1
|
Segura E, Mehta A, Marsolais M, Quan XR, Zhao J, Sauvé R, Spafford JD, Parent L. An ancestral MAGUK protein supports the modulation of mammalian voltage-gated Ca 2+ channels through a conserved Ca Vβ-like interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183439. [PMID: 32814116 DOI: 10.1016/j.bbamem.2020.183439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
Eukaryote voltage-gated Ca2+ channels of the CaV2 channel family are hetero-oligomers formed by the pore-forming CaVα1 protein assembled with auxiliary CaVα2δ and CaVβ subunits. CaVβ subunits are formed by a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain connected through a HOOK domain. The GK domain binds a conserved cytoplasmic region of the pore-forming CaVα1 subunit referred as the "AID". Herein we explored the phylogenetic and functional relationship between CaV channel subunits in distant eukaryotic organisms by investigating the function of a MAGUK protein (XM_004990081) cloned from the choanoflagellate Salpingoeca rosetta (Sro). This MAGUK protein (Sroβ) features SH3 and GK structural domains with a 25% primary sequence identity to mammalian CaVβ. Recombinant expression of its cDNA with mammalian high-voltage activated Ca2+ channel CaV2.3 in mammalian HEK cells produced robust voltage-gated inward Ca2+ currents with typical activation and inactivation properties. Like CaVβ, Sroβ prevents fast degradation of total CaV2.3 proteins in cycloheximide assays. The three-dimensional homology model predicts an interaction between the GK domain of Sroβ and the AID motif of the pore-forming CaVα1 protein. Substitution of AID residues Trp (W386A) and Tyr (Y383A) significantly impaired co-immunoprecipitation of CaV2.3 with Sroβ and functional upregulation of CaV2.3 currents. Likewise, a 6-residue deletion within the GK domain of Sroβ, similar to the locus found in mammalian CaVβ, significantly reduced peak current density. Altogether our data demonstrate that an ancestor MAGUK protein reconstitutes the biophysical and molecular features responsible for channel upregulation by mammalian CaVβ through a minimally conserved molecular interface.
Collapse
Affiliation(s)
- Emilie Segura
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Mireille Marsolais
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Xin R Quan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Juan Zhao
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Rémy Sauvé
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada.
| |
Collapse
|
2
|
Williams B, Lopez JA, Maddox JW, Lee A. Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Ca v1.4 Ca 2+ channels. J Biol Chem 2020; 295:17215-17226. [PMID: 33037074 DOI: 10.1074/jbc.ra120.014138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated Cav1 and Cav2 Ca2+ channels are comprised of a pore-forming α1 subunit (Cav1.1-1.4, Cav2.1-2.3) and auxiliary β (β1-4) and α2δ (α2δ-1-4) subunits. The properties of these channels vary with distinct combinations of Cav subunits and alternative splicing of the encoding transcripts. Therefore, the impact of disease-causing mutations affecting these channels may depend on the identities of Cav subunits and splice variants. Here, we analyzed the effects of a congenital stationary night blindness type 2 (CSNB2)-causing mutation, I745T (IT), in Cav1.4 channels typical of those in human retina: Cav1.4 splice variants with or without exon 47 (Cav1.4+ex47 and Cav1.4Δex47, respectively), and the auxiliary subunits, β2X13 and α2δ-4. We find that IT caused both Cav1.4 splice variants to activate at significantly more negative voltages and with slower deactivation kinetics than the corresponding WT channels. These effects of the IT mutation, along with unexpected alterations in ion selectivity, were generally larger in channels lacking exon 47. The weaker ion selectivity caused by IT led to hyperpolarizing shifts in the reversal potential and large outward currents that were evident in channels containing the auxiliary subunits β2X13 and α2δ-4 but not in those with β2A and α2δ-1. We conclude that the IT mutation stabilizes channel opening and alters ion selectivity of Cav1.4 in a manner that is strengthened by exclusion of exon 47 and inclusion of β2X13 and α2δ-4. Our results reveal complex actions of IT in modifying the properties of Cav1.4 channels, which may influence the pathological consequences of this mutation in retinal photoreceptors.
