1
|
Unique Tropism and Entry Mechanism of Mumps Virus. Viruses 2021; 13:v13091746. [PMID: 34578327 PMCID: PMC8471308 DOI: 10.3390/v13091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mumps virus (MuV) is an important human pathogen that causes parotitis, orchitis, oophoritis, meningitis, encephalitis, and sensorineural hearing loss. Although mumps is a vaccine-preventable disease, sporadic outbreaks have occurred worldwide, even in highly vaccinated populations. MuV not only causes systemic infection but also has a unique tropism to glandular tissues and the central nervous system. In general, tropism can be defined by multiple factors in the viral life cycle, including its entry, interaction with host factors, and host-cell immune responses. Although the underlying mechanisms of MuV tropism remain to be fully understood, recent studies on virus-host interactions have provided insights into viral pathogenesis. This review was aimed at summarizing the entry process of MuV by focusing on the glycan receptors, particularly the recently identified receptors with a trisaccharide core motif, and their interactions with the viral attachment proteins. Here, we describe the receptor structures, their distribution in the human body, and the recently identified host factors for MuV and analyze their relationship with MuV tropism.
Collapse
|
2
|
Azarm KD, Lee B. Differential Features of Fusion Activation within the Paramyxoviridae. Viruses 2020; 12:v12020161. [PMID: 32019182 PMCID: PMC7077268 DOI: 10.3390/v12020161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process.
Collapse
|
3
|
Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. J Biol Chem 2020; 295:2771-2786. [PMID: 31949044 DOI: 10.1074/jbc.rev119.009961] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Research in the last decade has uncovered many new paramyxoviruses, airborne agents that cause epidemic diseases in animals including humans. Most paramyxoviruses enter epithelial cells of the airway using sialic acid as a receptor and cause only mild disease. However, others cross the epithelial barrier and cause more severe disease. For some of these viruses, the host receptors have been identified, and the mechanisms of cell entry have been elucidated. The tetrameric attachment proteins of paramyxoviruses have vastly different binding affinities for their cognate receptors, which they contact through different binding surfaces. Nevertheless, all input signals are converted to the same output: conformational changes that trigger refolding of trimeric fusion proteins and membrane fusion. Experiments with selectively receptor-blinded viruses inoculated into their natural hosts have provided insights into tropism, identifying the cells and tissues that support growth and revealing the mechanisms of pathogenesis. These analyses also shed light on diabolically elegant mechanisms used by morbilliviruses, including the measles virus, to promote massive amplification within the host, followed by efficient aerosolization and rapid spread through host populations. In another paradigm of receptor-facilitated severe disease, henipaviruses, including Nipah and Hendra viruses, use different members of one protein family to cause zoonoses. Specific properties of different paramyxoviruses, like neurotoxicity and immunosuppression, are now understood in the light of receptor specificity. We propose that research on the specific receptors for several newly identified members of the Paramyxoviridae family that may not bind sialic acid is needed to anticipate their zoonotic potential and to generate effective vaccines and antiviral compounds.
Collapse
Affiliation(s)
| | - Alex R Generous
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota 55905
| | - Iris Yousaf
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota 55905
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
4
|
Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. J Virol 2020; 94:JVI.01732-19. [PMID: 31619562 DOI: 10.1128/jvi.01732-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Mumps virus (MuV), an enveloped negative-strand RNA virus belonging to the family Paramyxoviridae, enters the host cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin-neuraminidase (MuV-HN) and a fusion (F) protein. However, how the binding of MuV-HN to glycan receptors triggers membrane fusion is not well understood. The crystal structure of the MuV-HN head domain forms a tetramer (dimer of dimers) like other paramyxovirus attachment proteins. In the structure, a sulfate ion (SO4 2-) was found at the interface between two dimers, which may be replaced by a hydrogen phosphate ion (HPO4 2-) under physiological conditions. The anion is captured by the side chain of a positively charged arginine residue at position 139 of one monomer each from both dimers. Substitution of alanine or lysine for arginine at this position compromised the fusion support activity of MuV-HN without affecting its cell surface expression, glycan-receptor binding, and interaction with the F protein. Furthermore, the substitution appeared to affect the tetramer formation of the head domain as revealed by blue native-PAGE analysis. These results, together with our previous similar findings with the measles virus attachment protein head domain, suggest that the dimer-dimer interaction within the tetramer may play an important role in triggering membrane fusion during paramyxovirus entry.IMPORTANCE Despite the use of effective live vaccines, mumps outbreaks still occur worldwide. Mumps virus (MuV) infection typically causes flu-like symptoms and parotid gland swelling but sometimes leads to orchitis, oophoritis, and neurological complications, such as meningitis, encephalitis, and deafness. MuV enters the host cell through membrane fusion mediated by two viral proteins, a receptor-binding attachment protein, and a fusion protein, but its detailed mechanism is not fully understood. In this study, we show that the tetramer (dimer of dimers) formation of the MuV attachment protein head domain is supported by an anion located at the interface between two dimers and that the dimer-dimer interaction plays an important role in triggering the activation of the fusion protein and causing membrane fusion. These results not only further our understanding of MuV entry but provide useful information about a possible target for antiviral drugs.
