1
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
2
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
3
|
Wang Y, Zeng B, Deng M, Zhao T, Liao Y, Ren R, Wang H, Yuan Y. Whole-genome resequencing reveals genetic diversity and adaptive evolution in Chinese honeybee ( Apis cerana cerana) in Guizhou, China. Front Genet 2024; 15:1352455. [PMID: 38826805 PMCID: PMC11140131 DOI: 10.3389/fgene.2024.1352455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction: Guizhou Province, characterized by complex and diverse geographic and climatic environments, has rich genetic resources for the Chinese honeybee (Apis cerana cerana) and is one of the main bee-producing areas in China. However, research on the genetic diversity of Chinese honeybee in the Guizhou region is very limited, despite implications for conservation of biodiversity. Methods: In this study, we analyzed the genetic diversity, differentiation, and selection signals based on 116 Chinese honeybees from 12 regions in Guizhou Province using whole-genome sequencing. Results: We identified 1,400,430 high-quality SNPs across all samples. A population structure analysis revealed two independent genetic subgroups of Chinese honeybees in Guizhou, a Yunnan-Guizhou Plateau population in western Guizhou and a hilly-mountainous population in eastern Guizhou. The average nucleotide diversity (Pi) ranged from 0.00138 to 0.00161 and average expected heterozygosity (He) ranged from 0.2592 to 0.2604. The average genetic differentiation index (F ST) for Chinese honeybees in pairwise comparisons of 12 regions ranged from 0.0094 to 0.0293. There was clear genetic differentiation between the western plateau and the eastern hilly mountainous areas of Guizhou; however, F ST values between the eastern and western populations ranged from 0.0170 to 0.0293, indicating a low degree of differentiation. A genome-wide scan revealed a number of genes under selection in the Yunnan-Guizhou Plateau environment. These genes were related to growth and development, reproduction, and cold resistance, and several candidate genes involved in environmental adaptation were identified, including CTR, MAPK, MAST, HSF, and MKKK. Discussion: The results of the present study provide important theoretical bases for the conservation, evaluation, development, and utilization of genetic resources for Chinese honeybees in the Guizhou region and for further investigations of environmental adaptation and underlying mechanisms in the species.
Collapse
Affiliation(s)
- Yinchen Wang
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Mengqing Deng
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Tian Zhao
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Yan Liao
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Rongqing Ren
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Hua Wang
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Yang Yuan
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Wang J, Xu J, Zheng J. A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner. Sci Rep 2023; 13:20730. [PMID: 38007504 PMCID: PMC10676358 DOI: 10.1038/s41598-023-47956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Adriamycin (ADR) resistance is an obstacle for chemotherapy of breast cancer (BC). ATP binding cassette subfamily B member 1 (ABCB1) expression is indicated to be closely related to the drug resistance of cancer cells. The current work intended to explore the molecular mechanisms to regulate ABCB1 in BC cells with ADR resistance. We found that long noncoding RNA (lncRNA) A1BG antisense RNA 1 (A1BG-AS1) is upregulated in ADR resistant BC cell lines (MCF-7/ADR, MDA-MB-231/ADR). A1BG-AS1 knockdown enhanced the ADR sensitivity by suppressing the viability, proliferation potential and migration ability, and facilitating cell apoptosis in BC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is known to be an m6A reader to modulate the stability of mRNA transcripts in an m6A-dependent manner, which was a shared RNA binding protein (RBP) for A1BG-AS1 and ABCB1. The interaction of IGF2BP2 with A1BG-AS1 or ABCB1 was explored and verified using RNA pulldown and RNA immunoprecipitation (RIP) assays. ABCB1 mRNA and protein expression was positively regulated by A1BG-AS1 and IGF2BP2 in BC cells. ABCB1 mRNA expression was stabilized by A1BG-AS1 via recruiting IGF2BP2 in an m6A-dependent manner. Moreover, rescue assays demonstrated that A1BG-AS1 enhanced BC ADR resistance by positively modulating ABCB1. Xenograft mouse models were used to explore whether A1BG-AS1 affected the ADR resistance in BC in vivo. The findings indicated that A1BG-AS1 silencing inhibited tumor growth and alleviated ADR resistance in vivo. In conclusion, A1BG-AS1 enhances the ADR resistance of BC by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner.
Collapse
Affiliation(s)
- Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Tanggu Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
| | - Jie Xu
- Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Tanggu Zhejiang Road, Binhai New Area, Tianjin, 300450, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| |
Collapse
|
6
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
7
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Xiao Y, Li X, Mao J, Zheng H, Ji R, Wang Z, Guo M, Yuan H, Anwar A, Chen C, Liu X, Liu J. Reverse anti-breast cancer drug resistance effects by a novel two-step assembled nano-celastrol medicine. NANOSCALE 2022; 14:7856-7863. [PMID: 35583119 DOI: 10.1039/d2nr02064e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multidrug resistance (MDR) has become one of the most intractable problems in clinics as it would cause failure in chemotherapy. In this study, we demonstrated that a nanoscale self-assembled nanomedicine, which almost consisted of a pure chemo-drug, could efficiently overcome MDR. Celastrol (CST) was directly assembled into a discrete nanomedicine by precipitation, and then CST nanoparticles (CNPs) inhibited drug efflux pumps by activating HSF-1 expression and promoting HSF-1 translocation into nucleus to suppress the Pgp expression. The more drug accumulated in cells could activate apoptosis signals simultaneously and realize drug resistance reversal. CNPs significantly increased the level of ROS to regulate ERK/JNK signaling, which would further induce resistant cell apoptosis. The tandem apoptosis strategy used the same concentration of CST but achieved a higher antitumor effect. Overall, our study provides a new translational and alternative strategy using conventional natural products to overcome MDR with high efficacy.
Collapse
Affiliation(s)
- Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Xun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
| | - Hong Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
| | - Rui Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
| | - Zhice Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Arfidin Anwar
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingjun Liu
- Department of Endocrinology, First Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Jing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
The E3 Ubiquitin Ligase Fbxo4 Functions as a Tumor Suppressor: Its Biological Importance and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14092133. [PMID: 35565262 PMCID: PMC9101129 DOI: 10.3390/cancers14092133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Fbxo4 is an E3 ubiquitin ligase that requires the formation of a complex with S-phase kinase-associated protein 1 and Cullin1 to catalyze the ubiquitylation of its substrates. Moreover, Fbxo4 depends on the existence of posttranslational modifications and/or co-factor to be activated to perform its biological functions. The well-known Fbxo4 substrates have oncogenic or oncogene-like activities, for example, cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ; therefore, Fbxo4 is defined as a tumor suppressor. Biologically, Fbxo4 regulates cell cycle progression, DNA damage response, tumor metabolism, cellular senescence, metastasis and tumor cells’ response to chemotherapeutic compounds. Clinicopathologically, the expression of Fbxo4 is associated with patients’ prognosis depending on different tumor types. Regarding to its complicated regulation, more in-depth studies are encouraged to dissect the detailed molecular mechanisms to facilitate developing new treatment through targeting Fbxo4. Abstract Fbxo4, also known as Fbx4, belongs to the F-box protein family with a conserved F-box domain. Fbxo4 can form a complex with S-phase kinase-associated protein 1 and Cullin1 to perform its biological functions. Several proteins are identified as Fbxo4 substrates, including cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ. Those factors can regulate cell cycle progression, cell proliferation, survival/apoptosis, and migration/invasion, highlighting their oncogenic or oncogene-like activities. Therefore, Fbxo4 is defined as a tumor suppressor. The biological functions of Fbxo4 make it a potential candidate for developing new targeted therapies. This review summarizes the gene and protein structure of Fbxo4, the mechanisms of how its expression and activity are regulated, and its substrates, biological functions, and clinicopathological importance in human cancers.
