1
|
Zhang Y, Vontz AJ, Kallenberger EM, Xu X, Ploscariu NT, Ramyar KX, Garcia BL, Ghebrehiwet B, Geisbrecht BV. gC1qR/C1qBP/HABP-1: Structural Analysis of the Trimeric Core Region, Interactions With a Novel Panel of Monoclonal Antibodies, and Their Influence on Binding to FXII. Front Immunol 2022; 13:887742. [PMID: 35865516 PMCID: PMC9294231 DOI: 10.3389/fimmu.2022.887742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Alexander J. Vontz
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Ethan M. Kallenberger
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Nicoleta T. Ploscariu
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Kasra X. Ramyar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Brandon L. Garcia
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, United States,*Correspondence: Berhane Ghebrehiwet, ; Brian V. Geisbrecht,
| |
Collapse
|
2
|
Aoki M, Vinokur J, Motoyama K, Ishikawa R, Collazo M, Cascio D, Sawaya MR, Ito T, Bowie JU, Hemmi H. Crystal structure of mevalonate 3,5-bisphosphate decarboxylase reveals insight into the evolution of decarboxylases in the mevalonate metabolic pathways. J Biol Chem 2022; 298:102111. [PMID: 35690147 PMCID: PMC9254496 DOI: 10.1016/j.jbc.2022.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate-binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.
Collapse
Affiliation(s)
- Mizuki Aoki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Jeffrey Vinokur
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Kento Motoyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Rino Ishikawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Michael Collazo
- Departments of Biological Chemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Biological Chemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Michael R Sawaya
- UCLA-DOE Institute of Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Chen CL, Paul LN, Mermoud JC, Steussy CN, Stauffacher CV. Visualizing the enzyme mechanism of mevalonate diphosphate decarboxylase. Nat Commun 2020; 11:3969. [PMID: 32769976 PMCID: PMC7414129 DOI: 10.1038/s41467-020-17733-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/30/2020] [Indexed: 01/04/2023] Open
Abstract
Mevalonate diphosphate decarboxylases (MDDs) catalyze the ATP-dependent-Mg2+-decarboxylation of mevalonate-5-diphosphate (MVAPP) to produce isopentenyl diphosphate (IPP), which is essential in both eukaryotes and prokaryotes for polyisoprenoid synthesis. The substrates, MVAPP and ATP, have been shown to bind sequentially to MDD. Here we report crystals in which the enzyme remains active, allowing the visualization of conformational changes in Enterococcus faecalis MDD that describe sequential steps in an induced fit enzymatic reaction. Initial binding of MVAPP modulates the ATP binding pocket with a large loop movement. Upon ATP binding, a phosphate binding loop bends over the active site to recognize ATP and bring the molecules to their catalytically favored configuration. Positioned substrates then can chelate two Mg2+ ions for the two steps of the reaction. Closure of the active site entrance brings a conserved lysine to trigger dissociative phosphoryl transfer of γ-phosphate from ATP to MVAPP, followed by the production of IPP.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lake N Paul
- BioAnalysis, LLC, 1135 Dunton Street, Unit 2, Philadelphia, PA, 19123, USA
- Biophysical Analysis Laboratory, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, USA
| | - James C Mermoud
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research (PUCCR), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
McClory J, Hui C, Zhang J, Huang M. The phosphorylation mechanism of mevalonate diphosphate decarboxylase: a QM/MM study. Org Biomol Chem 2020; 18:518-529. [PMID: 31854421 DOI: 10.1039/c9ob02254f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyses a crucial step of the mevalonate pathway via Mg2+-ATP-dependent phosphorylation and decarboxylation reactions to ultimately produce isopentenyl diphosphate, the precursor of isoprenoids, which is essential to bacterial functions and provides ideal building blocks for the biosynthesis of isopentenols. However, the metal ion(s) in MDD has not been unambiguously resolved, which limits the understanding of the catalytic mechanism and the exploitation of enzymes for the development of antibacterial therapies or the mevalonate metabolic pathway for the biosynthesis of biofuels. Here by analogizing structurally related kinases and molecular dynamics simulations, we constructed a model of the MDD-substrate-ATP-Mg2+ complex and proposed that MDD requires two Mg2+ ions for maintaining a catalytically active conformation. Subsequent QM/MM studies indicate that MDD catalyses the phosphorylation of its substrate mevalonate diphosphate (MVAPP) via a direct phosphorylation reaction, instead of the previously assumed catalytic base mechanism. The results here would shed light on the active conformation of MDD-related enzymes and their catalytic mechanisms and therefore be useful for developing novel antimicrobial therapies or reconstructing mevalonate metabolic pathways for the biosynthesis of biofuels.
