1
|
Le Guern F, Gaucher A, Cosentino G, Lagune M, Haagsman HP, Roux AL, Prim D, Rottman M. Labeled TEMPO-Oxidized Mannan Differentiates Binding Profiles within the Collectin Families. Int J Mol Sci 2022; 23:16067. [PMID: 36555720 PMCID: PMC9786299 DOI: 10.3390/ijms232416067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Anne Gaucher
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Gina Cosentino
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Marion Lagune
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Henk P. Haagsman
- Section Molecular Host Defence, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Anne-Laure Roux
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
- Plateforme des Biomarqueurs Innovants, 104 Bd Poincaré, 92380 Garches, France
| | - Damien Prim
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Martin Rottman
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
- Plateforme des Biomarqueurs Innovants, 104 Bd Poincaré, 92380 Garches, France
| |
Collapse
|
2
|
Changes in the Hemagglutinin and Internal Gene Segments Were Needed for Human Seasonal H3 Influenza A Virus to Efficiently Infect and Replicate in Swine. Pathogens 2022; 11:pathogens11090967. [PMID: 36145399 PMCID: PMC9501159 DOI: 10.3390/pathogens11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The current diversity of influenza A viruses (IAV) circulating in swine is largely a consequence of human-to-swine transmission events and consequent evolution in pigs. However, little is known about the requirements for human IAVs to transmit to and subsequently adapt in pigs. Novel human-like H3 viruses were detected in swine herds in the U.S. in 2012 and have continued to circulate and evolve in swine. We evaluated the contributions of gene segments on the ability of these viruses to infect pigs by using a series of in vitro models. For this purpose, reassortant viruses were generated by reverse genetics (rg) swapping the surface genes (hemagglutinin-HA and neuraminidase-NA) and internal gene segment backbones between a human-like H3N1 isolated from swine and a seasonal human H3N2 virus with common HA ancestry. Virus growth kinetics in porcine intestinal epithelial cells (SD-PJEC) and in ex-vivo porcine trachea explants were significantly reduced by replacing the swine-adapted HA with the human seasonal HA. Unlike the human HA, the swine-adapted HA demonstrated more abundant attachment to epithelial cells throughout the swine respiratory tract by virus histochemistry and increased entry into SD-PJEC swine cells. The human seasonal internal gene segments improved replication of the swine-adapted HA at 33 °C, but decreased replication at 40 °C. Although the HA was crucial for the infectivity in pigs and swine tissues, these results suggest that the adaptation of human seasonal H3 viruses to swine is multigenic and that the swine-adapted HA alone was not sufficient to confer the full phenotype of the wild-type swine-adapted virus.
Collapse
|
3
|
White MR, Nikolaidis NM, McCormack F, Crouch EC, Hartshorn KL. Viral Evasion of Innate Immune Defense: The Case of Resistance of Pandemic H1N1 Influenza A Virus to Human Mannose-Binding Proteins. Front Microbiol 2021; 12:774711. [PMID: 34956139 PMCID: PMC8692257 DOI: 10.3389/fmicb.2021.774711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Mannose-binding lectins effectively inhibit most seasonal strains of influenza A virus and contribute to the innate host defense vs. these viruses. In contrast, pandemic IAV strains are largely resistant to these lectins, likely contributing to increased spread and worse outcomes. In this paper, we evaluated the inhibition of IAV by mannose-binding lectins of human, bacterial, and fungal origin to understand and possibly increase activity vs. the pandemic IAV. A modified version of the human surfactant protein D (SP-D) neck and carbohydrate recognition domain (NCRD) with combinatorial substitutions at the 325 and 343 positions, previously shown to inhibit pandemic H3N2 IAV in vitro and in vivo, and to inhibit pandemic H1N1 in vitro, failed to protect mice from pandemic H1N1 in vivo in the current study. We attempted a variety of maneuvers to improve the activity of the mutant NCRDs vs. the 2009 pandemic H1N1, including the formation of full-length SP-D molecules containing the mutant NCRD, cross-linking of NCRDs through the use of antibodies, combining SP-D or NCRDs with alpha-2-macroglobulin, and introducing an additional mutation to the double mutant NCRD. None of these substantially increased the antiviral activity for the pandemic H1N1. We also tested the activity of bacterial and algal mannose-binding lectins, cyanovirin, and griffithsin, against IAV. These had strong activity against seasonal IAV, which was largely retained against pandemic H1N1. We propose mechanisms to account for differences in activity of SP-D constructs against pandemic H3N2 and H1N1, and for differences in activity of cyanovirin vs. SP-D constructs.