Collapse
Affiliation(s)
- Brittany Williams
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa USA
| | - Josue A Lopez
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA
| | - J Wesley Maddox
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA.
| |
Collapse
|
3
|
Schneider T, Neumaier F, Hescheler J, Alpdogan S. Cav2.3 R-type calcium channels: from its discovery to pathogenic de novo CACNA1E variants: a historical perspective. Pflugers Arch 2020; 472:811-816. [PMID: 32529299 PMCID: PMC7351833 DOI: 10.1007/s00424-020-02395-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
So-called pharmacoresistant (R-type) voltage-gated Ca2+ channels are structurally only partially characterized. Most of them are encoded by the CACNA1E gene and are expressed as different Cav2.3 splice variants (variant Cav2.3a to Cav2.3e or f) as the ion conducting subunit. So far, no inherited disease is known for the CACNA1E gene but recently spontaneous mutations leading to early death were identified, which will be brought into focus. In addition, a short historical overview may highlight the development to understand that upregulation during aging, easier activation by spontaneous mutations or lack of bioavailable inorganic cations (Zn2+ and Cu2+) may lead to similar pathologies caused by cellular overexcitation.
Collapse
Affiliation(s)
| | - F Neumaier
- Universitat zu Koln, 50931, Köln, Germany
| | | | - S Alpdogan
- Universitat zu Koln, 50931, Köln, Germany
| |
Collapse
|
4
|
Helbig KL, Lauerer RJ, Bahr JC, Souza IA, Myers CT, Uysal B, Schwarz N, Gandini MA, Huang S, Keren B, Mignot C, Afenjar A, Billette de Villemeur T, Héron D, Nava C, Valence S, Buratti J, Fagerberg CR, Soerensen KP, Kibaek M, Kamsteeg EJ, Koolen DA, Gunning B, Schelhaas HJ, Kruer MC, Fox J, Bakhtiari S, Jarrar R, Padilla-Lopez S, Lindstrom K, Jin SC, Zeng X, Bilguvar K, Papavasileiou A, Xing Q, Zhu C, Boysen K, Vairo F, Lanpher BC, Klee EW, Tillema JM, Payne ET, Cousin MA, Kruisselbrink TM, Wick MJ, Baker J, Haan E, Smith N, Sadeghpour A, Davis EE, Katsanis N, Corbett MA, MacLennan AH, Gecz J, Biskup S, Goldmann E, Rodan LH, Kichula E, Segal E, Jackson KE, Asamoah A, Dimmock D, McCarrier J, Botto LD, Filloux F, Tvrdik T, Cascino GD, Klingerman S, Neumann C, Wang R, Jacobsen JC, Nolan MA, Snell RG, Lehnert K, Sadleir LG, Anderlid BM, Kvarnung M, Guerrini R, Friez MJ, Lyons MJ, Leonhard J, Kringlen G, Casas K, El Achkar CM, Smith LA, Rotenberg A, Poduri A, Sanchis-Juan A, Carss KJ, Rankin J, Zeman A, Raymond FL, Blyth M, Kerr B, Ruiz K, Urquhart J, Hughes I, Banka S, Hedrich UB, Scheffer IE, Helbig I, Zamponi GW, Lerche H, Mefford HC, Allori A, Angrist M, Ashley P, Bidegain M, Boyd B, Chambers E, Cope H, Cotten CM, Curington T, Davis EE, Ellestad S, Fisher K, French A, Gallentine W, Goldberg R, Hill K, Kansagra S, Katsanis N, Katsanis S, Kurtzberg J, Marcus J, McDonald M, Mikati M, Miller S, Murtha A, Perilla Y, Pizoli C, Purves T, Ross S, Sadeghpour A, Smith E, Wiener J. De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. Am J Hum Genet 2018; 103:666-678. [PMID: 30343943 DOI: 10.1016/j.ajhg.2018.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
Collapse
|
5
|
Hering S, Zangerl-Plessl EM, Beyl S, Hohaus A, Andranovits S, Timin EN. Calcium channel gating. Pflugers Arch 2018; 470:1291-1309. [PMID: 29951751 PMCID: PMC6096772 DOI: 10.1007/s00424-018-2163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tuned calcium entry through voltage-gated calcium channels is a key requirement for many cellular functions. This is ensured by channel gates which open during membrane depolarizations and seal the pore at rest. The gating process is determined by distinct sub-processes: movement of voltage-sensing domains (charged S4 segments) as well as opening and closure of S6 gates. Neutralization of S4 charges revealed that pore opening of CaV1.2 is triggered by a "gate releasing" movement of all four S4 segments with activation of IS4 (and IIIS4) being a rate-limiting stage. Segment IS4 additionally plays a crucial role in channel inactivation. Remarkably, S4 segments carrying only a single charged residue efficiently participate in gating. However, the complete set of S4 charges is required for stabilization of the open state. Voltage clamp fluorometry, the cryo-EM structure of a mammalian calcium channel, biophysical and pharmacological studies, and mathematical simulations have all contributed to a novel interpretation of the role of voltage sensors in channel opening, closure, and inactivation. We illustrate the role of the different methodologies in gating studies and discuss the key molecular events leading CaV channels to open and to close.