Collapse
Affiliation(s)
- James McClory
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | | | | | | |
Collapse
|
5
|
Thomas ST, Louie GV, Lubin JW, Lundblad V, Noel JP. Substrate Specificity and Engineering of Mevalonate 5-Phosphate Decarboxylase. ACS Chem Biol 2019; 14:1767-1779. [PMID: 31268677 DOI: 10.1021/acschembio.9b00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A bifurcation of the mevalonate (MVA) pathway was recently discovered in bacteria of the Chloroflexi phylum. In this alternative route for the biosynthesis of isopentenylpyrophosphate (IPP), the penultimate step is the decarboxylation of (R)-mevalonate 5-phosphate ((R)-MVAP) to isopentenyl phosphate (IP), which is followed by the ATP-dependent phosphorylation of IP to IPP catalyzed by isopentenyl phosphate kinase (IPK). Notably, the decarboxylation reaction is catalyzed by mevalonate 5-phosphate decarboxylase (MPD), which shares considerable sequence similarity with mevalonate diphosphate decarboxylase (MDD) of the classical MVA pathway. We show that an enzyme originally annotated as an MDD from the Chloroflexi bacterium Anaerolinea thermophila possesses equal catalytic efficiency for (R)-MVAP and (R)-mevalonate 5-diphosphate ((R)-MVAPP). Further, the molecular basis for this dual specificity is revealed by near atomic-resolution X-ray crystal structures of A. thermophila MPD/MDD bound to (R)-MVAP or (R)-MVAPP. These findings, when combined with sequence and structural comparisons of this bacterial enzyme, functional MDDs, and several putative MPDs, delineate key active-site residues that confer substrate specificity and functionally distinguish MPD and MDD enzyme classes. Extensive sequence analyses identified functional MPDs in the halobacteria class of archaea that had been annotated as MDDs. Finally, no eukaryotic MPD candidates were identified, suggesting the absence of the alternative MVA (altMVA) pathway in all eukaryotes, including, paradoxically, plants, which universally encode a structural and functional homologue of IPK. Additionally, we have developed a viable engineered strain of Saccharomyces cerevisiae as an in vivo metabolic model and a synthetic biology platform for enzyme engineering and terpene biosynthesis in which the classical MVA pathway has been replaced with the altMVA pathway.