Collapse
Affiliation(s)
- Mitchell R. White
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Francis McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Erika C. Crouch
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevan L. Hartshorn
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States,*Correspondence: Kevan L. Hartshorn,
| |
Collapse
|
4
|
van Eijk M, Hillaire MLB, Rimmelzwaan GF, Rynkiewicz MJ, White MR, Hartshorn KL, Hessing M, Koolmees PA, Tersteeg MH, van Es MH, Meijerhof T, Huckriede A, Haagsman HP. Enhanced Antiviral Activity of Human Surfactant Protein D by Site-Specific Engineering of the Carbohydrate Recognition Domain. Front Immunol 2019; 10:2476. [PMID: 31749796 PMCID: PMC6842947 DOI: 10.3389/fimmu.2019.02476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Innate immunity is critical in the early containment of influenza A virus (IAV) infection and surfactant protein D (SP-D) plays a crucial role in innate defense against IAV in the lungs. Multivalent lectin-mediated interactions of SP-D with IAVs result in viral aggregation, reduced epithelial infection, and enhanced IAV clearance by phagocytic cells. Previous studies showed that porcine SP-D (pSP-D) exhibits distinct antiviral activity against IAV as compared to human SP-D (hSP-D), mainly due to key residues in the lectin domain of pSP-D that contribute to its profound neutralizing activity. These observations provided the basis for the design of a full-length recombinant mutant form of hSP-D, designated as “improved SP-D” (iSP-D). Inspired by pSP-D, the lectin domain of iSP-D has 5 amino acids replaced (Asp324Asn, Asp330Asn, Val251Glu, Lys287Gln, Glu289Lys) and 3 amino acids inserted (326Gly-Ser-Ser). Characterization of iSP-D revealed no major differences in protein assembly and saccharide binding selectivity as compared to hSP-D. However, hemagglutination inhibition measurements showed that iSP-D expressed strongly enhanced activity compared to hSP-D against 31 different IAV strains tested, including (pandemic) IAVs that were resistant for neutralization by hSP-D. Furthermore, iSP-D showed increased viral aggregation and enhanced protection of MDCK cells against infection by IAV. Importantly, prophylactic or therapeutic application of iSP-D decreased weight loss and reduced viral lung titers in a murine model of IAV infection using a clinical isolate of H1N1pdm09 virus. These studies demonstrate the potential of iSP-D as a novel human-based antiviral inhalation drug that may provide immediate protection against or recovery from respiratory (pandemic) IAV infections in humans.
Collapse
Affiliation(s)
- Martin van Eijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States
| | - Mitchell R White
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Martin Hessing
- U-Protein Express B.V., Life Science Incubator, Utrecht, Netherlands
| | - Peter A Koolmees
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Monique H Tersteeg
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses 2018; 11:v11010015. [PMID: 30587835 PMCID: PMC6356362 DOI: 10.3390/v11010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/05/2023] Open
Abstract
Since the largest 2014⁻2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.
Collapse
|
6
|
Ordonez SR, van Eijk M, Escobar Salazar N, de Cock H, Veldhuizen EJA, Haagsman HP. Antifungal activities of surfactant protein D in an environment closely mimicking the lung lining. Mol Immunol 2018; 105:260-269. [PMID: 30562646 DOI: 10.1016/j.molimm.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 02/02/2023]
Abstract
At the lung lining innate defenses protect our lungs against inhaled fungal cells that could pose a threat to our health. These defenses are comprised of mucociliary clearance, soluble effector molecules and roaming phagocytic cells, such as macrophages and neutrophils. How important each of these defenses is during fungal clearance depends on the specific fungal pathogen in question and on the stage of infection. In this study the localization and antifungal activity of the lung surfactant protein D (SP-D) was studied in an environment mimicking the lung lining. To this end Calu-3 cells were grown on an air-liquid interface allowing them to polarize and to produce mucus at their apical surface. Additionally, neutrophils were added to study their role in fungal clearance. Two fungal pathogens were used for these experiments: Candida albicans and Aspergillus fumigatus, both of clinical relevance. During fungal infection SP-D localized strongly to both fungal surfaces and stayed bound through the different stages of infection. Furthermore, SP-D decreased fungal adhesion to the epithelium and increased fungal clearance by neutrophils from the epithelial surface. These findings suggest that SP-D plays an important role at the different stages of pulmonary defense against fungal intruders.
