from both corneal ulcers and HCEC.
Collapse
Affiliation(s)
- Sanhita Roy
- a Prof. Brien Holden Eye Research Center; Hyderabad Eye Research Foundation; LV Prasad Eye Institute ; Hyderabad , India
| | - Sushma Marla
- a Prof. Brien Holden Eye Research Center; Hyderabad Eye Research Foundation; LV Prasad Eye Institute ; Hyderabad , India
| | - D C Praneetha
- a Prof. Brien Holden Eye Research Center; Hyderabad Eye Research Foundation; LV Prasad Eye Institute ; Hyderabad , India
| |
Collapse
|
16
|
Eslani M, Movahedan A, Afsharkhamseh N, Sroussi H, Djalilian AR. The role of toll-like receptor 4 in corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2014; 55:6108-15. [PMID: 25183764 DOI: 10.1167/iovs.14-14736] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We evaluated the role of Toll-like receptor 4 (TLR4) in corneal epithelial wound healing. METHODS The expression of TLR4 during in vivo corneal epithelial wound healing was examined by immunostaining in mice. The expression and activation of TLR4 was studied in primary or telomerase-immortalized human corneal epithelial cells (HCEC). Scratch assay was performed to evaluate in vitro wound closure using live time-lapse microscopy. Transwell migration assay and Ki67 immunostaining were done to evaluate migration and proliferation, respectively. Lipopolysaccharide (LPS) was used to activate TLR4, whereas CLI-095 was used for its inhibition. The expression of inflammatory cytokines was determined by RT-PCR and ELISA. The activation of p42/44 and p38 was determined by immunoblotting. RESULTS In the murine model, TLR4 immunostaining was noted prominently in the epithelium 8 hours after wounding. There was a 4-fold increase in the expression of TLR4 6 hours after in vitro scratch wounding (P < 0.001). Confocal microscopy confirmed the membrane localization of TLR4/MD2 complex. There was a significant increase in migration, proliferation, and wound closure in HCEC treated with LPS (P < 0.05), while there was significant decrease with TLR4 inhibition (P < 0.05). Addition of LPS to wounded HCEC resulted in a significant increase in the expression of IL-6, TNF-α, CXCL8/IL8, and CCL5/RANTES at the mRNA and protein levels. Likewise, LPS increased the activation of p42/44 and p38 in wounded HCEC. CONCLUSIONS These results suggest that epithelial wounding induces the expression of functional TLR4. Toll-like receptor 4 signaling appears to contribute to early corneal epithelial wound repair by enhancing migration and proliferation.
Collapse
Affiliation(s)
- Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Herve Sroussi
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
17
|
Shirai K, Okada Y, Cheon DJ, Miyajima M, Behringer RR, Yamanaka O, Saika S. Effects of the loss of conjunctival Muc16 on corneal epithelium and stroma in mice. Invest Ophthalmol Vis Sci 2014; 55:3626-37. [PMID: 24812549 DOI: 10.1167/iovs.13-12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To examine the role of conjunctival Muc16 in the homeostasis of the ocular surface epithelium and stroma using Muc16-null knockout (KO) mice. METHODS We used KO mice (n = 58) and C57/BL6 (WT) mice (n = 58). Histology and immunohistochemistry were employed to analyze the phenotypes in the ocular surface epithelium. The expression of phospho-Stat3, AP-1 components, interleukin 6 (IL-6), and tumor necrosis factor-α (TNFα) in the cornea and conjunctiva was examined. The shape of the nuclei of corneal epithelial cells was examined to evaluate intraepithelial cell differentiation. Epithelial cell proliferation was studied using bromo-deoxyuridine labeling. Finally, the wound healing of a round defect (2-mm diameter) in the corneal epithelium was measured. The keratocyte phenotype and macrophage invasion in the stroma were evaluated after epithelial repair. RESULTS The loss of Muc16 activated Stat3 signal, affected JunB signal, and upregulated the expression of IL-6 in the conjunctiva. Basal-like cells were observed in the suprabasal layer of the corneal epithelium with an increase in proliferation. The loss of Muc16 accelerated the wound healing of the corneal epithelium. The incidence of myofibroblast appearance and macrophage invasion were more marked in KO stroma than in WT stroma after epithelial repair. CONCLUSIONS The loss of Muc16 in the conjunctiva affected the homeostasis of the corneal epithelium and stroma. The mechanism might include the upregulation of the inflammatory signaling cascade (i.e., Stat3 signal, and IL-6 expression in the KO conjunctiva). Current data provides insight into the research of the pathophysiology of dry eye syndrome.