Collapse
|
11
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
12
|
Chiou JT, Huang CH, Wu TH, Wang LJ, Lee YC, Huang PW, Chang LS. CREB/Sp1-mediated MCL1 expression and NFκB-mediated ABCB1 expression modulate the cytotoxicity of daunorubicin in chronic myeloid leukemia cells. Toxicol Appl Pharmacol 2022; 435:115847. [PMID: 34963561 DOI: 10.1016/j.taap.2021.115847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Although some studies have hinted at the therapeutic potential of daunorubicin (DNR) in chronic myeloid leukemia (CML), the mechanism by which DNR induces CML cell death is unclear. Therefore, this study aimed to investigate DNR-induced cell death signaling pathways in CML cell lines K562 and KU812. DNR-triggered apoptosis in K562 cells was characterized by inhibition of MCL1 expression, while restoration of MCL1 expression protected K562 cells from DNR-mediated cytotoxicity. In addition, DNR induced NOX4-dependent ROS production, leading to the activation of p38 MAPK and inactivation of Akt and ERK. Activated p38 MAPK stimulated protein phosphatase 2A-dependent dephosphorylation of CREB. Since Akt-mediated activation of ERK reduced β-TrCP mRNA stability, the inactivation of Akt-ERK axis increased β-TrCP expression, which in turn promoted proteasomal degradation of Sp1. Inhibition of CREB phosphorylation and Sp1 expression simultaneously reduced MCL1 transcription and protein expression. DNR-induced MCL1 suppression was not reliant on its ability to induce DNA damage. In addition, DNR induced the expression of drug exporter ABCB1 in K562 cells through the p38 MAPK/NFκB-mediated pathway, while imatinib or ABT-199 inhibited the DNR-induced effect. The combination of imatinib or ABT-199 with DNR showed synergistic cytotoxicity in K562 cells by increasing intracellular DNR retention. Cumulatively, our data indicate that DNR induces MCL1 downregulation in K562 cells by promoting p38 MAPK-mediated dephosphorylation of CREB and inhibiting the Akt-ERK axis-mediated Sp1 protein stabilization. Furthermore, experimental evidence indicates that DNR-induced death of KU812 cells occurs through a similar pathway.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cyclic AMP Response Element-Binding Protein/metabolism
- Daunorubicin/therapeutic use
- Drug Synergism
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- MAP Kinase Signaling System/drug effects
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- NADPH Oxidase 4/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Reactive Oxygen Species/metabolism
- Sp1 Transcription Factor/metabolism
- Sulfonamides/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ti-Hsiao Wu
- Department of Cardiovascular Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Po-Wei Huang
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Ramani S, Park S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J Mol Med (Berl) 2021; 99:771-784. [PMID: 33728476 DOI: 10.1007/s00109-021-02048-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The common phenomenon expected from any anti-cancer drug in use is to kill the cancer cells without any side effects to non-malignant cells. Doxorubicin is an anthracycline derivative anti-cancer drug active over different types of cancers with anti-cancer activity but attributed to unintended cytotoxicity and genotoxicity triggering mitogenic signals inducing apoptosis. Administration of doxorubicin tends to both acute and chronic toxicity resulting in cardiomyopathy (left ventricular dysfunction) and congestive heart failure (CHF). Cardiotoxicity is prevented through administration of different cardioprotectants along with the drug. This review elaborates on mechanism of drug-mediated cardiotoxicity and attenuation principle by different cardioprotectants, with a focus on Hsp27 as cardioprotectant by prevention of drug-induced oxidative stress, cell survival pathways with suppression of intrinsic cell death. In conclusion, Hsp27 may offer an exciting/alternating cardioprotectant, with a wider study being need of the hour, specifically on primary cell line and animal models in conforming its cardioprotectant behaviour.
Collapse
Affiliation(s)
- Sivasubramanian Ramani
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea.
| |
Collapse
|
14
|
Ochoa-Maganda VY, Rangel-Castañeda IA, Suárez-Rico DO, Cortés-Zárate R, Hernández-Hernández JM, Pérez-Rangel A, Chiquete-Félix N, León-Ávila G, González-Pozos S, Gaona-Bernal J, Castillo-Romero A. Antigiardial Activity of Acetylsalicylic Acid Is Associated with Overexpression of HSP70 and Membrane Transporters. Pharmaceuticals (Basel) 2020; 13:ph13120440. [PMID: 33287104 PMCID: PMC7761642 DOI: 10.3390/ph13120440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan responsible for giardiasis, a worldwide diarrheal disease. The adverse effects of the pharmacological treatments and the appearance of drug resistance have increased the rate of therapeutic failures. In the search for alternative therapeutics, drug repositioning has become a popular strategy. Acetylsalicylic acid (ASA) exhibits diverse biological activities through multiple mechanisms. However, the full spectrum of its activities is incompletely understood. In this study we show that ASA displayed direct antigiardial activity and affected the adhesion and growth of trophozoites in a time-dose-dependent manner. Electron microscopy images revealed remarkable morphological alterations in the membrane, ventral disk, and caudal region. Using mass spectrometry and real-time quantitative reverse transcription (qRT-PCR), we identified that ASA induced the overexpression of heat shock protein 70 (HSP70). ASA also showed a significant increase of five ATP-binding cassette (ABC) transporters (giABC, giABCP, giMDRP, giMRPL and giMDRAP1). Additionally, we found low toxicity on Caco-2 cells. Taken together, these results suggest an important role of HSPs and ABC drug transporters in contributing to stress tolerance and protecting cells from ASA-induced stress.
Collapse
Affiliation(s)
- Verónica Yadira Ochoa-Maganda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (V.Y.O.-M.); (D.O.S.-R.)
| | - Itzia Azucena Rangel-Castañeda
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (V.Y.O.-M.); (D.O.S.-R.)
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
| | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (I.A.R.-C.); (J.M.H.-H.); (A.P.-R.)
| | - Natalia Chiquete-Félix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico;
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico;
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, Jalisco 44340, Mexico; (R.C.-Z.); (J.G.-B.)