Collapse
|
6
|
de Jong NWM, Ploscariu NT, Ramyar KX, Garcia BL, Herrera AI, Prakash O, Katz BB, Leidal KG, Nauseef WM, van Kessel KPM, van Strijp JAG, Geisbrecht BV. A structurally dynamic N-terminal region drives function of the staphylococcal peroxidase inhibitor (SPIN). J Biol Chem 2018; 293:2260-2271. [PMID: 29306874 PMCID: PMC5818189 DOI: 10.1074/jbc.ra117.000134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
The heme-containing enzyme myeloperoxidase (MPO) is critical for optimal antimicrobial activity of human neutrophils. We recently discovered that the bacterium Staphylococcus aureus expresses a novel immune evasion protein, called SPIN, that binds tightly to MPO, inhibits MPO activity, and contributes to bacterial survival following phagocytosis. A co-crystal structure of SPIN bound to MPO suggested that SPIN blocks substrate access to the catalytic heme by inserting an N-terminal β-hairpin into the MPO active-site channel. Here, we describe a series of experiments that more completely define the structure/function relationships of SPIN. Whereas the SPIN N terminus adopts a β-hairpin confirmation upon binding to MPO, the solution NMR studies presented here are consistent with this region of SPIN being dynamically structured in the unbound state. Curiously, whereas the N-terminal β-hairpin of SPIN accounts for ∼55% of the buried surface area in the SPIN-MPO complex, its deletion did not significantly change the affinity of SPIN for MPO but did eliminate the ability of SPIN to inhibit MPO. The flexible nature of the SPIN N terminus rendered it susceptible to proteolytic degradation by a series of chymotrypsin-like proteases found within neutrophil granules, thereby abrogating SPIN activity. Degradation of SPIN was prevented by the S. aureus immune evasion protein Eap, which acts as a selective inhibitor of neutrophil serine proteases. Together, these studies provide insight into MPO inhibition by SPIN and suggest possible functional synergy between two distinct classes of S. aureus immune evasion proteins.
Collapse
Affiliation(s)
- Nienke W. M. de Jong
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicoleta T. Ploscariu
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Kasra X. Ramyar
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Brandon L. Garcia
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Alvaro I. Herrera
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Om Prakash
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Benjamin B. Katz
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Kevin G. Leidal
- the Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52240, and
| | - William M. Nauseef
- the Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52240, and ,the Iowa City Veterans Affairs Health Care System, Iowa City, Iowa 52246
| | - Kok P. M. van Kessel
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Brian V. Geisbrecht
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, , To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, 1711 Claflin Rd., Manhattan, KS 66506. Tel.:
785-532-3154; Fax:
785-532-7278; E-mail:
| |
Collapse
|
7
|
Stathopoulou MEK, Banti CN, Kourkoumelis N, Hatzidimitriou AG, Kalampounias AG, Hadjikakou SK. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J Inorg Biochem 2018; 181:41-55. [PMID: 29407907 DOI: 10.1016/j.jinorgbio.2018.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023]
Abstract
The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.
Collapse
Affiliation(s)
| | - Christina N Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | - Sotiris K Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
8
|
Chen CL, Mermoud JC, Paul LN, Steussy CN, Stauffacher CV. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis. J Biol Chem 2017; 292:21340-21351. [PMID: 29025876 PMCID: PMC5766736 DOI: 10.1074/jbc.m117.802223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/23/2017] [Indexed: 01/07/2023] Open
Abstract
The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF-ATP) revealed that the phosphate-binding loop (amino acids 97-105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.
Collapse
Affiliation(s)
| | | | - Lake N. Paul
- the Biophysical Analysis Laboratory, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47906
| | | | - Cynthia V. Stauffacher
- From the Department of Biological Sciences and ,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and , To whom correspondence should be addressed:
Dept. of Biological Sciences, Purdue University, Hockmeyer Hall, Rm. 327, 240 South Martin Jischke Dr., West Lafayette, IN 47907. Tel.:
765-494-4937; Fax:
765-496-1189; E-mail:
| |
Collapse
|
9
|
Hayakawa H, Sobue F, Motoyama K, Yoshimura T, Hemmi H. Identification of enzymes involved in the mevalonate pathway of Flavobacterium johnsoniae. Biochem Biophys Res Commun 2017; 487:702-708. [DOI: 10.1016/j.bbrc.2017.04.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
|
10
|
Kang A, Meadows CW, Canu N, Keasling JD, Lee TS. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng 2017; 41:125-134. [DOI: 10.1016/j.ymben.2017.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/09/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
11
|
Yıldırım H, Bayrak N, Tuyun AF, Kara EM, Çelik BÖ, Gupta GK. 2,3-Disubstituted-1,4-naphthoquinones containing an arylamine with trifluoromethyl group: synthesis, biological evaluation, and computational study. RSC Adv 2017. [DOI: 10.1039/c7ra00868f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial and antibiofilm activities were evaluated. Two compounds (5b and 5e) were identified as the hits against S. epidermidis. Compounds 5b and 5e showed promising antibacterial and antibiofilm activities.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Chemistry Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Nilüfer Bayrak
- Chemistry Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Amac Fatih Tuyun
- Engineering Sciences Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Emel Mataracı Kara
- Pharmaceutical Microbiology Department
- Pharmacy Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Berna Özbek Çelik
- Pharmaceutical Microbiology Department
- Pharmacy Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry
- Maharishi Markandeshwar College of Pharmacy
- Maharishi Markandeshwar University
- Ambala 133207
- India
| |
Collapse
|
12
|
An Adaptation To Life In Acid Through A Novel Mevalonate Pathway. Sci Rep 2016; 6:39737. [PMID: 28004831 PMCID: PMC5177888 DOI: 10.1038/srep39737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.