Collapse
|
5
|
Duro N, Varma S. Role of Structural Fluctuations in Allosteric Stimulation of Paramyxovirus Hemagglutinin-Neuraminidase. Structure 2019; 27:1601-1611.e2. [DOI: 10.1016/j.str.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
|
6
|
Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. J Virol 2019; 93:JVI.00577-19. [PMID: 30971473 DOI: 10.1128/jvi.00577-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/02/2023] Open
Abstract
Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.
Collapse
|
7
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
8
|
Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins. J Virol 2016; 90:10762-10773. [PMID: 27654290 DOI: 10.1128/jvi.01469-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
Abstract
The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. IMPORTANCE Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G) and fusion (F) glycoproteins. Binding of G to the ephrinB2 or ephrinB3 cell receptors triggers conformational changes in G that in turn cause F to undergo conformational changes that result in virus-host cell membrane fusion and viral entry. It is currently unknown, however, which specific regions of G and F interact during membrane fusion. Past efforts to determine the interacting regions have relied mainly on coimmunoprecipitation, a technique with some pitfalls. We developed a flow-cytometric assay to study membrane protein-protein interactions, and using this assay we report a bidentate interaction whereby both the head and stalk regions of NiV G interact with NiV F, a new finding for the paramyxovirus family.
Collapse
|
9
|
Yun BL, Guan XL, Liu YZ, Zhang Y, Wang YQ, Qi XL, Cui HY, Liu CJ, Zhang YP, Gao HL, Gao L, Li K, Gao YL, Wang XM. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. J Biol Chem 2016; 291:14815-25. [PMID: 27226547 DOI: 10.1074/jbc.m115.711382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bing-Ling Yun
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Lu Guan
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Zhen Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yao Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Qiang Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Le Qi
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Yu Cui
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Chang-Jun Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yan-Ping Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Lei Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Li Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Kai Li
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yu-Long Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Mei Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and the Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
10
|
Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep 2015; 5:15584. [PMID: 26498473 PMCID: PMC4620442 DOI: 10.1038/srep15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.
Collapse
|
11
|
Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus. J Virol 2015; 89:7235-47. [PMID: 25948743 DOI: 10.1128/jvi.00773-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. IMPORTANCE Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses.
Collapse
|
12
|
Electron tomography imaging of surface glycoproteins on human parainfluenza virus 3: association of receptor binding and fusion proteins before receptor engagement. mBio 2015; 6:e02393-14. [PMID: 25691596 PMCID: PMC4337575 DOI: 10.1128/mbio.02393-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. Human parainfluenza virus 3 (HPIV3) is an enveloped, ssRNA virus that can cause serious respiratory illness, especially in children. HPIV3, like most other paramyxoviruses, uses two specialized proteins to mediate cell entry: the fusion protein (F) and the receptor binding protein, hemagglutinin-neuraminidase (HN). F becomes activated to mediate fusion during entry when it is triggered by a signal from HN. Here we used electron tomography to reconstruct the 3-dimensional ultrastructure of HPIV3. From these structures, we could discern the distribution and, in some cases, conformation of HN and F proteins, which provided an understanding of their interrelationship on virions. HN is found in arrays alone in one conformation and interspersed with prefusion F trimers in another. The data support a model of paramyxovirus membrane fusion in which HN associates with F before receptor engagement, and receptor engagement by the globular head of HN switches the HN-F interaction into one of fusion activation.