Collapse
Affiliation(s)
- S Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - E-M Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - A Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Andranovits
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - E N Timin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
6
|
S4-S5 linker movement during activation and inactivation in voltage-gated K + channels. Proc Natl Acad Sci U S A 2018; 115:E6751-E6759. [PMID: 29959207 DOI: 10.1073/pnas.1719105115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The S4-S5 linker physically links voltage sensor and pore domain in voltage-gated ion channels and is essential for electromechanical coupling between both domains. Little dynamic information is available on the movement of the cytosolic S4-S5 linker due to lack of a direct electrical or optical readout. To understand the movements of the gating machinery during activation and inactivation, we incorporated fluorescent unnatural amino acids at four positions along the linker of the Shaker KV channel. Using two-color voltage-clamp fluorometry, we compared S4-S5 linker movements with charge displacement, S4 movement, and pore opening. We found that the proximal S4-S5 linker moves with the S4 helix throughout the gating process, whereas the distal portion undergoes a separate motion related to late gating transitions. Both pore and S4-S5 linker undergo rearrangements during C-type inactivation. In presence of accelerated C-type inactivation, the energetic coupling between movement of the distal S4-S5 linker and pore opening disappears.
Collapse
|
7
|
Bourdin B, Briot J, Tétreault MP, Sauvé R, Parent L. Negatively charged residues in the first extracellular loop of the L-type Ca V1.2 channel anchor the interaction with the Ca Vα2δ1 auxiliary subunit. J Biol Chem 2017; 292:17236-17249. [PMID: 28864774 PMCID: PMC5655503 DOI: 10.1074/jbc.m117.806893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes. Co-expression of CaVα2δ1 with CaVβ/CaVα1 proteins reconstitutes the functional properties of native L-type currents, but the interacting domains at the CaV1.2/CaVα2δ1 interface are unknown. Here, a homology-based model of CaV1.2 identified protein interfaces between the extracellular domain of CaVα2δ1 and the extracellular loops of the CaVα1 protein in repeats I (IS1S2 and IS5S6), II (IIS5S6), and III (IIIS5S6). Insertion of a 9-residue hemagglutinin epitope in IS1S2, but not in IS5S6 or in IIS5S6, prevented the co-immunoprecipitation of CaV1.2 with CaVα2δ1. IS1S2 contains a cluster of three conserved negatively charged residues Glu-179, Asp-180, and Asp-181 that could contribute to non-bonded interactions with CaVα2δ1. Substitutions of CaV1.2 Asp-181 impaired the co-immunoprecipitation of CaVβ/CaV1.2 with CaVα2δ1 and the CaVα2δ1-dependent shift in voltage-dependent activation gating. In contrast, single substitutions in CaV1.2 in neighboring positions in the same loop (179, 180, and 182–184) did not significantly alter the functional up-regulation of CaV1.2 whole-cell currents. However, a negatively charged residue at position 180 was necessary to convey the CaVα2δ1-mediated shift in the activation gating. We also found a more modest contribution from the positively charged Arg-1119 in the extracellular pore region in repeat III of CaV1.2. We conclude that CaV1.2 Asp-181 anchors the physical interaction that facilitates the CaVα2δ1-mediated functional modulation of CaV1.2 currents. By stabilizing the first extracellular loop of CaV1.2, CaVα2δ1 may up-regulate currents by promoting conformations of the voltage sensor that are associated with the channel's open state.