Collapse
Affiliation(s)
- Soledad R Ordonez
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Martin van Eijk
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Natalia Escobar Salazar
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Hans de Cock
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Hsieh IN, De Luna X, White MR, Hartshorn KL. The Role and Molecular Mechanism of Action of Surfactant Protein D in Innate Host Defense Against Influenza A Virus. Front Immunol 2018; 9:1368. [PMID: 29951070 PMCID: PMC6008380 DOI: 10.3389/fimmu.2018.01368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAVs) continue to pose major risks of morbidity and mortality during yearly epidemics and periodic pandemics. The genomic instability of IAV allows it to evade adaptive immune responses developed during prior infection. Of particular concern are pandemics which result from wholesale incorporation of viral genome sections from animal sources. These pandemic strains are radically different from circulating human strains and pose great risk for the human population. For these reasons, innate immunity plays a strong role in the initial containment of IAV infection. Soluble inhibitors present in respiratory lining fluids and blood provide a level of early protection against IAV. In general, these inhibitors act by binding to the viral hemagglutinin (HA). Surfactant protein D (SP-D) and mannose-binding lectin (MBL) attach to mannosylated glycans on the HA in a calcium dependent manner. In contrast, surfactant protein A, ficolins, and other inhibitors present sialic acid rich ligands to which the HA can bind. Among these inhibitors, SP-D seems to be the most potent due to its specific mode of binding to viral carbohydrates and its ability to strongly aggregate viral particles. We have studied specific properties of the N-terminal and collagen domain of SP-D that enable formation of highly multimerized molecules and cooperative binding among the multiple trimeric lectin domains in the protein. In addition, we have studied in depth the lectin activity of SP-D through expression of isolated lectin domains and targeted mutations of the SP-D lectin binding site. Through modifying specific residues around the saccharide binding pocket, antiviral activity of isolated lectin domains of SP-D can be markedly increased for seasonal strains of IAV. Wild-type SP-D causes little inhibition of pandemic IAV, but mutated versions of SP-D were able to inhibit pandemic IAV through enhanced binding to the reduced number of mannosylated glycans present on the HA of these strains. Through collaborative studies involving crystallography of isolated lectin domains of SP-D, glycomics analysis of the HA, and molecular modeling, the mechanism of binding of wild type and mutant forms of SP-D have been determined. These studies could guide investigation of the interactions of SP-D with other pathogens.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Boston University School of Medicine, Boston, MA, United States
| | - Xavier De Luna
- Boston University School of Medicine, Boston, MA, United States
| | | | | |
Collapse
|
8
|
van Eijk M, Rynkiewicz MJ, Khatri K, Leymarie N, Zaia J, White MR, Hartshorn KL, Cafarella TR, van Die I, Hessing M, Seaton BA, Haagsman HP. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. J Biol Chem 2018; 293:10646-10662. [PMID: 29769321 DOI: 10.1074/jbc.ra117.001430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure, including the lectin site conformation, but revealed a potential second nonlectin-binding site for glycans. IAV hemagglutination inhibition, IAV aggregation, and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn-303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3)-sialylated oligosaccharides. Glycan-binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures, whereas RhNCRD bound polylactosamine-containing glycans. The presence of the N-glycan in the CRD increases the glycan-binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs.