Collapse
|
13
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
14
|
Mateo M, Navaratnarajah CK, Cattaneo R. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Curr Opin Virol 2014; 5:16-23. [PMID: 24492202 PMCID: PMC4028398 DOI: 10.1016/j.coviro.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
A quartet of attachment proteins and a trio of fusion protein subunits play the cell entry concert of parainfluenza viruses. While many of these viruses bind sialic acid to enter cells, wild type measles binds exclusively two tissue-specific proteins, the lymphatic receptor signaling lymphocytic activation molecule (SLAM), and the epithelial receptor nectin-4. SLAM binds near the stalk-head junction of the hemagglutinin. Nectin-4 binds a hydrophobic groove located between blades 4 and 5 of the hemagglutinin β-propeller head. The mutated vaccine strain hemagglutinin binds in addition the ubiquitous protein CD46, which explains attenuation. The measles virus entry concert has four movements. Andante misterioso: the virus takes over the immune system. Allegro con brio: it rapidly spreads in the upper airway's epithelia. 'Targeting' fugue: the versatile orchestra takes off. Presto furioso: the virus exits the host with thunder. Be careful: music is contagious.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- Humans
- Measles/genetics
- Measles/metabolism
- Measles/virology
- Measles virus/chemistry
- Measles virus/genetics
- Measles virus/metabolism
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
Affiliation(s)
- Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
The measles virus hemagglutinin stalk: structures and functions of the central fusion activation and membrane-proximal segments. J Virol 2014; 88:6158-67. [PMID: 24648460 DOI: 10.1128/jvi.02846-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The measles virus (MeV) membrane fusion apparatus consists of a fusion protein trimer and an attachment protein tetramer. To trigger membrane fusion, the heads of the MeV attachment protein, hemagglutinin (H), bind cellular receptors while the 96-residue-long H stalk transmits the triggering signal. Structural and functional studies of the triggering mechanism of other paramyxoviruses suggest that receptor binding to their hemagglutinin-neuraminidase (HN) results in signal transmission through the central segments of their stalks. To gain insight into H-stalk structure and function, we individually replaced its residues with cysteine. We then assessed how stable the mutant proteins are, how efficiently they can be cross-linked by disulfide bonds, whether cross-linking results in loss of function, and, in this case, whether disulfide bond reduction restores function. While many residues in the central segment of the stalk and in the spacer segment above it can be efficiently cross-linked by engineered disulfide bonds, we report here that residues 59 to 79 cannot, suggesting that the 20 membrane-proximal residues are not engaged in a tetrameric structure. Rescue-of-function studies by disulfide bond reduction resulted in the redefinition and extension of the central fusion-activation segment as covering residues 84 to 117. In particular, we identified four residues located between positions 92 and 99, the function of which cannot be restored by disulfide bond reduction after cysteine mutagenesis. These mutant H proteins reached the cell surface as complex oligomers but could not trigger membrane fusion. We discuss these observations in the context of the stalk exposure model of membrane fusion triggering by paramyxoviruses. IMPORTANCE Measles virus, while being targeted for eradication, still causes significant morbidity and mortality. Here, we seek to understand how it enters cells by membrane fusion. Two viral integral membrane glycoproteins (hemagglutinin tetramers and fusion protein trimers) mediate the concerted receptor recognition and membrane fusion processes. Since previous studies have suggested that the hemagglutinin stalk transmits the triggering signal to the fusion protein trimer, we completed an analysis of its structure and function by systematic Cys mutagenesis. We report that while certain residues of the central stalk segment confer specificity to the interaction with the fusion protein trimer, others are necessary to allow folding of the H-oligomer in a standard conformation conducive to fusion triggering, and still other residues sustain the conformational change that transmits the fusion-triggering signal.
Collapse
|
16
|
Abstract
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Collapse
|
17
|
Identification of a region in the stalk domain of the nipah virus receptor binding protein that is critical for fusion activation. J Virol 2013; 87:10980-96. [PMID: 23903846 DOI: 10.1128/jvi.01646-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal.
Collapse
|
18
|
Individual N-glycans added at intervals along the stalk of the Nipah virus G protein prevent fusion but do not block the interaction with the homologous F protein. J Virol 2013; 87:3119-29. [PMID: 23283956 DOI: 10.1128/jvi.03084-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.
Collapse
|
19
|
Wei Y, Feng K, Yao X, Cai H, Li J, Mirza AM, Iorio RM, Li J. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion. J Virol 2012; 86:11800-14. [PMID: 22915815 PMCID: PMC3486300 DOI: 10.1128/jvi.00232-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/12/2012] [Indexed: 11/20/2022] Open
Abstract
The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.