Collapse
Affiliation(s)
- Benoîte Bourdin
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| | - Marie-Philippe Tétreault
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Rémy Sauvé
- From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| | - Lucie Parent
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada .,From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| |
Collapse
|
8
|
Segura E, Bourdin B, Tétreault MP, Briot J, Allen BG, Mayer G, Parent L. Proteolytic cleavage of the hydrophobic domain in the Ca Vα2δ1 subunit improves assembly and activity of cardiac Ca V1.2 channels. J Biol Chem 2017; 292:11109-11124. [PMID: 28495885 DOI: 10.1074/jbc.m117.784355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVβ, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.
Collapse
Affiliation(s)
- Emilie Segura
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benoîte Bourdin
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-Philippe Tétreault
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Bruce G Allen
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Médecine, Faculté de Médecine
| | - Gaétan Mayer
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,the Faculté de Pharmacie, and
| | - Lucie Parent
- From the Départements de Pharmacologie et Physiologie and .,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
9
|
Zhao J, Blunck R. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. eLife 2016; 5. [PMID: 27710769 PMCID: PMC5092046 DOI: 10.7554/elife.18130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023] Open
Abstract
Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| |
Collapse
|
10
|
Tétreault MP, Bourdin B, Briot J, Segura E, Lesage S, Fiset C, Parent L. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity. J Biol Chem 2016; 291:4826-43. [PMID: 26742847 DOI: 10.1074/jbc.m115.692178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Indexed: 12/15/2022] Open
Abstract
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca(2+) channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca(2+) channels.
Collapse
Affiliation(s)
| | - Benoîte Bourdin
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Julie Briot
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Emilie Segura
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Sylvie Lesage
- Départment de Microbiologie, Infectiologie, and Immunologie, Faculté de Médecine, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Céline Fiset
- Faculté de Pharmacie, Institut de Cardiologie de Montréal and
| | - Lucie Parent
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| |
Collapse
|
11
|
Tuluc P, Yarov-Yarovoy V, Benedetti B, Flucher BE. Molecular Interactions in the Voltage Sensor Controlling Gating Properties of CaV Calcium Channels. Structure 2015; 24:261-71. [PMID: 26749449 DOI: 10.1016/j.str.2015.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
Voltage-gated calcium channels (CaV) regulate numerous vital functions in nerve and muscle cells. To fulfill their diverse functions, the multiple members of the CaV channel family are activated over a wide range of voltages. Voltage sensing in potassium and sodium channels involves the sequential transition of positively charged amino acids across a ring of residues comprising the charge transfer center. In CaV channels, the precise molecular mechanism underlying voltage sensing remains elusive. Here we combined Rosetta structural modeling with site-directed mutagenesis to identify the molecular mechanism responsible for the specific gating properties of two CaV1.1 splice variants. Our data reveal previously unnoticed interactions of S4 arginines with an aspartate (D1196) outside the charge transfer center of the fourth voltage-sensing domain that are regulated by alternative splicing of the S3-S4 linker. These interactions facilitate the final transition into the activated state and critically determine the voltage sensitivity and current amplitude of these CaV channels.