- Correspondence: ; Tel.: +52-1-331-058-5200
| |
Collapse
|
15
|
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol 2020; 11:01067. [PMID: 33041782 PMCID: PMC7526649 DOI: 10.3389/fphar.2020.01067] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Kumar P, Devaki B, Jonnala UK, Amere Subbarao S. Hsp90 facilitates acquired drug resistance of tumor cells through cholesterol modulation however independent of tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118728. [PMID: 32343987 DOI: 10.1016/j.bbamcr.2020.118728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.
Collapse
Affiliation(s)
- Pankaj Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Bharath Devaki
- Presently at Department of Molecular & Cell Biology, University of Texas, Dallas, USA
| | - Ujwal Kumar Jonnala
- Presently at SYNGENE International Ltd., Biocon BMS R & D Centre, Bengaluru, Karnataka, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
17
|
Kuang Y, Liu L, Wang Z, Chen Y. A photocleavable and mass spectrometric DNA-peptide probe enables fast and specific enzyme-free detection of microRNA. Talanta 2020; 211:120726. [PMID: 32070590 DOI: 10.1016/j.talanta.2020.120726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022]
Abstract
MiRNAs are known to be involved in a series of diseases, including breast cancer, and they have the potential to serve as diagnostic/prognostic markers and therapeutic targets. A prerequisite for miRNAs to be applied in clinical practice is the quantitative profiling of their expression. However, the majority of current assays used in miRNA detection are highly enzyme-dependent. In this study, a novel enzyme-free assay was developed that relies on stacking hybridization and a photocleavable DNA-PL-peptide probe, which contains a reporter peptide (AVLGVDPFR), a photocleavable o-nitrobenzyl derivative linker and a detection DNA sequence that is complementary to a part of the target miRNA (e.g., miR-21, miR-125a or miR-200c). Stacking hybridization enabled the DNA-PL-peptide probe to capture DNA in a contiguous tandem arrangement to generate a long DNA single strand complementary to the target miRNA. Then, photolysis was initiated to rapidly release the reporter peptide, and the reporter peptide was ultimately monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this experiment, the parameters linked with photorelease, binding, conjugation and hybridization were characterized. The results showed that the assay time was significantly shortened, and the detection specificity was improved. After validation of the assay, the target miRNA level was determined in human breast cells and tissue samples. The results demonstrated that photocleavable materials coupled with mass spectrometric detection have great potential in clinical practice.
Collapse
Affiliation(s)
- Yuqiong Kuang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Liang Liu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhongcheng Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; China State Key Laboratory of Reproductive Medicine, Nanjing, 210029, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing, 211166, China.
| |
Collapse
|
18
|
MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression. Biosci Rep 2019; 39:BSR20190421. [PMID: 31409725 PMCID: PMC6744599 DOI: 10.1042/bsr20190421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/06/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) participate in the regulation of chemoresistance in a variety of cancers including glioma. However, the molecular mechanism underlying the development of chemoresistance in glioma is not well understood. The aim of the present study was to explore the role of miRNAs in the chemosensitivity of glioma cells and the underlying mechanism. By microarray and qRT-PCR, we observed significant down-regulation of microRNA-302c (miR-302c) in the temozolomide (TMZ)-resistant human glioma tissues/cells. The low expression of miR-302c was closely associated with poor prognosis and chemotherapy resistant in patients. miR-302c up-regulation re-sensitized U251MG-TMZ cells and LN229-TMZ cells to TMZ treatment, as evidenced by inhibition of the cell viability, cell migration, and invasion capacity, and promotion of the apoptosis after TMZ treatment. Furthermore, P-glycoprotein (P-gp) was identified as a functional target of miR-302c and this was validated using a luciferase reporter assay. In addition, P-gp was found to be highly expressed in U251MG-TMZ cells and there was an inverse correlation between P-gp and miR-302c expression levels in clinical glioma specimens. Most importantly, we further confirmed that overexpression of P-gp reversed the enhanced TMZ-sensitivity induced by miR-302c overexpression in U251MG-TMZ and LN229-TMZ cells. Our finding showed that up-regulation of miR-302c enhanced TMZ-sensitivity by targeting P-gp in TMZ-resistant human glioma cells, which suggests that miR-302c would be potential therapeutic targets for chemotherapy-resistant glioma patients.
Collapse
|
19
|
Alqarni AS, Ali H, Iqbal J, Owayss AA, Smith BH. Expression of heat shock proteins in adult honey bee ( Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J Biol Sci 2019; 26:1372-1376. [PMID: 31762598 PMCID: PMC6864156 DOI: 10.1016/j.sjbs.2019.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/01/2022] Open
Abstract
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.
Collapse
Affiliation(s)
- Abdulaziz S Alqarni
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussain Ali
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Entomology Section, Agricultural Research Institute, Tarnab, Peshawar, Pakistan
| | - Javaid Iqbal
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Owayss
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brian H Smith
- Arizona State University, School of Life Sciences, USA
| |
Collapse
|
20
|
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. BIOMARKERS IN CANCER 2019; 11:1179299X19860815. [PMID: 31308780 PMCID: PMC6613062 DOI: 10.1177/1179299x19860815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Collapse
Affiliation(s)
- Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Wu K, Yu X, Huang Z, Zhu D, Yi X, Wu YL, Hao Q, Kemp KT, Elshimali Y, Iyer R, Nguyen KT, Zheng S, Chen G, Chen QH, Wang G, Vadgama JV, Wu Y. Targeting of PP2Cδ By a Small Molecule C23 Inhibits High Glucose-Induced Breast Cancer Progression In Vivo. Antioxid Redox Signal 2019; 30:1983-1998. [PMID: 29808718 PMCID: PMC6486665 DOI: 10.1089/ars.2017.7486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
Aims: Epidemiologic evidence indicates that diabetes may increase risk of breast cancer (BC) and mortality in patients with cancer. The pathophysiological relationships between diabetes and cancer are not fully understood, and personalized treatments for diabetes-associated BC are urgently needed. Results: We observed that high glucose (HG), via activation of nuclear phosphatase PP2Cδ, suppresses p53 function, and consequently promotes BC cell proliferation, migration, and invasion. PP2Cδ expression is higher in tumor tissues from BC patients with hyperglycemia than those with normoglycemia. The mechanisms underlying HG stimulation of PP2Cδ involve classical/novel protein kinase-C (PKC) activation and GSK3β phosphorylation. Reactive oxygen species (ROS)/NF-κB pathway also mediates HG induction of PP2Cδ. Furthermore, we identified a 1,5-diheteroarylpenta-1,4-dien-3-one (Compound 23, or C23) as a novel potent PP2Cδ inhibitor with a striking cytotoxicity on MCF-7 cells through cell-based screening assay for growth inhibition and activity of a group of curcumin mimics. Beside directly inhibiting PP2Cδ activity, C23 blocks HG induction of PP2Cδ expression via heat shock protein 27 (HSP27) induction and subsequent ablation of ROS/NF-κB activation. C23 can thus significantly block HG-triggered inhibition of p53 activity, leading to the inhibition of cancer cell proliferation, migration, and invasion. In addition, hyperglycemia promotes BC development in diabetic nude mice, and C23 inhibits the xenografted BC tumor growth. Conclusions and Innovation: Our findings elucidate mechanisms that may have contributed to diabetes-associated BC progression, and provide the first evidence to support the possible alternative therapeutic approach to BC patients with diabetes. Antioxid. Redox Signal. 30, 1983-1998.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhimin Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying-Li Wu
