1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Fegan JE, Islam EA, Curran DM, Ng D, Au NYT, Currie EG, Zeppa JJ, Lam J, Schryvers AB, Moraes TF, Gray-Owen SD. Rational selection of TbpB variants yields a bivalent vaccine with broad coverage against Neisseria gonorrhoeae. NPJ Vaccines 2025; 10:10. [PMID: 39814726 PMCID: PMC11736018 DOI: 10.1038/s41541-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Neisseria gonorrhoeae is an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. The gonococcal transferrin binding protein B (TbpB) is an attractive candidate vaccine antigen. However, it exhibits high levels of antigenic variability, posing a significant obstacle in evoking a broadly protective immune response. Here, we utilize phylogenetic information to rationally select TbpB variants for inclusion into a gonococcal vaccine and identify two TbpB variants that together elicit a highly cross-reactive antibody response against a diverse panel of TbpB variants and clinically relevant gonococcal strains. This formulation performed well in experimental proxies of real-world usage, including eliciting bactericidal activity against diverse gonococcal strains and decreasing the median duration of colonization after vaginal infection in female mice. These data support the use of a combination of TbpB variants for a broadly protective gonococcal vaccine.
Collapse
Affiliation(s)
- Jamie E Fegan
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Epshita A Islam
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David M Curran
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dixon Ng
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Natalie Y T Au
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Elissa G Currie
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Joseph J Zeppa
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jessica Lam
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Trevor F Moraes
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Fegan JE, Islam EA, Curran DM, Ng D, Au N, Currie EG, Zeppa J, Lam J, Schryvers AB, Moraes TF, Gray-Owen SD. Rational selection of TbpB variants elucidates a bivalent vaccine formulation with broad spectrum coverage against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611798. [PMID: 39282273 PMCID: PMC11398527 DOI: 10.1101/2024.09.07.611798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Neisseria gonorrhoeae is the causative agent of gonorrhea, an on-going public health problem due in part to the lack of success with efforts to develop an efficacious vaccine to prevent this sexually transmitted infection. An attractive candidate vaccine antigen because of its essential function and surface exposure, the gonococcal transferrin binding protein B (TbpB) exhibits high levels of antigenic variability which poses a significant obstacle in evoking a broadly protective vaccine composition. Here, we utilize phylogenetic information to rationally select TbpB variants for inclusion into a potential gonococcal vaccine and identify two TbpB variants that when formulated together elicit a highly cross-reactive antibody response in both rabbits and mice against a diverse panel of TbpB variants and clinically relevant gonococcal strains. Further, this formulation performed well in experimental proxies of real-world usage, including eliciting bactericidal activity against 8 diverse gonococcal strains and decreasing the median duration of colonization after vaginal infection in female mice by two heterologous strains of N. gonorrhoeae . Together, these data support the use of a combination of TbpB variants for a broadly protective gonococcal vaccine.
Collapse
|
4
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Morrill SR, Saha S, Varki AP, Lewis WG, Ram S, Lewis AL. Gardnerella Vaginolysin Potentiates Glycan Molecular Mimicry by Neisseria gonorrhoeae. J Infect Dis 2023; 228:1610-1620. [PMID: 37722688 PMCID: PMC10681867 DOI: 10.1093/infdis/jiad391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.