Collapse
Affiliation(s)
- Martin van Eijk
- From the Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands,
| | | | - Kshitij Khatri
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | - Irma van Die
- the Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands, and
| | - Martin Hessing
- the U-Protein Express B.V., Life Science Incubator, Utrecht Science Park, Yalelaan 62, 3584CM Utrecht, The Netherlands
| | | | - Henk P Haagsman
- From the Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
9
|
|
10
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
12
|
Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology 2016; 222:518-528. [PMID: 27817988 DOI: 10.1016/j.imbio.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Mannose binding lectin (MBL) is a serum collagenous C-type lectin that plays an important role in the innate immune protection against pathogens. Previously, human and mouse studies have demonstrated that MBL binds a broad range of pathogens that results in their neutralization through agglutination, enhanced phagocytosis, and/or complement activation via the lectin pathway. The role of MBL in chicken is not well understood although the MBL concentration in serum seems to correlate with protection against infections. To investigate the role of MBL in chicken further, recombinant chicken MBL (RcMBL) was produced in HeLa R19 cells and purified using mannan affinity chromatography followed by gel filtration. RcMBL was shown to be structurally and functionally similar to native chicken MBL (NcMBL) isolated from serum. RcMBL is expressed as an oligomeric protein (mixture of trimers and oligomerized trimers) with a monomeric mass of 26kDa as determined by mass spectrometry, corresponding to the predicted mass. Glycan array analysis indicated that RcMBL bound most strongly to high-mannose glycans but also glycans with terminal fucose and GlcNac residues. The biological activity of RcMBL was demonstrated via its capacity to agglutinate Salmonella Typhimurium and to inhibit the hemagglutination activity of influenza A virus. The production of a structurally well-characterized and functionally active RcMBL will facilitate detailed studies into the protective role of MBL in innate defense against pathogens in chicken and other avian species.
Collapse
|
13
|
Salgado D, Fischer R, Schillberg S, Twyman RM, Rasche S. Comparative evaluation of heterologous production systems for recombinant pulmonary surfactant protein D. Front Immunol 2014; 5:623. [PMID: 25538707 PMCID: PMC4259113 DOI: 10.3389/fimmu.2014.00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Commercial surfactant products derived from animal lungs are used for the treatment of respiratory diseases in premature neonates. These products contain lipids and the hydrophobic surfactant proteins B and C, which help to lower the surface tension in the lungs. Surfactant products are less effective when pulmonary diseases involve inflammatory complications because two hydrophilic surfactant proteins (A and D) are lost during the extraction process, yet surfactant protein D (SP-D) is a component of the innate immune system that helps to reduce lung inflammation. The performance of surfactant products could, therefore, be improved by supplementing them with an additional source of SP-D. Recombinant SP-D (rSP-D) is produced in mammalian cells and bacteria (Escherichia coli), and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-D, but the yields are low and the cost of production is high. In contrast, bacteria produce a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be achieved at a lower cost. We compare the efficiency of production of rSP-D in terms of the total yields achieved in each system and the amount of SP-D needed to meet the global demand for the treatment of pulmonary diseases, using respiratory distress syndrome as a case study.
Collapse
Affiliation(s)
- Daniela Salgado
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany ; Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | | | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| |
Collapse
|
14
|
Abstract
Influenza A and B viruses are highly contagious respiratory pathogens with a considerable medical and socioeconomical burden and known pandemic potential. Current influenza vaccines require annual updating and provide only partial protection in some risk groups. Due to the global spread of viruses with resistance to the M2 proton channel inhibitor amantadine or the neuraminidase inhibitor oseltamivir, novel antiviral agents with an original mode of action are urgently needed. We here focus on emerging options to interfere with the influenza virus entry process, which consists of the following steps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating, low pH-induced membrane fusion, and, finally, import of the viral ribonucleoprotein into the nucleus. We review the current functional and structural insights in the viral and cellular components of this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that at least some of these innovative concepts to block influenza virus entry will proceed from the proof of concept to a more advanced stage. Special attention is therefore given to the challenging issues of influenza virus (sub)type-dependent activity or potential drug resistance.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| |
Collapse
|
15
|
Olde Nordkamp MJM, van Eijk M, Urbanus RT, Bont L, Haagsman HP, Meyaard L. Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. J Leukoc Biol 2014; 96:105-11. [PMID: 24585933 DOI: 10.1189/jlb.3ab0213-092rr] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The collagenous C-type lectin, SP-D, is a multitrimeric glycoprotein present at mucosal surfaces and is involved in host defense against infections in mammals. SP-D has immunomodulatory properties, but the underlying mechanisms are incompletely understood. SP-D contains collagen domains. LAIR-1 is an inhibitory immune receptor at the cell surface of various immune-competent cells that binds collagen. We hypothesized that the immunomodulatory functions of SP-D can be mediated via interactions between its collagen domain and LAIR-1. Binding assays show that SP-D interacts via its collagenous domain with LAIR-1 and the related LAIR-2. This does not affect the mannan-binding capacities of SP-D, which induces cross-linking of LAIR-1 in a cellular reporter assay. Functional assays show that SP-D inhibits the production of FcαR-mediated reactive oxygen via LAIR-1. Our studies indicate that SP-D is a functional ligand of the immune inhibitory receptor LAIR-1. Thus, we have identified a novel pathway for the immunomodulatory functions of SP-D mediated via binding of its collagenous domains to LAIR-1. This may provide a mechanism for the unexplained immunomodulatory function of the collagenous domains of SP-D.