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Kevin T. Kemp
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Roshni Iyer
- Department of Biomedical Engineering, University of Texas at Arlington, Arlington, Texas
| | - Kytai Truong Nguyen
- Department of Biomedical Engineering, University of Texas at Arlington, Arlington, Texas
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, Louisiana
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, Fresno, California
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, Fresno, California
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, Louisiana
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
22
|
Tiash S, Chowdhury EH. siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. J Drug Target 2019; 27:325-337. [PMID: 30221549 DOI: 10.1080/1061186x.2018.1525388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy, the commonly favoured approach to treat cancer is frequently associated with treatment failure and recurrence of disease as a result of development of multidrug resistance (MDR) with concomitant over-expression of drug efflux proteins on cancer cells. One of the most widely used drugs, doxorubicin (Dox) is a substrate of three different ATP-binding cassette (ABC) transporters, namely, ABCB1, ABCG2 and ABCC1, predominantly contributing to MDR phenotype in cancer. To silence these transporter-coding genes and thus enhance the therapeutic efficacy of Dox, pH-sensitive carbonate apatite (CA) nanoparticles (NPs) were employed as a carrier system to co-deliver siRNAs against these genes and Dox in breast cancer cells and in a syngeneic breast cancer mouse model. siRNAs and Dox were complexed with NPs by incubation at 37 °C and used to treat cancer cell lines to check cell viability and caspase-mediated signal. 4T1 cells-induced breast cancer mouse model was used for treatment with the complex to confirm their action in tumour regression. Smaller (∼200 nm) and less polydisperse NPs that were taken up more effectively by tumour tissue could enhance Dox chemosensitivity, significantly reducing the tumour size in a very low dose of Dox (0.34 mg/kg), in contrast to the limited effect observed in breast cancer cell lines. The study thus proposes that simultaneous delivery of siRNAs against transporter genes and Dox with the help of CA NPs could be a potential therapeutic intervention in effectively treating MDR breast cancer.
Collapse
Affiliation(s)
- Snigdha Tiash
- a Jeffrey Cheah School of Medicine and Health Sciences , Monash University Malaysia , Bandar Sunway, Subang Jaya , Malaysia
| | - Ezharul Hoque Chowdhury
- a Jeffrey Cheah School of Medicine and Health Sciences , Monash University Malaysia , Bandar Sunway, Subang Jaya , Malaysia
| |
Collapse
|
23
|
He WT, Zhu YH, Zhang T, Abulimiti P, Zeng FY, Zhang LP, Luo LJ, Xie XM, Zhang HL. Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-regulating Heat Shock Protein 27 and P-Glycoprotein. Chin J Integr Med 2018; 25:416-424. [PMID: 30484020 DOI: 10.1007/s11655-018-2997-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the potential mechanisms that curcumin reverses 5-fluorouracil (5-FU) multidrug resistance (MDR). METHODS Cell growth and the inhibitory rate of curcumin (2-25 μg/mL) and/or 5-FU (0.05-1000 μg/mL) on human colon cancer HCT-8 and HCT-8/5-FU (5-FU-resistant cell line) were determined using cell counting kit-8 (CCK-8) assay. Apoptosis and cell cycle after 5-FU and/or curcumin treatment were detected by flow cytometry (FCM) and transmission electron microscopy (TEM). The expression of the multidrug resistance related factors p-glycoprotein (P-gp) and heat shock protein 27 (HSP-27) genes and proteins were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting (WB), respectively. RESULTS The inhibitory rate of curcumin or 5-FU on HCT-8 and HCT-8/5-FU cells proliferation at exponential phase were in a dosedependent manner, HCT-8 cell line was more sensitive to curcumin or 5-FU when compared the inhibitory rate of HCT-8/5-FU. The 50% inhibitory concentration (IC50) of combination 5-FU and curcumin (4.0 μg/mL) in HCT-8/5-FU was calculated as 179.26 μg/mL, with reversal fold of 1.85. Another IC50 of combination 5-FU and curcumin (5.5 μg/mL) in HCT-8/5-FU was calculated as 89.25 μg/mL, with reversal fold of 3.71. Synergistic effect of 5-FU and curcumin on HCT-8 and HCT-8/5-FU cells were found. The cell cycle analysis performed by FCM showed that HCT-8 and HCT-8/5-FU cells mostly accumulated at G0/G1 phase, which suggested a synergistic effect of curcumin and 5-FU to induce apoptosis. FCM analysis found that the percentage of apoptosis of cells treated with curcumin, 5-FU and their combination were significantly increased compared to the control group (P<0.05), and the percentage of apoptosis of the combination groups were slightly higher than other groups (P<0.05). The mRNA levels of P-gp (0.28±0.02) and HSP-27 (0.28±0.09) in HCT-8/5-FU cells treated with combination drugs were lower than cells treated with 5-FU alone (P-gp, 0.48±0.07, P=0.009; HSP-27, 0.57±0.10, P=0.007). The protein levels of P-gp (0.25±0.06) and HSP-27 (0.09±0.02) in HCT-8/5-FU cells treated with combination drugs were decreased when compared to 5-FU alone (P-gp, 0.46±0.02, P=0.005; HSP-27, 0.43±0.01, P=0.000). CONCLUSIONS Curcumin can inhibit the proliferation of human colon cancer cells. Curcumin has the ability of reversal effects on the multidrug resistance of human colon cancer cells lines HCT-8/5-FU. Down-regulation of P-gp and HSP-27 may be the mechanism of curcumin reversing the drug resistance of HCT-8/5-FU to 5-FU.
Collapse
Affiliation(s)
- Wen-Ting He
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Yan-Hua Zhu
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Tong Zhang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Patima Abulimiti
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Fan-Ye Zeng
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Li-Ping Zhang
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Ling-Juan Luo
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Xin-Mei Xie
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China
| | - Hong-Liang Zhang
- Second Department of Oncology, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region, Uyghur, 830000, China.
| |
Collapse
|
24
|
Xiao Y, Liu J, Guo M, Zhou H, Jin J, Liu J, Liu Y, Zhang Z, Chen C. Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. NANOSCALE 2018; 10:12639-12649. [PMID: 29943786 DOI: 10.1039/c8nr02700e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A key challenge of chemotherapy in clinical treatments is multidrug resistance (MDR), which mainly arises from drug efflux-induced tumor cell survival. Thus, it is necessary to provide biocompatible chemotherapeutics to improve drug accumulation in MDR cells. Herein, two clinical small molecular drugs, celastrol (CST) and doxorubicin (DOX), were self-assembled into carrier-free and biocompatible nanoparticles (CST/DOX NPs) via a simple and green precipitation method for synergistic combination chemotherapy to overcome DOX resistance. These spherical CST/DOX NPs can improve the water-solubility of CST, reduce the dosage of DOX, and therefore significantly enhance cellular drug accumulation by activating heat shock factor 1 (HSF-1) and inhibiting NF-κB to depress P-gp expression, which results in apoptosis and autophagy of DOX resistant cells through the ROS/JNK signaling pathway. Finally, synergistic combination chemotherapy was attained in both MCF-7/MDR cells and 3D multicellular tumor spheroids. Thus, CST/DOX NPs provide an alternative for overcoming drug resistance in future clinical applications.