Collapse
Affiliation(s)
- Sydney R Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sudeshna Saha
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Ajit P Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, California, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Shaughnessy J, Chabeda A, Tran Y, Zheng B, Nowak N, Steffens C, DeOliveira RB, Gulati S, Lewis LA, Maclean J, Moss JA, Wycoff KL, Ram S. An optimized Factor H-Fc fusion protein against multidrug-resistant Neisseria gonorrhoeae. Front Immunol 2022; 13:975676. [PMID: 36110842 PMCID: PMC9468773 DOI: 10.3389/fimmu.2022.975676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Y. Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Carolynn Steffens
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - James Maclean
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - John A. Moss
- Oak Crest Institute of Science, Monrovia, CA, United States
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
10
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
11
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
12
|
Shaughnessy J, Tran Y, Zheng B, DeOliveira RB, Gulati S, Song WC, Maclean JM, Wycoff KL, Ram S. Development of Complement Factor H-Based Immunotherapeutic Molecules in Tobacco Plants Against Multidrug-Resistant Neisseria gonorrhoeae. Front Immunol 2020; 11:583305. [PMID: 33193396 PMCID: PMC7649208 DOI: 10.3389/fimmu.2020.583305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci possess several mechanisms to evade killing by human complement, including binding of factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule that fuses domains 18-20 of FH containing a D-to-G mutation in domain 19 at position 1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an alternative, economical production platform. FH*/Fc was expressed in high yields in tobacco plants (300-600 mg/kg biomass). The activities of plant- and CHO-cell produced FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH* and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively reduced the duration and burden of colonization of two gonococcal strains tested in mice. FH*/Fc lost efficacy: i) in C6-/- mice (no terminal complement) and ii) when Fc was mutated to abrogate complement activation, suggesting that an intact complement was necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent promising prophylactic or adjunctive immunotherapeutics against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | | | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Shaughnessy J, Lewis LA, Zheng B, Carr C, Bass I, Gulati S, DeOliveira RB, Gose S, Reed GW, Botto M, Rice PA, Ram S. Human Factor H Domains 6 and 7 Fused to IgG1 Fc Are Immunotherapeutic against Neisseria gonorrhoeae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2700-2709. [PMID: 30266769 PMCID: PMC6200640 DOI: 10.4049/jimmunol.1701666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Novel therapeutics against multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococcal lipooligosaccharide often expresses lacto-N-neotetraose (LNnT), which becomes sialylated in vivo, enhancing factor H (FH) binding and contributing to the organism's ability to resist killing by complement. We previously showed that FH domains 18-20 (with a D-to-G mutation at position 1119 in domain 19) fused to Fc (FHD1119G/Fc) displayed complement-dependent bactericidal activity in vitro and attenuated gonococcal vaginal colonization of mice. Gonococcal lipooligosaccharide phase variation can result in loss of LNnT expression. Loss of sialylated LNnT, although associated with a considerable fitness cost, could decrease efficacy of FHD1119G/Fc. Similar to N. meningitidis, gonococci also bind FH domains 6 and 7 through Neisserial surface protein A (NspA). In this study, we show that a fusion protein comprising FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/Fc) bound to 15 wild-type antimicrobial resistant isolates of N. gonorrhoeae and to each of six lgtA gonococcal deletion mutants. FH6,7/Fc mediated complement-dependent killing of 8 of the 15 wild-type gonococcal isolates and effectively reduced the duration and burden of vaginal colonization of three gonococcal strains tested in wild-type mice, including two strains that resisted complement-dependent killing but on which FH6,7/Fc enhanced C3 deposition. FH/Fc lost efficacy when Fc was mutated to abrogate C1q binding and in C1q-/- mice, highlighting the requirement of the classical pathway for its activity. Targeting gonococci with FH6,7/Fc provides an additional immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Caleb Carr
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Isaac Bass
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Severin Gose
- San Francisco Department of Public Health, San Francisco, CA 94102; and
| | - George W Reed
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Botto
- Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
14
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
15