Collapse
Affiliation(s)
- Petronel Tuluc
- Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria; Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | | | - Bruno Benedetti
- Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria.
| |
Collapse
|
12
|
A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels. J Neurosci 2015; 35:12198-206. [PMID: 26338330 DOI: 10.1523/jneurosci.1419-15.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage-clamp recordings of gating and ionic currents of the Shaker Kv channel expressed in Xenopus oocytes that F184 not only interacts directly with the gating charges of the S4, but also creates a functional link to the selectivity filter of the neighboring subunit. This link leads to impaired fast and slow inactivation. The effect on fast inactivation is of an allosteric nature considering that fast inactivation is caused by a linked cytosolic ball peptide. The extensive effects of F184C provide a new mechanism underlying EA. SIGNIFICANCE STATEMENT Episodic ataxia (EA) is an inherited disease that leads to occasional loss of motor control in combination with variable other symptoms such as vertigo or migraine. EA type I (EA1), studied here, is caused by mutations in a voltage-gated potassium channel that contributes to the generation of electrical signals in the brain. The mechanism by which mutations in voltage-gated potassium channels lead to EA is still unknown and there is no consistent pharmacological treatment. By studying in detail one disease-causing mutation in Kv1.1, we describe a novel molecular mechanism distinct from mechanisms described previously. This mechanism contributes to the understanding of potassium channel function in general and might lead to a better understanding of how EA develops.
Collapse
|
13
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
14
|
Bourdin B, Shakeri B, Tétreault MP, Sauvé R, Lesage S, Parent L. Functional characterization of CaVα2δ mutations associated with sudden cardiac death. J Biol Chem 2014; 290:2854-69. [PMID: 25527503 DOI: 10.1074/jbc.m114.597930] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L-type Ca(2+) channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVβ and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30-33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca(2+) currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ.
Collapse
Affiliation(s)
- Benoîte Bourdin
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | - Behzad Shakeri
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | | | - Rémy Sauvé
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lucie Parent
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| |
Collapse
|
15
|
Bank C, Hietpas RT, Jensen JD, Bolon DNA. A systematic survey of an intragenic epistatic landscape. Mol Biol Evol 2014; 32:229-38. [PMID: 25371431 DOI: 10.1093/molbev/msu301] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations are the source of evolutionary variation. The interactions of multiple mutations can have important effects on fitness and evolutionary trajectories. We have recently described the distribution of fitness effects of all single mutations for a nine-amino-acid region of yeast Hsp90 (Hsp82) implicated in substrate binding. Here, we report and discuss the distribution of intragenic epistatic effects within this region in seven Hsp90 point mutant backgrounds of neutral to slightly deleterious effect, resulting in an analysis of more than 1,000 double mutants. We find negative epistasis between substitutions to be common, and positive epistasis to be rare--resulting in a pattern that indicates a drastic change in the distribution of fitness effects one step away from the wild type. This can be well explained by a concave relationship between phenotype and genotype (i.e., a concave shape of the local fitness landscape), suggesting mutational robustness intrinsic to the local sequence space. Structural analyses indicate that, in this region, epistatic effects are most pronounced when a solvent-inaccessible position is involved in the interaction. In contrast, all 18 observations of positive epistasis involved at least one mutation at a solvent-exposed position. By combining the analysis of evolutionary and biophysical properties of an epistatic landscape, these results contribute to a more detailed understanding of the complexity of protein evolution.
Collapse
Affiliation(s)
- Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ryan T Hietpas
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Jeffrey D Jensen
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
16
|
Garneau L, Klein H, Lavoie MF, Brochiero E, Parent L, Sauvé R. Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. ACTA ACUST UNITED AC 2014; 143:289-307. [PMID: 24470490 PMCID: PMC4001770 DOI: 10.1085/jgp.201311097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interactions between aromatic amino acid residues in the pore helix and S5 transmembrane domain control gating of the Ca2+-activated potassium channel KCa3.1. The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.