Collapse
|
13
|
Motoyama K, Unno H, Hattori A, Takaoka T, Ishikita H, Kawaide H, Yoshimura T, Hemmi H. A Single Amino Acid Mutation Converts ( R)-5-Diphosphomevalonate Decarboxylase into a Kinase. J Biol Chem 2016; 292:2457-2469. [PMID: 28003359 DOI: 10.1074/jbc.m116.752535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/11/2016] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of isopentenyl diphosphate, a fundamental precursor for isoprenoids, via the mevalonate pathway is completed by diphosphomevalonate decarboxylase. This enzyme catalyzes the formation of isopentenyl diphosphate through the ATP-dependent phosphorylation of the 3-hydroxyl group of (R)-5-diphosphomevalonate followed by decarboxylation coupled with the elimination of the 3-phosphate group. In this reaction, a conserved aspartate residue has been proposed to be involved in the phosphorylation step as the general base catalyst that abstracts a proton from the 3-hydroxyl group. In this study, the catalytic mechanism of this rare type of decarboxylase is re-investigated by structural and mutagenic studies on the enzyme from a thermoacidophilic archaeon Sulfolobus solfataricus The crystal structures of the archaeal enzyme in complex with (R)-5-diphosphomevalonate and adenosine 5'-O-(3-thio)triphosphate or with (R)-5-diphosphomevalonate and ADP are newly solved, and theoretical analysis based on the structure suggests the inability of proton abstraction by the conserved aspartate residue, Asp-281. Site-directed mutagenesis on Asp-281 creates mutants that only show diphosphomevalonate 3-kinase activity, demonstrating that the residue is required in the process of phosphate elimination/decarboxylation, rather than in the preceding phosphorylation step. These results enable discussion of the catalytic roles of the aspartate residue and provide clear proof of the involvement of a long predicted intermediate, (R)-3-phospho-5-diphosphomevalonate, in the reaction of the enzyme.
Collapse
Affiliation(s)
- Kento Motoyama
- From the Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601
| | - Hideaki Unno
- the Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, Nagasaki 852-8521
| | - Ai Hattori
- From the Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601
| | - Tomohiro Takaoka
- the Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654
| | - Hiroshi Ishikita
- the Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654.,the Research Center for Advanced Science and Technology, University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, and
| | - Hiroshi Kawaide
- the Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Tohru Yoshimura
- From the Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601
| | - Hisashi Hemmi
- From the Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601,
| |
Collapse
|
14
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations. J Mol Model 2015; 22:13. [DOI: 10.1007/s00894-015-2873-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/22/2015] [Indexed: 11/25/2022]
|
16
|
In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus. J Bacteriol 2015; 197:3463-71. [PMID: 26303832 DOI: 10.1128/jb.00352-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of β-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance.