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Cagliani R, Forni D, Filippi G, Mozzi A, De Gioia L, Pontremoli C, Pozzoli U, Bresolin N, Clerici M, Sironi M. The mammalian complement system as an epitome of host-pathogen genetic conflicts. Mol Ecol 2016; 25:1324-39. [PMID: 26836579 DOI: 10.1111/mec.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an innate immunity effector mechanism; its action is antagonized by a wide array of pathogens and complement evasion determines the virulence of several infections. We investigated the evolutionary history of the complement system and of bacterial-encoded complement-interacting proteins. Complement components targeted by several pathogens evolved under strong selective pressure in primates, with selection acting on residues at the contact interface with microbial/viral proteins. Positively selected sites in CFH and C4BPA account for the human specificity of gonococcal infection. Bacterial interactors, evolved adaptively as well, with selected sites located at interaction surfaces with primate complement proteins. These results epitomize the expectation under a genetic conflict scenario whereby the host's and the pathogen's genes evolve within binding avoidance-binding seeking dynamics. In silico mutagenesis and protein-protein docking analyses supported this by showing that positively selected sites, both in the host's and in the pathogen's interacting partner, modulate binding.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.,Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
17
|
Wong SM, Shaughnessy J, Ram S, Akerley BJ. Defining the Binding Region in Factor H to Develop a Therapeutic Factor H-Fc Fusion Protein against Non-Typeable Haemophilus influenzae. Front Cell Infect Microbiol 2016; 6:40. [PMID: 27148489 PMCID: PMC4829610 DOI: 10.3389/fcimb.2016.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) cause a range of illnesses including otitis media, sinusitis, and exacerbation of chronic obstructive pulmonary disease, infections that contribute to the problem of antibiotic resistance and are themselves often intractable to standard antibiotic treatment regimens. We investigated a strategy to exploit binding of the complement inhibitor Factor H (FH) to NTHi as a functional target for an immunotherapeutic containing the NTHi binding domain of FH fused to the Fc domain of IgG1. Chimeric proteins containing the regions that most FH-binding bacteria use to engage human FH, domains 6 and 7 (FH6,7/Fc) and/or 18 through 20 (FH18-20/Fc), were evaluated for binding to NTHi. FH6,7/Fc bound strongly to each of seven NTHi clinical isolates tested and efficiently promoted complement-mediated killing by normal human serum. FH18-20/Fc bound weakly to three of the strains but did not promote complement dependent killing. Outer-membrane protein P5 has been implicated in FH binding by NTHi, and FH6,7/Fc binding was greatly diminished in five of seven P5 deficient isogenic mutant strains tested, implicating an alternative FH binding protein in some strains. Binding of FH18-20/Fc was decreased in the P5 mutant of one strain. A murine model was used to evaluate potential therapeutic application of FH6,7/Fc. FH6,7/Fc efficiently promoted binding of C3 to NTHi exposed to mouse serum, and intranasal delivery of FH6,7/Fc resulted in significantly enhanced clearance of NTHi from the lung. Moreover, a P5 deficient mutant was attenuated for survival in the lung model, suggesting that escape mutants lacking P5 would be less likely to replace strains susceptible to FH6,7/Fc. These results provide evidence for the potential utility of FH6,7/Fc as a therapeutic against NTHi lung infection. FH binding is a common property of many respiratory tract pathogens and FH/Fc chimeras may represent promising alternative or adjunctive therapeutics against such infections, which are often polymicrobial.
Collapse
Affiliation(s)
- Sandy M Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School Worcester, MA, USA
| | - Brian J Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
18
|
Shaughnessy J, Gulati S, Agarwal S, Unemo M, Ohnishi M, Su XH, Monks BG, Visintin A, Madico G, Lewis LA, Golenbock DT, Reed GW, Rice PA, Ram S. A Novel Factor H-Fc Chimeric Immunotherapeutic Molecule against Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2016; 196:1732-40. [PMID: 26773149 DOI: 10.4049/jimmunol.1500292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 12/07/2015] [Indexed: 01/10/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including N. gonorrhoeae, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the use of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to N. gonorrhoeae, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc but, unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical N. gonorrhoeae isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10 of 15 (67%) strains, and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Sarika Agarwal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine and Microbiology, Orebro University Hospital, SE-701 85 Orebro, Sweden
| | - Makoto Ohnishi
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xia-Hong Su
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing 210042, China
| | - Brian G Monks
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605; Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Alberto Visintin
- Centers for Therapeutic Innovation, Pfizer, Inc., Cambridge, MA 02139
| | - Guillermo Madico