Collapse
Affiliation(s)
- Line Garneau
- Department of Physiology and Membrane Protein Research Group, 2 Centre de recherche du Centre hospitalier de l'Université de Montréal, and 3 Department of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Chowdhury S, Haehnel BM, Chanda B. A self-consistent approach for determining pairwise interactions that underlie channel activation. ACTA ACUST UNITED AC 2014; 144:441-55. [PMID: 25311637 PMCID: PMC4210424 DOI: 10.1085/jgp.201411184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Net free-energy measurements can be combined with mutant cycle analysis to determine interaction energies between specific amino acid pairs during channel activation. Signaling proteins such as ion channels largely exist in two functional forms, corresponding to the active and resting states, connected by multiple intermediates. Multiparametric kinetic models based on sophisticated electrophysiological experiments have been devised to identify molecular interactions of these conformational transitions. However, this approach is arduous and is not suitable for large-scale perturbation analysis of interaction pathways. Recently, we described a model-free method to obtain the net free energy of activation in voltage- and ligand-activated ion channels. Here we extend this approach to estimate pairwise interaction energies of side chains that contribute to gating transitions. Our approach, which we call generalized interaction-energy analysis (GIA), combines median voltage estimates obtained from charge-voltage curves with mutant cycle analysis to ascertain the strengths of pairwise interactions. We show that, for a system with an arbitrary gating scheme, the nonadditive contributions of amino acid pairs to the net free energy of activation can be computed in a self-consistent manner. Numerical analyses of sequential and allosteric models of channel activation also show that this approach can measure energetic nonadditivities even when perturbations affect multiple transitions. To demonstrate the experimental application of this method, we reevaluated the interaction energies of six previously described long-range interactors in the Shaker potassium channel. Our approach offers the ability to generate detailed interaction energy maps in voltage- and ligand-activated ion channels and can be extended to any force-driven system as long as associated “displacement” can be measured.
Collapse
Affiliation(s)
- Sandipan Chowdhury
- Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705 Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705
| | - Benjamin M Haehnel
- Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705 Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705
| | - Baron Chanda
- Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705 Graduate Program in Biophysics and Department of Neuroscience, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
18
|
Lieb A, Ortner N, Striessnig J. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels. Biophys J 2014; 106:1467-75. [PMID: 24703308 PMCID: PMC3976517 DOI: 10.1016/j.bpj.2014.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Activity of voltage-gated Cav1.3 L-type Ca2+ channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V.
Collapse
Affiliation(s)
- Andreas Lieb
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Nadine Ortner
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Demers-Giroux PO, Bourdin B, Sauvé R, Parent L. Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III. J Biol Chem 2013; 288:29281-93. [PMID: 23970551 PMCID: PMC3795230 DOI: 10.1074/jbc.m113.500975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
T-type CaV3 channels are important mediators of Ca(2+) entry near the resting membrane potential. Little is known about the molecular mechanisms responsible for channel activation. Homology models based upon the high-resolution structure of bacterial NaV channels predict interaction between the S4-S5 helix of Domain II (IIS4-S5) and the distal S6 pore region of Domain II (IIS6) and Domain III (IIIS6). Functional intra- and inter-domain interactions were investigated with a double mutant cycle analysis. Activation gating and channel kinetics were measured for 47 single mutants and 20 pairs of mutants. Significant coupling energies (ΔΔG(interact) ≥ 1.5 kcal mol(-1)) were measured for 4 specific pairs of mutants introduced between IIS4-S5 and IIS6 and between IIS4-S5 and IIIS6. In agreement with the computer based models, Thr-911 in IIS4-S5 was functionally coupled with Ile-1013 in IIS6 during channel activation. The interaction energy was, however, found to be stronger between Val-907 in IIS4-S5 and Ile-1013 in IIS6. In addition Val-907 was significantly coupled with Asn-1548 in IIIS6 but not with Asn-1853 in IVS6. Altogether, our results demonstrate that the S4-S5 and S6 helices from adjacent domains are energetically coupled during the activation of a low voltage-gated T-type CaV3 channel.