Collapse
Affiliation(s)
- Kumi Shirai
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Dong-Joo Cheon
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Masayasu Miyajima
- The Laboratory Animal Center, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Richard R Behringer
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
18
|
Lu Z, Li Y, Samuvel DJ, Jin J, Zhang X, Lopes-Virella MF, Huang Y. MD-2 is involved in the stimulation of matrix metalloproteinase-1 expression by interferon-γ and high glucose in mononuclear cells - a potential role of MD-2 in Toll-like receptor 4-independent signalling. Immunology 2013; 140:301-13. [PMID: 23800176 DOI: 10.1111/imm.12138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/20/2013] [Accepted: 06/20/2013] [Indexed: 11/27/2022] Open
Abstract
We reported recently that treatment of diabetic apolipoprotein E-deficient mice with the Toll-like receptor 4 (TLR4) antagonist Rs-LPS, a lipopolysaccharide isolated from Rhodobacter sphaeroides, inhibited atherosclerosis. Since it is known that Rs-LPS antagonizes TLR4 by targeting TLR4 co-receptor MD-2, this finding indicates that MD-2 is a potential target for the treatment of atherosclerosis. In this study, we determined if MD-2 is involved in the gene expression regulated by signalling pathways independent of TLR4. Given that interferon-γ (IFNγ) and hyperglycaemia play key roles in atherosclerosis, we determined if MD-2 is involved in IFN-γ and high-glucose-regulated gene expression in mononuclear cells. Results showed that IFN-γ and high glucose synergistically stimulated matrix metalloproteinase 1 (MMP-1), a proteinase essential for vascular tissue remodelling and atherosclerosis, in U937 mononuclear cells, but Rs-LPS inhibited the MMP-1 stimulation. To provide more evidence for a role of MD-2 in IFN-γ-stimulated MMP-1, studies using antibodies and small interfering RNA demonstrated that MD-2 blockade or knockdown attenuated the effect of IFN-γ on MMP-1. Furthermore, studies using PCR arrays showed that MD-2 blockade had a similar effect as IFN-γ receptor blockade on the inhibition of IFN-γ-stimulated pro-inflammatory molecules. Although these findings indicate the involvement of MD-2 in IFN-γ signalling, we also observed that MD-2 was up-regulated by IFN-γ and high glucose. We found that MD-2 up-regulation by IFN-γ played an essential role in the synergistic effect of IFN-γ and LPS on MMP-1 expression. Taken together, these findings indicate that MD-2 is involved in IFN-γ signalling and IFN-γ-augmented MMP-1 up-regulation by LPS.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem 2013; 289:1174-82. [PMID: 24275652 DOI: 10.1074/jbc.m113.523167] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-β, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14(-/-) corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-κB/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues.
Collapse
Affiliation(s)
- Sanhita Roy
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44095
| | | | | |
Collapse
|
20
|
Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol 2013; 32:4-18. [PMID: 23360155 DOI: 10.3109/08830185.2012.749400] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun M, Zhu M, Chen K, Nie X, Deng Q, Hazlett LD, Wu Y, Li M, Wu M, Huang X. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Invest Ophthalmol Vis Sci 2013; 54:3451-62. [PMID: 23611998 PMCID: PMC3658264 DOI: 10.1167/iovs.12-10938] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 04/17/2013] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To explore the role of triggering receptor expressed on myeloid cells 2 (TREM-2) in Pseudomonas aeruginosa (PA) keratitis. METHODS BALB/c mice were routinely infected with PA and evaluated at various postinfection time points for corneal expression of TREM-2, by real-time PCR, Western blot, and flow cytometry. Next, BALB/c and C57BL/6 mice were respectively treated with TREM-2 siRNA or agonistic anti-TREM-2 antibody, to determine the role of TREM-2 in PA keratitis. Bacterial load and neutrophil infiltration were tested by plate count and myeloperoxidase assay, respectively. Th1-/Th2-type and proinflammatory cytokine expression were tested by real-time PCR and ELISA after in vivo and in vitro silencing of TREM-2. Moreover, phosphorylated Akt levels were tested by Western blot in murine macrophages after treatment with agonistic anti-TREM-2 antibody. mRNA levels of proinflammatory cytokines were examined in murine macrophages after TREM-2 activation and lipopolysaccharide stimulation, following pretreatment with inhibitors for PI3K or Akt, to determine whether PI3K/Akt is required in TREM-2-mediated immune modulation. In addition, BALB/c mice were treated with wortmannin and analyzed for bacterial load and proinflammatory cytokine expression. RESULTS TREM-2 expression was elevated in the infected BALB/c corneas at 3 or 5 days postinfection. Silencing of TREM-2 accelerated disease progression by enhancing bacterial load and corneal inflammation, whereas activation of TREM-2 promoted host resistance to PA keratitis. PI3K/Akt signaling is required in the TREM-2-mediated immune modulation, and inhibition of PI3K resulted in worsened disease after PA corneal infection. CONCLUSIONS TREM-2 promoted host resistance to PA infection by suppressing corneal inflammation via activation of the PI3K/Akt pathway.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Colony Count, Microbial