Collapse
Affiliation(s)
| | - Martin van Eijk
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; and
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Hematology, University Medical Centre Utrecht, the Netherlands
| | - Louis Bont
- Laboratory of Translational Immunology, Department of Immunology, and Department of Pediatrics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; and
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, and
| |
Collapse
|
16
|
Hillaire MLB, van Eijk M, Vogelzang-van Trierum SE, Fouchier RAM, Osterhaus ADME, Haagsman HP, Rimmelzwaan GF. Recombinant porcine surfactant protein D inhibits influenza A virus replication ex vivo. Virus Res 2014; 181:22-6. [PMID: 24389095 DOI: 10.1016/j.virusres.2013.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 01/17/2023]
Abstract
Influenza is a major burden to public health. Due to high mutation rates and selection pressure, mutant viruses emerge which are resistant to currently used antiviral drugs. Therefore, there is a need for the development of novel classes of antiviral drugs that suffer less from the emergence of resistant viruses. Antiviral drugs based on collectin-like surfactant protein D (SP-D) may fulfil these requirements. Especially porcine SP-D displays strong antiviral activity to influenza A viruses. In the present study the antiviral activity of recombinant porcine SP-D was investigated in ex vivo cultures of respiratory tract tissue infected with human influenza A virus of the H3N2 subtype. Porcine SP-D has antiviral activity in these test systems. It is suggested that porcine SP-D may be used as a venue to develop a novel class of antiviral drugs.
Collapse
Affiliation(s)
- Marine L B Hillaire
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin van Eijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands; Viroclinics Biosciences BV, Rotterdam, The Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands; Viroclinics Biosciences BV, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Hillaire MLB, van Eijk M, Nieuwkoop NJ, Vogelzang-van Trierum SE, Fouchier RAM, Osterhaus ADME, Haagsman HP, Rimmelzwaan GF. The number and position of N-linked glycosylation sites in the hemagglutinin determine differential recognition of seasonal and 2009 pandemic H1N1 influenza virus by porcine surfactant protein D. Virus Res 2012; 169:301-5. [PMID: 22921759 DOI: 10.1016/j.virusres.2012.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
Abstract
C-type lectins are important molecules of the innate immune system. These molecules, like surfactant protein D (SP-D) can recognize glycans on pathogens and neutralize these. Also influenza viruses are recognized by SP-D and their susceptibility to neutralization by SP-D is dependent on the number of N-linked glycosylation sites in the hemagglutinin in particular. Porcine SP-D displayed stronger neutralizing activity to human influenza A viruses than to swine influenza A viruses. Although viruses from these species differ with regard to the number of glycosylation sites in the hemagglutinin, the mechanism underlying the differential recognition by porcine SP-D is poorly understood. Here we investigated the molecular basis for the differential recognition of a seasonal H1N1 and a 2009 pandemic H1N1 virus by porcine SP-D. We demonstrated that the number and position of glycosylation sites determine viral susceptibility to the neutralizing activity of porcine SP-D. However, predicting the effect remains difficult as it was shown to be dependent on the strain and the position of the glycosylation sites.
Collapse
|
19
|
van Eijk M, Rynkiewicz MJ, White MR, Hartshorn KL, Zou X, Schulten K, Luo D, Crouch EC, Cafarella TR, Head JF, Haagsman HP, Seaton BA. A unique sugar-binding site mediates the distinct anti-influenza activity of pig surfactant protein D. J Biol Chem 2012; 287:26666-77. [PMID: 22685299 DOI: 10.1074/jbc.m112.368571] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains.
Collapse
Affiliation(s)
- Martin van Eijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Soluble host defense lectins in innate immunity to influenza virus. J Biomed Biotechnol 2012; 2012:732191. [PMID: 22665991 PMCID: PMC3362216 DOI: 10.1155/2012/732191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/21/2012] [Indexed: 12/24/2022] Open
Abstract
Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease.
Collapse
|
21
|
|