Collapse
Affiliation(s)
- Pierre-Olivier Demers-Giroux
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Benoîte Bourdin
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Rémy Sauvé
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Lucie Parent
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
20
|
Chowdhury S, Chanda B. Perspectives on: conformational coupling in ion channels: thermodynamics of electromechanical coupling in voltage-gated ion channels. ACTA ACUST UNITED AC 2013. [PMID: 23183697 PMCID: PMC3514737 DOI: 10.1085/jgp.201210840] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Sandipan Chowdhury
- Graduate Program in Biophysics, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Morales P, Garneau L, Klein H, Lavoie MF, Parent L, Sauvé R. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J Gen Physiol 2013; 142:37-60. [PMID: 23797421 PMCID: PMC3691446 DOI: 10.1085/jgp.201210933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/24/2013] [Indexed: 11/30/2022] Open
Abstract
The Ca(2+)-activated potassium channel of intermediate conductance, KCa3.1, is now emerging as a therapeutic target for a large variety of health disorders. The Ca(2+) sensitivity of KCa3.1 is conferred by the Ca(2+)-binding protein calmodulin (CaM), with the CaM C-lobe constitutively bound to an intracellular domain of the channel C terminus. It was proposed on the basis of the crystal structure obtained for the C-terminal region of the rat KCa2.2 channel (rSK2) with CaM that the binding of Ca(2+) to the CaM N-lobe results in CaM interlocking the C-terminal regions of two adjacent KCa3.1 subunits, leading to the formation of a dimeric structure. A study was thus undertaken to identify residues of the CaM N-lobe-KCa3.1 complex that either contribute to the channel activation process or control the channel open probability at saturating Ca(2+) (Pomax). A structural homology model of the KCa3.1-CaM complex was first generated using as template the crystal structure of the C-terminal region of the rat KCa2.2 channel with CaM. This model was confirmed by cross-bridging residues R362 of KCa3.1 and K75 of CaM. Patch-clamp experiments were next performed, demonstrating that the solvation energy of the residue at position 367 in KCa3.1 is a key determinant to the channel Pomax and deactivation time toff. Mutations of residues M368 and Q364 predicted to form anchoring points for CaM binding to KCa3.1 had little impact on either toff or Pomax. Finally, our results show that channel activation depends on electrostatic interactions involving the charged residues R362 and E363, added to a nonpolar energy contribution coming from M368. We conclude that electrostatic interactions involving residues R362 and E363 and hydrophobic effects at M368 play a prominent role in KCa3.1 activation, whereas hydrophobic interactions at S367 are determinant to the stability of the CaM-KCa3.1 complex throughout gating.
Collapse
Affiliation(s)
- Patricia Morales
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Line Garneau
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Hélène Klein
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-France Lavoie
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lucie Parent
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Rémy Sauvé
- Department of Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
22
|
Dai G, Varnum MD. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 2013; 305:C147-59. [PMID: 23552282 DOI: 10.1152/ajpcell.00037.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-7620, USA
| | | |
Collapse
|
23
|
Bhanumathy C, da Fonseca PCA, Morris EP, Joseph SK. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors. J Biol Chem 2012; 287:43674-84. [PMID: 23086950 PMCID: PMC3527953 DOI: 10.1074/jbc.m112.415786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have combined alanine mutagenesis and functional assays to identify amino acid residues in the channel domain that are critical for inositol 1,4,5-trisphosphate receptor (IP(3)R) channel function. The residues selected were highly conserved in all three IP(3)R isoforms and were located in the cytosolic end of the S6 pore-lining helix and proximal portion of the C-tail. Two adjacent hydrophobic amino acids (Ile-2588 and Ile-2589) at the putative cytosolic interface of the S6 helix inactivated channel function and could be candidates for the channel gate. Of five negatively charged residues mutated, none completely eliminated channel function. Of five positively charged residues mutated, only one inactivated the channel (Arg-2596). In addition to the previously identified role of a pair of