Collapse
Affiliation(s)
- Yongwei Wei
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Kurtis Feng
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Xiangjie Yao
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Hui Cai
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health
| | - Anne M. Mirza
- Department of Microbiology and Physiological Systems
| | - Ronald M. Iorio
- Department of Microbiology and Physiological Systems
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jianrong Li
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
- Division of Environmental Health Sciences, College of Public Health
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Mechanism for active membrane fusion triggering by morbillivirus attachment protein. J Virol 2012; 87:314-26. [PMID: 23077316 DOI: 10.1128/jvi.01826-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.
Collapse
|
21
|
Navaratnarajah CK, Negi S, Braun W, Cattaneo R. Membrane fusion triggering: three modules with different structure and function in the upper half of the measles virus attachment protein stalk. J Biol Chem 2012; 287:38543-51. [PMID: 23007387 DOI: 10.1074/jbc.m112.410563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The measles virus (MV) fusion apparatus consists of a fusion protein and an attachment protein named hemagglutinin (H). After receptor-binding through its cuboidal head, the H-protein transmits the fusion-triggering signal through its stalk to the fusion protein. However, the structural basis of signal transmission is unclear because only structures of H-heads without their stalk have been solved. On the other hand, the entire ectodomain structure of the hemagglutinin-neuraminidase protein of another Paramyxovirus revealed a four-helix bundle stalk. To probe the structure of the 95-residue MV H-stalk we individually substituted head-proximal residues (positions 103-153) with cysteine, and biochemically and functionally characterized the resultant proteins. Our results indicate that most residues in the central segment (positions 103-117) can be cross-linked by engineered disulfide bonds, and thus may be engaged in a tetrameric structure. While covalent tetramerization disrupts fusion triggering function, disulfide bond reduction restores it in most positions except Asp-113. The next stalk segment (residues 123-138) also has high propensity to form covalent tetramers, but since these cross-links have little or no effect on function, it can conduct the fusion-triggering signal while remaining in a stabilized tetrameric configuration. This segment may act as a spacer, maintaining H-heads at an optimal height. Finally, the head-proximal segment (residues 139-154) has very limited propensity to trap tetramers, suggesting bifurcation into two flexible linkers clamped by inter-subunit covalent links formed by natural Cys-139 and Cys-154. We discuss the modular structure of the MV H-stalk in the context of membrane fusion triggering and cell entry by Paramyxoviruses.
Collapse
Affiliation(s)
- Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
22
|
Apte-Sengupta S, Negi S, Leonard VHJ, Oezguen N, Navaratnarajah CK, Braun W, Cattaneo R. Base of the measles virus fusion trimer head receives the signal that triggers membrane fusion. J Biol Chem 2012; 287:33026-35. [PMID: 22859308 DOI: 10.1074/jbc.m112.373308] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses.
Collapse
Affiliation(s)
- Swapna Apte-Sengupta
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Cysteines in the stalk of the nipah virus G glycoprotein are located in a distinct subdomain critical for fusion activation. J Virol 2012; 86:6632-42. [PMID: 22496210 DOI: 10.1128/jvi.00076-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion.
Collapse
|
24
|
The second receptor binding site of the globular head of the Newcastle disease virus hemagglutinin-neuraminidase activates the stalk of multiple paramyxovirus receptor binding proteins to trigger fusion. J Virol 2012; 86:5730-41. [PMID: 22438532 DOI: 10.1128/jvi.06793-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.
Collapse
|
25
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7010, USA.
| | | |
Collapse
|
26
|
Farzan SF, Palermo LM, Yokoyama CC, Orefice G, Fornabaio M, Sarkar A, Kellogg GE, Greengard O, Porotto M, Moscona A. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. J Biol Chem 2011; 286:37945-37954. [PMID: 21799008 PMCID: PMC3207398 DOI: 10.1074/jbc.m111.256248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/26/2011] [Indexed: 11/06/2022] Open
Abstract
Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Laura M Palermo
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Christine C Yokoyama
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Gianmarco Orefice
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Micaela Fornabaio
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Aurijit Sarkar
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Glen E Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Olga Greengard
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021; Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029
| | - Matteo Porotto
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Anne Moscona
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
27
|
Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein. J Virol 2011; 85:12867-80. [PMID: 21976650 DOI: 10.1128/jvi.05873-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.
Collapse
|