Collapse
|
17
|
The Putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 2015; 81:2625-34. [PMID: 25636853 PMCID: PMC4357925 DOI: 10.1128/aem.04033-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway.
Collapse
|
18
|
Skaff DA, McWhorter WJ, Geisbrecht BV, Wyckoff GJ, Miziorko HM. Inhibition of bacterial mevalonate diphosphate decarboxylase by eriochrome compounds. Arch Biochem Biophys 2015; 566:1-6. [PMID: 25499551 PMCID: PMC4456016 DOI: 10.1016/j.abb.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) catalyzes the irreversible decarboxylation of mevalonate diphosphate in the mevalonate pathway to form isopentenyl diphosphate, which is a precursor in the biosynthesis of many essential polyisoprenoid natural products, including sterols. In low G/C Gram-positive bacteria, which utilize the mevalonate pathway, MDD is required for cell viability and thus is a potential target for development of antibiotic drugs. To identify potential inhibitors of the enzyme, the National Cancer Institute's Mechanistic Diversity Set library of compounds was screened for inhibitors of Staphylococcus epidermidis MDD. From this screen, the compound Eriochrome Black A (EBA), an azo dye, was found to inhibit the enzyme with an IC50 value<5μM. Molecular docking of EBA into a crystal structure of S. epidermidis MDD suggested binding at the active site. EBA, along with the related Eriochrome B and T compounds, was evaluated for its ability to not only inhibit enzymatic activity but to inhibit bacterial growth as well. These compounds exhibited competitive inhibition towards the substrate mevalonate diphosphate, with Ki values ranging from 0.6 to 2.7μM. Non-competitive inhibition was observed versus ATP indicating binding of the inhibitor in the mevalonate diphosphate binding site, consistent with molecular docking predictions. Fluorescence quenching analyses also supported active site binding of EBA. These eriochrome compounds are effective at inhibiting S. epidermidis cell growth on both solid media and in liquid culture (MIC50 from 31 to 350μM) raising the possibility that they could be developed into antibiotic leads targeting pathogenic low-G/C Gram-positive cocci.
Collapse
Affiliation(s)
- D Andrew Skaff
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, United States
| | - William J McWhorter
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, MO 64110, United States
| | - Brian V Geisbrecht
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, MO 64110, United States
| | - Gerald J Wyckoff
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, United States
| | - Henry M Miziorko
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, United States.
| |
Collapse
|
19
|
Vinokur JM, Korman TP, Sawaya MR, Collazo M, Cascio D, Bowie JU. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases. Protein Sci 2014; 24:212-20. [PMID: 25422158 DOI: 10.1002/pro.2607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022]
Abstract
In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.
Collapse
Affiliation(s)
- Jeffrey M Vinokur
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California, 90095-1570
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
![]()
Isoprenoids
make up a remarkably diverse class of more than 25000
biomolecules that include familiar compounds such as cholesterol,
chlorophyll, vitamin A, ubiquinone, and natural rubber. The two essential
building blocks of all isoprenoids, isopentenyl pyrophosphate (IPP)
and dimethylallyl pyrophosphate (DMAPP), are ubiquitous in the three
domains of life. In most eukaryotes and archaea, IPP and DMAPP are
generated through the mevalonate pathway. We have identified two novel
enzymes, mevalonate-3-kinase and mevalonate-3-phosphate-5-kinase from Thermoplasma acidophilum, which act sequentially in a putative
alternate mevalonate pathway. We propose that a yet unidentified ATP-independent
decarboxylase acts upon mevalonate 3,5-bisphosphate, yielding isopentenyl
phosphate, which is subsequently phosphorylated by the known isopentenyl
phosphate kinase from T. acidophilum to generate
the universal isoprenoid precursor, IPP.