- Section of Infectious Diseases, Boston Medical Center, Boston, MA 02118; and
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Douglas T Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - George W Reed
- Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester MA 01605
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605;
| |
Collapse
|
19
|
Sironi M, Cagliani R, Forni D, Clerici M. Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat Rev Genet 2015; 16:224-36. [PMID: 25783448 PMCID: PMC7096838 DOI: 10.1038/nrg3905] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infections are one of the major selective pressures acting on humans, and host-pathogen interactions contribute to shaping the genetic diversity of both organisms. Evolutionary genomic studies take advantage of experiments that natural selection has been performing over millennia. In particular, inter-species comparative genomic analyses can highlight the genetic determinants of infection susceptibility or severity. Recent examples show how evolution-guided approaches can provide new insights into host-pathogen interactions, ultimately clarifying the basis of host range and explaining the emergence of different diseases. We describe the latest developments in comparative immunology and evolutionary genetics, showing their relevance for understanding the molecular determinants of infection susceptibility in mammals.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- 1] Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy. [2] Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| |
Collapse
|
20
|
Rice PA. Editorial commentary: The shifting sands of gonococcal antimicrobial resistance. Clin Infect Dis 2014; 59:1092-4. [PMID: 25031290 DOI: 10.1093/cid/ciu526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter A Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester
| |
Collapse
|
21
|
Fusion protein comprising factor H domains 6 and 7 and human IgG1 Fc as an antibacterial immunotherapeutic. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1452-9. [PMID: 25143339 DOI: 10.1128/cvi.00444-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of antimicrobial resistance among several medically important pathogens represents a serious threat to human health globally and necessitates the development of novel therapeutics. Complement forms a key arm of innate immune defenses against invading pathogens. A mechanism of complement evasion employed by many pathogens is binding of complement inhibitors, including factor H (FH), a key downregulator of the alternative pathway. Most FH-binding bacteria engage FH through regions in FH spanned by domains 6 and 7 and/or 18 through 20. We created a chimeric protein that comprised human FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/HuFc) and tested its activity as an immunotherapeutic against Neisseria meningitidis, which binds FH through domains 6 and 7. FH6,7/HuFc bound to meningococci and effectively blocked FH binding to bacteria. FH6,7/HuFc enhanced human C3 and C4 deposition and facilitated complement-mediated killing in a dose-responsive manner; complement activation and killing were classical pathway dependent. To investigate in vivo efficacy, infant Wistar rats were treated intraperitoneally (IP) with different doses of FH6,7/HuFc and challenged 2 h later with serogroup C strain 4243 given IP. At 8 to 9 h after the challenge, the FH6,7/HuFc-treated rats had >100-fold fewer CFU per ml of blood than control animals pretreated with phosphate-buffered saline (PBS) or FH18-20/HuFc, which does not bind to meningococci (P < 0.0001). These data provide proof of concept of the utility of FH/Fc fusion proteins as anti-infective immunotherapeutics. Because many microbes share a common binding region(s) in FH, FH/Fc chimeric proteins may be a promising candidate for adjunctive therapy against drug-resistant pathogens.
Collapse
|
22
|
Abstract
Fusobacterium nucleatum is a ubiquitous member of the human oral flora and is associated with the development of periodontitis and a variety of other types of polymicrobial infections of the mucosa. In the oral cavity, this species is one of the few that is prevalent in both healthy and diseased subgingival plaque. Using microarray analysis, we examined the transcriptional response of F. nucleatum subspecies nucleatum to whole blood in order to identify some of the genetic responses that might occur during the transition from health to disease. From these studies, we identified a sialic acid catabolism operon that was induced by the presence of blood. We subsequently confirmed that this operon was inducible by the presence of synthetic sialic acid, but we found no evidence suggesting sialic acid was used as a major carbon source. However, this organism was found to possess a de novo synthesized surface sialylation ability that is widely conserved among the various F. nucleatum subspecies as well as in F. periodonticum. We provide evidence that fusobacterial sialylation does occur in the oral cavity irrespective of health status. Interestingly, only a minority of fusobacterial cells exhibit surface sialylation within dental plaque, whereas most cells are uniformly sialylated when grown in pure culture. The implications of these results are discussed.