Collapse
Affiliation(s)
- Yating Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma J, Lv Z, Liu X, Liu X, Xu W. MG‑132 reverses multidrug resistance by activating the JNK signaling pathway in FaDu/T cells. Mol Med Rep 2018; 18:1820-1825. [PMID: 29901180 DOI: 10.3892/mmr.2018.9138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to cancer therapy. MG‑132 has been identified to be effective against MDR in several types of cancer. However, the mechanism of MG‑132 in head and neck squamous cell carcinomas remains unknown. Based on our previous study, the present detected P‑gp and P‑gp expression in hypopharyngeal carcinoma FaDu cells, revealing that their expression was lower than that observed in the MDR cell line FaDu/T. To reverse the MDR of FaDu/T cells, the present study introduced MG‑132 and demonstrated that the high expression of P‑gp/P‑gp in FaDu/T cells was attenuated in a time‑dependent manner. MG‑132 also strengthened the sensitivity of FaDu/T cells to multidrugs. c‑Jun N‑terminal kinase (JNK) activation was further observed in FaDu/T cells. However, P‑gp/P‑gp did not decrease when FaDu/T cells were pretreated with SP600125. These results indicated that MG‑132 reversed the MDR of hypopharyngeal carcinoma by downregulating P‑gp/P‑gp, and the underlying mechanism may be associated with the activation the of the JNK signaling pathway.
Collapse
Affiliation(s)
- Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
MicroRNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway in breast cancer. Biomed Pharmacother 2018; 102:286-294. [DOI: 10.1016/j.biopha.2018.03.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
|
27
|
Velayutham M, Cardounel AJ, Liu Z, Ilangovan G. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists. Front Oncol 2018; 8:97. [PMID: 29682483 PMCID: PMC5897429 DOI: 10.3389/fonc.2018.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
Heat-shock factor-1 (HSF-1) is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Arturo J Cardounel
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zhenguo Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Govindasamy Ilangovan
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Zhou W, Xu F, Li D, Chen Y. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry. Clin Chem 2018; 64:526-535. [DOI: 10.1373/clinchem.2017.274266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Abstract
BACKGROUND
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a particularly aggressive type of the disease. To date, much evidence has indicated that accurate HER2 status detection is crucial for prognosis and treatment strategy selection. Thus, bioanalytical techniques for early and accurate detection of HER2 have the potential to improve patient care. Currently, the widely used immunohistochemical staining normally has problems with reproducibility and lack of standardization, resulting in poor concordance between laboratories. Aptamers are a good alternative, but the extent of their use in quantitative analysis of HER2 is limited because of the lack of effective detection methods.
METHODS
We developed a quasi-targeted proteomics assay and converted the HER2 signal into the mass response of reporter peptide by a combination of aptamer–peptide probe and LC-MS/MS.
RESULTS
The selected aptamer–peptide probe consisted of aptamer HB5 and the substrate peptide GDKAVLGVDPFR that contained the reporter peptide AVLGVDPFR. After characterization of this newly synthesized probe (e.g., conjugation efficiency, stability, binding affinity, specificity, and digestion efficiency), probe binding and trypsin shaving conditions were optimized. The resulting limit of quantification for HER2 was 25 pmol/L. Then, the quasi-targeted proteomics assay was applied to determine the HER2 concentrations in the HER2-positive breast cancer cells BT474 and SK-BR-3, the HER2-negative breast cancer cells MDA-MB-231 and MCF-7, and 36 pairs of human breast primary tumors and adjacent normal tissue samples. The results were highly concordant with those obtained by immunohistochemistry with reflex testing by fluorescent in situ hybridization.
CONCLUSIONS
Quasi-targeted proteomics can be a quantitative alternative for HER2 detection.
Collapse
Affiliation(s)
- Weixian Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing, China
| |
Collapse
|
29
|
Aparicio-Cuevas MA, Rivero-Cruz I, Sánchez-Castellanos M, Menéndez D, Raja HA, Joseph-Nathan P, González MDC, Figueroa M. Dioxomorpholines and Derivatives from a Marine-Facultative Aspergillus Species. JOURNAL OF NATURAL PRODUCTS 2017; 80:2311-2318. [PMID: 28796494 DOI: 10.1021/acs.jnatprod.7b00331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two new dioxomorpholines, 1 and 2, three new derivatives, 3-5, and the known compound PF1233 B (6) were isolated from a marine-facultative Aspergillus sp. MEXU 27854. Their structures were established by 1D and 2D NMR and HRESIMS data analysis. The absolute configuration of 1 and 2 was elucidated by comparison of experimental and DFT-calculated vibrational circular dichroism spectra. Compounds 3, 5, and 6 were noncytotoxic to a panel of human cancer cell lines with different functional status for the tumor-suppressor protein p53, but were inhibitors of P-glycoprotein-reversing multidrug resistance in a doxorubicin-resistant cell line.
Collapse
Affiliation(s)
| | | | | | - Daniel Menéndez
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH , Research Triangle Park, North Carolina 27709, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro , Greensboro, North Carolina 27402, United States
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional , Apartado 14-740, Ciudad de México 07000, México
| | | | | |
Collapse
|
30
|
Liu H, Tian T, Ji D, Ren N, Ge S, Yan M, Yu J. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells. Biosens Bioelectron 2016; 85:909-914. [DOI: 10.1016/j.bios.2016.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
|
31
|
Sheng Y, You Y, Chen Y. Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer. Int J Pharm 2016; 512:1-13. [DOI: 10.1016/j.ijpharm.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
32
|
A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. Anal Bioanal Chem 2016; 408:7491-503. [PMID: 27510278 DOI: 10.1007/s00216-016-9847-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.
Collapse
|
33
|
Seebacher N, Lane DJR, Richardson DR, Jansson PJ. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med 2016; 96:432-45. [PMID: 27154979 DOI: 10.1016/j.freeradbiomed.2016.04.201] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within.