Collapse
Affiliation(s)
- Jeffrey M Vinokur
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095-1570, United States
| | | | | | | |
Collapse
|
21
|
Kourist R, Guterl JK, Miyamoto K, Sieber V. Enzymatic Decarboxylation-An Emerging Reaction for Chemicals Production from Renewable Resources. ChemCatChem 2014. [DOI: 10.1002/cctc.201300881] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol 2013; 196:1055-63. [PMID: 24375100 DOI: 10.1128/jb.01230-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.
Collapse
|
23
|
Dellas N, Thomas ST, Manning G, Noel JP. Discovery of a metabolic alternative to the classical mevalonate pathway. eLife 2013; 2:e00672. [PMID: 24327557 PMCID: PMC3857490 DOI: 10.7554/elife.00672] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon isoprenoid building block, isopentenyl diphosphate (IPP). Unexpectedly, we now report functional IPKs also exist in Bacteria and Eukarya. Furthermore, amongst a subset of species within the bacterial phylum Chloroflexi, we identified a new enzyme catalyzing the missing decarboxylative step of the putative alternative MVA pathway. These results demonstrate, for the first time, a functioning alternative MVA pathway. Key to this pathway is the catalytic actions of a newly uncovered enzyme, mevalonate phosphate decarboxylase (MPD) and IPK. Together, these two discoveries suggest that unforeseen variation in isoprenoid metabolism may be widespread in nature. DOI: http://dx.doi.org/10.7554/eLife.00672.001.
Collapse
Affiliation(s)
- Nikki Dellas
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | | | | | | |
Collapse
|
24
|
Yadav MK, Kwon SK, Cho CG, Park SW, Chae SW, Song JJ. Gene expression profile of early in vitro biofilms of Streptococcus pneumoniae. Microbiol Immunol 2013; 56:621-9. [PMID: 22708961 DOI: 10.1111/j.1348-0421.2012.00483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, the gene expression profile of early in vitro Streptococcus pneumoniae biofilm with respect to planktonic cells in cDNA microarray analysis is reported. Microarray analysis with respect to planktonic cells was performed on total RNA extracted from biofilms grown in 24-well microtiter plates. To validate the microarray results, real-time RT-PCR was performed on 13 differentially expressed genes and one constitutively expressed gene. The cDNA-microarray analyses identified 89 genes that were significantly differentially expressed in biofilm and planktonic cells. Genes involved in isoprenoid biosynthesis, cell wall biosynthesis, translation and purine and pyrimidine nucleotide metabolic pathways were exclusively expressed in the biofilms, whereas transcription regulator genes were exclusively expressed in planktonic cells. The real-time RT-PCR results of 13 differentially regulated genes were completely in agreement with the microarray data. The exclusive up regulation in biofilms of genes involved in the mevalonate pathway, cell wall biosynthesis, translation and purine and pyrimidine nucleotide metabolic pathways suggests that expression of these genes may be required for initial biofilm formation, and growth and survival of bacteria in biofilms. The up regulation of related genes suggests that cells in biofilms may be under stress conditions and possibly actively involved in the protein synthesis required to adapt to a new environment.
Collapse
Affiliation(s)
- Mukesh Kumar Yadav
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University Ilsan Hospital, 814 Siksa-Dong, Goyang, Gyeonggi, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Barta ML, McWhorter WJ, Miziorko HM, Geisbrecht BV. Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase. Biochemistry 2012; 51:5611-21. [PMID: 22734632 DOI: 10.1021/bi300591x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.
Collapse
Affiliation(s)
- Michael L Barta
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
26
|
Skaff DA, Ramyar KX, McWhorter WJ, Barta ML, Geisbrecht BV, Miziorko HM. Biochemical and structural basis for inhibition of Enterococcus faecalis hydroxymethylglutaryl-CoA synthase, mvaS, by hymeglusin. Biochemistry 2012; 51:4713-22. [PMID: 22510038 DOI: 10.1021/bi300037k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hymeglusin (1233A, F244, L-659-699) is established as a specific β-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 Å) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.
Collapse
|