- Cytokines/genetics
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Eye Infections, Bacterial/immunology
- Eye Infections, Bacterial/microbiology
- Eye Infections, Bacterial/prevention & control
- Flow Cytometry
- Immunity, Innate
- Keratitis/immunology
- Keratitis/microbiology
- Keratitis/prevention & control
- Macrophages/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutrophils/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pseudomonas Infections/immunology
- Pseudomonas Infections/microbiology
- Pseudomonas Infections/prevention & control
- Pseudomonas aeruginosa/pathogenicity
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Mingxia Sun
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Zhu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Kang Chen
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Xinxin Nie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Qiuchan Deng
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Linda D. Hazlett
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan
| | - Yongjian Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Meiyu Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhou R, Zhang R, Sun Y, Platt S, Szczotka-Flynn L, Pearlman E. Innate immune regulation of Serratia marcescens-induced corneal inflammation and infection. Invest Ophthalmol Vis Sci 2012; 53:7382-8. [PMID: 23033384 DOI: 10.1167/iovs.12-10238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Serratia marcescens is frequently isolated from lenses of patients with contact lens-associated corneal infiltrates. In the current study, we examined the role of toll-like receptors (TLRs) and interleukin-1 receptor type 1 (IL-1R1) in S. marcescens-induced corneal inflammation and infection. METHODS The central corneal epithelium of C57BL/6 and gene knockout mice was abraded, and 1 × 10(7) S. marcescens were added in the presence of a silicone hydrogel contact lens, and we examined corneal inflammation by confocal microscopy and neutrophil enumeration. Viable bacteria were quantified by colony-forming units (CFU). RESULTS S. marcescens induced neutrophil recruitment to the corneal stroma, and increased corneal thickness and haze in C57BL/6 mice. Conversely, CFU was significantly lower by 48 hours post infection. In contrast, MyD88(-/-), IL-1R(-/-), TLR4(-/-), and TLR4/5(-/-) corneas infected with S. marcescens had significantly increased CFU, indicating impaired clearance. However, there was no significant difference in CFU among C57BL/6, TIRAP(-/-), and TRIF(-/-) mice. Tobramycin-killed S. marcescens induced corneal inflammation in C57BL/6 mice, which was impaired significantly in MD-2(-/-) mice and in C57BL/6 mice pretreated topically with the MD-2 antagonist eritoran tetrasodium. CONCLUSIONS S. marcescens induces corneal inflammation by activation of TLR4/MD-2/MyD88 and the IL-1R1/MyD88 pathways, which are potential therapeutic targets for inhibition of S. marcescens-induced corneal inflammation.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sun Y, Karmakar M, Taylor PR, Rietsch A, Pearlman E. ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival. THE JOURNAL OF IMMUNOLOGY 2012; 188:1884-95. [PMID: 22250085 DOI: 10.4049/jimmunol.1102148] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa is a leading cause of blinding corneal ulcers worldwide. To determine the role of type III secretion in the pathogenesis of P. aeruginosa keratitis, corneas of C57BL/6 mice were infected with P. aeruginosa strain PAO1 or PAK, which expresses ExoS, ExoT, and ExoY, but not ExoU. PAO1- and PAK-infected corneas developed severe disease with pronounced opacification and rapid bacterial growth. In contrast, corneas infected with ΔpscD or ΔpscJ mutants that cannot assemble a type III secretion system, or with mutants lacking the translocator proteins, do not develop clinical disease, and bacteria are rapidly killed by infiltrating neutrophils. Furthermore, survival of PAO1 and PAK strains in the cornea and development of corneal disease was impaired in ΔexoS, ΔexoT, and ΔexoST mutants of both strains, but not in a ΔexoY mutant. ΔexoST mutants were also rapidly killed in neutrophils in vitro and were impaired in their ability to promote neutrophil apoptosis in vivo compared with PAO1. Point mutations in the ADP ribosyltransferase (ADPR) regions of ExoS or ExoT also impaired proapoptotic activity in infected neutrophils, and exoST(ADPR-) mutants replicated the ΔexoST phenotype in vitro and in vivo, whereas mutations in rho-GTPase-activating protein showed the same phenotype as PAO1. Together, these findings demonstrate that the pathogenesis of P. aeruginosa keratitis in ExoS- and ExoT-producing strains is almost entirely due to their ADPR activities, which subvert the host response by targeting the antibacterial activity of infiltrating neutrophils.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|