Collapse
Affiliation(s)
- Nicole Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Krishnamurthy K, Glaser S, Alpini GD, Cardounel AJ, Liu Z, Ilangovan G. Heat shock factor-1 knockout enhances cholesterol 7α-hydroxylase (CYP7A1) and multidrug transporter (MDR1) gene expressions to attenuate atherosclerosis. Cardiovasc Res 2016; 111:74-83. [PMID: 27131506 DOI: 10.1093/cvr/cvw094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
AIMS Stress response, in terms of activation of stress factors, is known to cause obesity and coronary heart disease such as atherosclerosis in human. However, the underlying mechanism(s) of these pathways are not known. Here, we investigated the effect of heat shock factor-1 (HSF-1) on atherosclerosis. METHODS AND RESULTS HSF-1 and low-density lipoprotein receptor (LDLr) double knockout (HSF-1(-/-)/LDLr(-/-)) and LDLr knockout (LDLr(-/-)) mice were fed with atherogenic western diet (WD) for 12 weeks. WD-induced weight gain and atherosclerotic lesion in aortic arch and carotid regions were reduced in HSF-1(-/-)/LDLr(-/-) mice, compared with LDLr(-/-) mice. Also, repression of PPAR-γ2 and AMPKα expression in adipose tissue, low hepatic steatosis, and lessened plasma adiponectins and lipoproteins were observed. In HSF-1(-/-)/LDLr(-/-) liver, higher cholesterol 7α-hydroxylase (CYP7A1) and multidrug transporter [MDR1/P-glycoprotein (P-gp)] gene expressions were observed, consistent with higher bile acid transport and larger hepatic bile ducts. Luciferase reporter gene assays with wild-type CYP7A1 and MDR1 promoters showed lesser luminescence than with mutant promoters (HSF-1 binding site deleted), indicating that HSF-1 binding is repressive of CYP7A1 and MDR1 gene expressions. CONCLUSION HSF-1 ablation not only eliminates heat shock response, but it also transcriptionally up-regulates CYP7A1 and MDR1/P-gp axis in WD-diet fed HSF-1(-/-)/LDLr(-/-) mice to reduce atherosclerosis.
Collapse
Affiliation(s)
- Karthikeyan Krishnamurthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Medicine, Scott and White and Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Gianfranco D Alpini
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Medicine, Scott and White and Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Arturo J Cardounel
- Department of Anesthesiology, The Ohio State University, Columbus, OH 43210, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Govindasamy Ilangovan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Sehrawat U, Pokhriyal R, Gupta AK, Hariprasad R, Khan MI, Gupta D, Naru J, Singh SB, Mohanty AK, Vanamail P, Kumar L, Kumar S, Hariprasad G. Comparative Proteomic Analysis of Advanced Ovarian Cancer Tissue to Identify Potential Biomarkers of Responders and Nonresponders to First-Line Chemotherapy of Carboplatin and Paclitaxel. BIOMARKERS IN CANCER 2016; 8:43-56. [PMID: 26997873 PMCID: PMC4795487 DOI: 10.4137/bic.s35775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
Conventional treatment for advanced ovarian cancer is an initial debulking surgery followed by chemotherapy combination of carboplatin and paclitaxel. Despite initial high response, three-fourths of these women experience disease recurrence with a dismal prognosis. Patients with advanced-stage ovarian cancer who underwent cytoreductive surgery were enrolled and tissue samples were collected. Post surgery, these patients were started on chemotherapy and followed up till the end of the cycle. Fluorescence-based differential in-gel expression coupled with mass spectrometric analysis was used for discovery phase of experiments, and real-time polymerase chain reaction, Western blotting, and pathway analysis were performed for expression and functional validation of differentially expressed proteins. While aldehyde reductase, hnRNP, cyclophilin A, heat shock protein-27, and actin are upregulated in responders, prohibitin, enoyl-coA hydratase, peroxiredoxin, and fibrin-β are upregulated in the nonresponders. The expressions of some of these proteins correlated with increased apoptotic activity in responders and decreased apoptotic activity in nonresponders. Therefore, the proteins qualify as potential biomarkers to predict chemotherapy response.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ashish Kumar Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Roopa Hariprasad
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mohd Imran Khan
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Divya Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jasmine Naru
- National Dairy Research Institute, Karnal, India
| | | | | | - Perumal Vanamail
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
36
|
Zhao L, Wang Y, Jiang L, He M, Bai X, Yu L, Wei M. MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1). J Exp Clin Cancer Res 2016; 35:25. [PMID: 26842910 PMCID: PMC4738800 DOI: 10.1186/s13046-016-0300-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/27/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The importance of individual microRNAs (miRNAs) in tumor has been established in different cancers. However, their association with tumor chemoresistance has not been fully understood. Previously, we found two novel MDR-associated microRNAs (miRNAs). In this report, we investigated the combined effects of miRNA gene cluster in chemoresistance of breast cancer. METHODS This study was performed in two different breast cancer cell lines (MCF-7 and MCF-7/ADR). The levels of miRNAs and mRNA expression were determined by using Quantitative Real-Time PCR. Western blotting was used to detect the levels of protein molecules. Cell viability was assessed by MTS assay. Bioinformatics and Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. RESULTS The miR-302S family including miR-302a, miR-302b, miR-302c, and miR-302d was significantly down-regulated in P-glycoprotein (P-gp)-overexpressing MCF-7/ADR cells. Overexpression of miR-302 increased intracellular accumulation of ADR and sensitized breast cancer cells to ADR. Most importantly, miR-302S produced stronger effects than each individual member alone. The four miRNAs cooperatively downregulate P-gp expression in regulating drug sensitivity. However, our results showed that the suppression of P-gp expression by miR-302 is not through typical miRNA-mediated mRNA degradation but at the level of protein and transcription. Further studies identified MAP/ERK kinase kinase 1 (MEKK1) as a direct and functional target of miR-302. miR-302 showed combinatorial effects on MKEE1 repression and MEKK1-mediated ERK pathway. The suppression of P-gp by miR-302 was reversed by MEKK1 overexpression. CONCLUSION Our results indicate that miR-302 cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein by targeting MEKK1 of ERK pathway. miR-302 gene cluster may be a potential target for reversing P-gp-mediated chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|
37
|
Xu F, Yang T, Chen Y. Quantification of microRNA by DNA-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry-Based Quasi-Targeted Proteomics. Anal Chem 2015; 88:754-63. [PMID: 26641144 DOI: 10.1021/acs.analchem.5b03056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distorted and unique expression of microRNAs (miRNAs) in cancer makes them an attractive source of biomarkers. However, one of prerequisites for the application of miRNAs in clinical practice is to accurately profile their expression. Currently available assays normally require pre-enrichment, amplification, and labeling steps, and most of them are semiquantitative. In this study, we converted the signal of target miR-21 into reporter peptide by a DNA-peptide probe and the reporter peptide was ultimately quantified using LC-MS/MS-based targeted proteomics. Specifically, substrate peptide GDKAVLGVDPFR containing reporter peptide AVLGVDPFR and tryptic cleavage site (lysine at position 3) was first designed, followed by the conjugation with DNA sequence that was complementary to miR-21. The newly formed DNA-peptide probe was then hybridized with miR-21, which was biotinylated and attached to streptavidin agarose in advance. After trypsin digestion, the reporter peptide was released and monitored by a targeted proteomics assay. The obtained limit of quantification (LOQ) was 1 pM, and the detection dynamic range spanned ∼5 orders of magnitude. Using this assay, the developed quasi-targeted proteomics approach was applied to determine miR-21 level in breast cells and tissue samples. Finally, qRT-PCR was also performed for a comparison. This report grafted the strategy of targeted proteomics into miRNA quantification.