Collapse
|
23
|
Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein. PLoS Pathog 2013; 9:e1003528. [PMID: 23935503 PMCID: PMC3731240 DOI: 10.1371/journal.ppat.1003528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/13/2013] [Indexed: 01/29/2023] Open
Abstract
Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. Neisseria meningitidis is a major cause of sepsis and meningitis in young children and adolescents. Although vaccines are currently available against several serogroups, a broadly effective vaccine against serogroup B is still needed. Factor H binding protein (fHbp) can bind the human complement regulator factor H (fH) and is an important meningococcal immunogen. fHbp is divided into three variant groups (V1, V2 and V3) and immunisation with V1 fHbp does not elicit cross-protection against meningococcus expressing fHbp V2 or V3, and vice versa. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae which we named Gonococcal homologue of factor H binding protein (Ghfp). We show that in contrast to fHbp, Ghfp is not expressed on the bacterial surface and is unable to bind to factor H. Surprisingly, we found that antibodies raised against Ghfp have the capacity to mediate protective immunity against N. meningitidis expressing any of the three variant groups of fHbp, and could provide a broadly protective vaccine against N. meningitidis.
Collapse
|
24
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
25
|
The rickettsial OmpB β-peptide of Rickettsia conorii is sufficient to facilitate factor H-mediated serum resistance. Infect Immun 2012; 80:2735-43. [PMID: 22615250 DOI: 10.1128/iai.00349-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogenic species of the spotted fever group Rickettsia are subjected to repeated exposures to the host complement system through cyclic infections of mammalian and tick hosts. The serum complement machinery is a formidable obstacle for bacteria to overcome if they endeavor to endure this endozoonotic cycle. We have previously demonstrated that that the etiologic agent of Mediterranean spotted fever, Rickettsia conorii, is susceptible to complement-mediated killing only in the presence of specific monoclonal antibodies. We have also shown that in the absence of particular neutralizing antibody, R. conorii is resistant to the effects of serum complement. We therefore hypothesized that the interactions between fluid-phase complement regulators and conserved rickettsial outer membrane-associated proteins are critical to mediate serum resistance. We demonstrate here that R. conorii specifically interacts with the soluble host complement inhibitor, factor H. Depletion of factor H from normal human serum renders R. conorii more susceptible to C3 and membrane attack complex deposition and to complement-mediated killing. We identified the autotransporter protein rickettsial OmpB (rOmpB) as a factor H ligand and further demonstrate that the rOmpB β-peptide is sufficient to mediate resistance to the bactericidal properties of human serum. Taken together, these data reveal an additional function for the highly conserved rickettsial surface cell antigen, rOmpB, and suggest that the ability to evade complement-mediated clearance from the hematogenous circulation is a novel virulence attribute for this class of pathogens.
Collapse
|
26
|
Haapasalo K, Vuopio J, Syrjänen J, Suvilehto J, Massinen S, Karppelin M, Järvelä I, Meri S, Kere J, Jokiranta TS. Acquisition of complement factor H is important for pathogenesis of Streptococcus pyogenes infections: evidence from bacterial in vitro survival and human genetic association. THE JOURNAL OF IMMUNOLOGY 2011; 188:426-35. [PMID: 22140259 DOI: 10.4049/jimmunol.1102545] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptococcus pyogenes (or group A streptococcus [GAS]) is a major human pathogen causing infections, such as tonsillitis, erysipelas, and sepsis. Several GAS strains bind host complement regulator factor H (CFH) via its domain 7 and, thereby, evade complement attack and C3b-mediated opsonophagocytosis. Importance of CFH binding for survival of GAS has been poorly studied because removal of CFH from plasma or blood causes vigorous complement activation, and specific inhibitors of the interaction have not been available. In this study, we found that activation of human complement by different GAS strains (n = 38) correlated negatively with binding of CFH via its domains 5-7. The importance of acquisition of host CFH for survival of GAS in vitro was studied next by blocking the binding with recombinant CFH5-7 lacking the regulatory domains 1-4. Using this fragment in full human blood resulted in death or radically reduced multiplication of all of the studied CFH-binding GAS strains. To study the importance of CFH binding in vivo (i.e., for pathogenesis of streptococcal infections), we used our recent finding that GAS binding to CFH is diminished in vitro by polymorphism 402H, which is also associated with age-related macular degeneration. We showed that allele 402H is suggested to be associated with protection from erysipelas (n = 278) and streptococcal tonsillitis (n = 209) compared with controls (n = 455) (p < 0.05). Taken together, the bacterial in vitro survival data and human genetic association revealed that binding of CFH is important for pathogenesis of GAS infections and suggested that inhibition of CFH binding can be a novel therapeutic approach in GAS infections.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|