cysteines in the C-tail (Cys-2610 and Cys-2613), a pair of highly conserved histidines (His-2630 and His-2635) were also essential for channel function. Expression of the H2630A and H2635A mutants (but not R2596A) produced receptors with destabilized interactions between the N-terminal fragment and the channel domain. A previously unrecognized association between the cytosolic C-tail and the TM 4,5-loop was demonstrated using GST pulldown assays. However, none of the mutations in the C-tail interfered with this interaction or altered the ability of the C-tail to assemble into dimers. Our present findings and recent information on IP(3)R structure from electron microscopy and crystallography are incorporated into a revised model of channel gating.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- HEK293 Cells
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Channel Gating/physiology
- Models, Molecular
- Mutation, Missense
- Protein Multimerization/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Cunnigaiper Bhanumathy
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Paula C. A. da Fonseca
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Edward P. Morris
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Suresh K. Joseph
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
- To whom correspondence should be addressed: Dept. of Pathology & Cell Biology, Rm. 230A JAH, 1020 Locust St., Philadelphia, PA 19107. Tel.: 215-503-1222; E-mail:
| |
Collapse
|
24
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
25
|
Neutralisation of a single voltage sensor affects gating determinants in all four pore-forming S6 segments of Ca(V)1.2: a cooperative gating model. Pflugers Arch 2012; 464:391-401. [PMID: 22941337 DOI: 10.1007/s00424-012-1144-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.
Collapse
|
26
|
Shakeri B, Bourdin B, Demers-Giroux PO, Sauvé R, Parent L. A quartet of leucine residues in the guanylate kinase domain of CaVβ determines the plasma membrane density of the CaV2.3 channel. J Biol Chem 2012; 287:32835-47. [PMID: 22846999 DOI: 10.1074/jbc.m112.387233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ca(V)β subunits are formed by a Src homology 3 domain and a guanylate kinase-like (GK) domain connected through a variable HOOK domain. Complete deletion of the Src homology 3 domain (75 residues) as well as deletion of the HOOK domain (47 residues) did not alter plasma membrane density of Ca(V)2.3 nor its typical activation gating. In contrast, six-residue deletions in the GK domain disrupted cell surface trafficking and functional expression of Ca(V)2.3. Mutations of residues known to carry nanomolar affinity binding in the GK domain of Ca(V)β (P175A, P179A, M195A, M196A, K198A, S295A, R302G, R307A, E339G, N340G, and A345G) did not significantly alter cell surface targeting or gating modulation of Ca(V)2.3. Nonetheless, mutations of a quartet of leucine residues (either single or multiple mutants) in the α3, α6, β10, and α9 regions of the GK domain were found to significantly impair cell surface density of Ca(V)2.3 channels. Furthermore, the normalized protein density of Ca(V)2.3 was nearly abolished with the quadruple Ca(V)β3 Leu mutant L200G/L303G/L337G/L342G. Altogether, our observations suggest that the four leucine residues in Ca(V)β3 form a hydrophobic pocket surrounding key residues in the α-interacting domain of Ca(V)2.3. This interaction appears to play an essential role in conferring Ca(V)β-induced modulation of the protein density of Ca(V)α1 subunits in Ca(V)2 channels.
Collapse
Affiliation(s)
- Behzad Shakeri
- Département de Physiologie and the Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
27
|
Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Front Pharmacol 2012; 3:125. [PMID: 22787448 PMCID: PMC3389672 DOI: 10.3389/fphar.2012.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Frank S Choveau
- UMR 1087, Institut National de la Santé et de la Recherche Médicale Nantes, France
| | | | | | | | | | | |
Collapse
|
28
|
Kamp MA, Shakeri B, Tevoufouet EE, Krieger A, Henry M, Behnke K, Herzig S, Hescheler J, Radhakrishnan K, Parent L, Schneider T. The C-terminus of human Ca(v)2.3 voltage-gated calcium channel interacts with alternatively spliced calmodulin-2 expressed in two human cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1045-57. [PMID: 22633975 DOI: 10.1016/j.bbapap.2012.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 01/20/2023]
Abstract
Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.
Collapse
Affiliation(s)
- Marcel A Kamp
- Institute for Neurophysiology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|