Collapse
Affiliation(s)
- Feifei Xu
- School of Pharmacy, Nanjing Medical University , Nanjing, 211166, China
| | - Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, 210029, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University , Nanjing, 211166, China
| |
Collapse
|
38
|
Tsou SH, Hou MH, Hsu LC, Chen TM, Chen YH. Gain-of-function p53 mutant with 21-bp deletion confers susceptibility to multidrug resistance in MCF-7 cells. Int J Mol Med 2015; 37:233-42. [PMID: 26572087 DOI: 10.3892/ijmm.2015.2406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
The majority of p53 mutations, which are responsible for gain of oncogenic function, are missense mutations in hotspot codons. However, in our previous study, we demonstrated that a deletion spanning codons 127-133 in the p53 gene (designated as del p53) was detected in doxorubicin-resistant MCF-7 cell lines following various induction processes. In the present study, we aimed to investigate the role of del p53 and its association with the proliferation, metastasis and drug resistance of MCF-7 cells. The MCF-7/del p53 cell line is a representative of the del p53 stably expressed clones which were constructed by transfection of the del p53-containing construct into MCF-7/wt cells. Markers of multidrug resistance (MDR), epithelial-mesenchymal transition (EMT) and stem cell-like properties were examined in the MCF-7/del p53 cells. The results revealed that the MCF-7/del p53 cells expressed full-length p53 and del p53 mRNA and protein, as well as P-glycoprotein (P-gp). The MCF-7/del p53 cells acquired resistance to doxorubicin with increased P-gp efflux function. Using a transient expression assay, the mdr1 promoter was found to be significantly activated by external or integrated del p53 (P<0.001). The inhibition of nuclear factor (NF)-κB by cyclosporine sensitized the MCF-7/del p53 cells to doxorubicin toxicity. In addition, the morphological characteristics of the MCF-7/del p53 and MCF-7/adr were similar. EMT was observed in the MCF-7/del p53 cells as demonstrated by the presence of the mesenchymal markers, Slug and vimentin, and the decrease in the epithelial marker, cadherin 1, type 1, E-cadherin (CDH1), as well as an enhanced migration ability (P<0.001). Furthermore, the number of cells expressing the cancer stem cell-like marker, CD44, increased, accompanied by mammosphere formation. Taken together, these findings indicate that the expression of del p53 in MCF-7/del p53 cells enables the cells to partially acquire doxorubicin resistance characteristics of the MCF-7/adr cells. Thus, del p53 may be an important factor in non-invasive MCF-7 cells, activating NF-κB signaling and the mdr1 promoter and partially attributing to EMT; the cells thus acquire stem cell‑like properties, which facilitates drug resistance. Therefore, the 21-bp deletion of p53 may prove to be a therapeutic strategy with which to prevent cancer cells from acquiring resistance to drugs.
Collapse
Affiliation(s)
- Shang-Hsun Tsou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Ming-Hung Hou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Lih-Ching Hsu
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Tzer-Ming Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Yen-Hui Chen
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| |
Collapse
|
39
|
Vydra N, Toma A, Widlak W. Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets 2015; 14:144-55. [PMID: 24467529 PMCID: PMC4435066 DOI: 10.2174/1568009614666140122155942] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/06/2014] [Accepted: 01/22/2014] [Indexed: 01/13/2023]
Abstract
HSF1 (Heat Shock transcription Factor 1) is the main transcription factor activated in response to proteotoxic stress. Once activated, it induces an expression of heat shock proteins (HSPs) which enables cells to survive in suboptimal conditions. HSF1 could be also activated by altered kinase signaling characteristic for cancer cells, which is a probable reason for its high activity found in a broad range of tumors. There is rapidly growing evidence that HSF1 supports tumor initiation and growth, as well as metastasis and angiogenesis. It also modulates the sensitivity of cancer cells to therapy. Functions of HSF1 in cancer are connected with HSPs’ activity, which generally protects cells from apoptosis, but also are independent of its classical targets. HSF1-dependent regulation of non-HSPs genes plays a role in cell cycle
progression, glucose metabolism, autophagy and drug efflux. HSF1 affects the key cell-survival and regulatory pathways, including p53, RAS/MAPK, cAMP/PKA, mTOR and insulin signaling. Although the exact mechanism of HSF1 action is still somewhat obscure, HSF1 is becoming an attractive target in anticancer therapies, whose inhibition could enhance the effects of other treatments.
Collapse
Affiliation(s)
| | | | - Wieslawa Widlak
- Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
40
|
Sheng Y, Xu J, You Y, Xu F, Chen Y. Acid-Sensitive Peptide-Conjugated Doxorubicin Mediates the Lysosomal Pathway of Apoptosis and Reverses Drug Resistance in Breast Cancer. Mol Pharm 2015; 12:2217-28. [PMID: 26035464 DOI: 10.1021/mp500386y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan Sheng
- Nanjing Medical
University, Nanjing 211166, China
| | - Jinhui Xu
- Department
of Pharmacy, Suzhou Municipal Hospital, Suzhou 215001, China
| | - Yiwen You
- Nanjing Medical
University, Nanjing 211166, China
| | - Feifei Xu
- Nanjing Medical
University, Nanjing 211166, China
| | - Yun Chen
- Nanjing Medical
University, Nanjing 211166, China
| |
Collapse
|
41
|
Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Sci Rep 2015; 5:9301. [PMID: 25818003 PMCID: PMC4377623 DOI: 10.1038/srep09301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/24/2015] [Indexed: 01/02/2023] Open
Abstract
Chemoresistance is a poor prognostic factor in breast cancer and is a major obstacle to the successful treatment of patients receiving chemotherapy. However, the precise mechanism of resistance remains unclear. In this study, a pair of breast cancer cell lines, MCF-7 and its adriamycin-resistant counterpart MCF-7/ADR was used to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We applied nanoflow liquid chromatography (nLC) and tandem mass tags (TmT) quantitative mass spectrometry to distinguish the differentially expressed proteins (DEPs) between the two cell lines. Bioinformatics analyses were used to identify functionally active proteins and networks. 80 DEPs were identified with either up- or down-regulation. Basing on the human protein-protein interactions (PPI), we have retrieved the associated functional interaction networks for the DEPs and analyzed the biological functions. Six different signaling pathways and most of the DEPs strongly linked to chemoresistance, invasion, metastasis development, proliferation, and apoptosis. The identified proteins in biological networks served to resistant drug and to select critical candidates for validation analyses by western blot. The glucose-6-phosphate dehydrogenase (G6PD), gamma-glutamyl cyclotransferase (GGCT), isocitrate dehydrogenase 1 (NADP+,soluble)(IDH1), isocitrate dehydrogenase 2 (NADP+,mitochondrial) (IDH2) and glutathione S-transferase pi 1(GSTP1), five of the critical components of GSH pathway, contribute to chemoresistance.
Collapse
|
42
|
Canine heat shock protein 27 promotes proliferation, migration, and doxorubicin resistance in the canine cell line DTK-F. Vet J 2015; 205:254-62. [PMID: 25882637 DOI: 10.1016/j.tvjl.2015.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/23/2022]
Abstract
Canine mammary tumors (CMTs) are the most common type of tumors in female dogs. Heat shock proteins are highly expressed in many cancers and are involved in tumor progression and chemoresistance in CMTs; however, the biological role of canine heat shock protein 27 (cHSP27) in CMTs has not been thoroughly characterized. This study investigated the roles of cHSP27 in cell growth, migration, anchorage, and resistance to doxorubicin (DOX) using DTK-F cells, a CMT cell line that does not express cHSP27. DTK-F cells were transfected with cHSP27 and stable overexpression was established. A mouse monoclonal antibody against cHSP27 was also produced. The biological functions of cHSP27 in DTK-F cells were then evaluated using a variety of assays. Overexpression of cHSP27 was associated with increased cell proliferation, clone formation, migration, and decreased DOX sensitivity. In conclusion, these data provide evidence that cHSP27 overexpression can promote anchorage-independent growth, migration, and increased DOX resistance in CMT cells.
Collapse
|
43
|
Wang L, Sun Q, Wang X, Wen T, Yin JJ, Wang P, Bai R, Zhang XQ, Zhang LH, Lu AH, Chen C. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J Am Chem Soc 2015; 137:1947-55. [PMID: 25597855 DOI: 10.1021/ja511560b] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Under evolutionary pressure from chemotherapy, cancer cells develop resistance characteristics such as a low redox state, which eventually leads to treatment failures. An attractive option for combatting resistance is producing a high concentration of produced free radicals in situ. Here, we report the production and use of dispersible hollow carbon nanospheres (HCSs) as a novel platform for delivering the drug doxorubicine (DOX) and generating additional cellular reactive oxygen species using near-infrared laser irradiation. These irradiated HCSs catalyzed sufficiently persistent free radicals to produce a large number of heat shock factor-1 protein homotrimers, thereby suppressing the activation and function of resistance-related genes. Laser irradiation also promoted the release of DOX from lysosomal DOX@HCSs into the cytoplasm so that it could enter cell nuclei. As a result, DOX@HCSs reduced the resistance of human breast cancer cells (MCF-7/ADR) to DOX through the synergy among photothermal effects, increased generation of free radicals, and chemotherapy with the aid of laser irradiation. HCSs can provide a unique and versatile platform for combatting chemotherapy-resistant cancer cells. These findings provide new clinical strategies and insights for the treatment of resistant cancers.
Collapse
Affiliation(s)
- Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences , Beijing China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu M, Zhou F, Hao K, Liu J, Chen Q, Ni P, Zhou H, Wang G, Zhang J. Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-κB pathway. Biochem Pharmacol 2015; 93:210-20. [DOI: 10.1016/j.bcp.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/09/2023]
|
45
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
46
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
47
|
Xu F, Wang F, Yang T, Sheng Y, Zhong T, Chen Y. Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int 2014; 14:142. [PMID: 25550688 PMCID: PMC4279688 DOI: 10.1186/s12935-014-0142-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several signal transduction pathways have been reported being involved in the acquisition of P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) upon exposure to anti-cancer drugs, whereas there is evidence indicating that the expression and activity of P-gp were not equally or even reversely modulated by different drugs. METHODS To further illustrate this drug-specific effect, possible mechanisms that enable breast cancer cells MCF-7 to acquire MDR to either paclitaxel (PTX) or doxorubicin (DOX) were investigated in a time-dependent manner. RESULTS The results suggested that at least two pathways participated in this process. One was the short and transient activation of NF-κB, the second one was the relatively prolonged induction of PXR. Both PXR and NF-κB pathways took part in the PTX drug resistance acquisition, whereas DOX did not exert a significant effect on the PXR-mediated induction of P-gp. Furthermore, the property of NF-κB activation shared by DOX and PTX was not identical. An attempt made in the present study demonstrated that the acquired resistance to DOX was via or partially via NF-κB activation but not its upstream receptor TLR4, while PTX can induce the drug resistance via TLR4-NF-κB pathway. CONCLUSIONS To our knowledge, this report is among the first to directly compare the time dependence of NF-κB and PXR pathways. The current study provides useful insight into the distinct ability of DOX and PTX to induce P-gp mediated MDR in breast cancer. Different strategies may be required to circumvent MDR in the presence of different anti-cancer drugs.
Collapse
Affiliation(s)
- Feifei Xu
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Fengliang Wang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004 China
| | - Ting Yang
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Yuan Sheng
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Ting Zhong
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| |
Collapse
|
48
|
Yang T, Chen F, Xu F, Wang F, Xu Q, Chen Y. A liquid chromatography–tandem mass spectrometry-based targeted proteomics assay for monitoring P-glycoprotein levels in human breast tissue. Clin Chim Acta 2014; 436:283-9. [DOI: 10.1016/j.cca.2014.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/11/2014] [Accepted: 06/16/2014] [Indexed: 01/25/2023]
|
49
|
XUE JIAPENG, WANG GENG, ZHAO ZONGBIN, WANG QUN, SHI YUN. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol Rep 2014; 32:1647-53. [DOI: 10.3892/or.2014.3365] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/11/2014] [Indexed: 11/05/2022] Open
|
50
|
Antognelli C, Palumbo I, Aristei C, Talesa VN. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer 2014; 111:395-406. [PMID: 24918814 PMCID: PMC4102940 DOI: 10.1038/bjc.2014.280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glyoxalase I (GI) is a cellular defence enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modifications of proteins arginines, is a pro-apoptotic agent. Radiotherapy is an important modality widely used in cancer treatment. Exposure of cells to ionising radiation (IR) results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, GI was involved in IR-induced apoptosis. METHODS Apoptosis, by TUNEL assay, transcript and protein levels or enzymatic activity, by RT-PCR, western blot and spectrophotometric methods, respectively, were evaluated in irradiated MCF-7 breast cancer cells, also in experiments with appropriate inhibitors or using small interfering RNA. RESULTS Ionising radiation induced a dramatic reactive oxygen species (ROS)-mediated inhibition of GI, leading to AP-modified Hsp27 protein accumulation that, in a mechanism involving p53 and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of GI occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and ERα modulation. CONCLUSIONS Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB.
Collapse
Affiliation(s)
- C Antognelli
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - I Palumbo
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - C Aristei
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - V N Talesa
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|