1
|
Mandal M, Pires D, Calado M, Azevedo-Pereira JM, Anes E. Cystatin F Depletion in Mycobacterium tuberculosis-Infected Macrophages Improves Cathepsin C/Granzyme B-Driven Cytotoxic Effects on HIV-Infected Cells during Coinfection. Int J Mol Sci 2024; 25:8141. [PMID: 39125711 PMCID: PMC11311260 DOI: 10.3390/ijms25158141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF.
Collapse
Affiliation(s)
- Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| |
Collapse
|
2
|
Acevedo N, Lozano A, Zakzuk J, Llinás-Caballero K, Brodin D, Nejsum P, Williams AR, Caraballo L. Cystatin from the helminth Ascaris lumbricoides upregulates mevalonate and cholesterol biosynthesis pathways and immunomodulatory genes in human monocyte-derived dendritic cells. Front Immunol 2024; 15:1328401. [PMID: 38481989 PMCID: PMC10936004 DOI: 10.3389/fimmu.2024.1328401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 04/08/2024] Open
Abstract
Background Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Ana Lozano
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility (BEA), Karolinska Institutet, Huddinge, Sweden
| | - Peter Nejsum
- Department of Clinical Medicine. Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences. University of Copenhagen, Frederiksberg, Denmark
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
3
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
4
|
Mitrović A, Senjor E, Jukić M, Bolčina L, Prunk M, Proj M, Nanut MP, Gobec S, Kos J. New inhibitors of cathepsin V impair tumor cell proliferation and elastin degradation and increase immune cell cytotoxicity. Comput Struct Biotechnol J 2022; 20:4667-4687. [PMID: 36147668 PMCID: PMC9459403 DOI: 10.1016/j.csbj.2022.08.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Identification of novel potent inhibitors of lysosomal cysteine peptidase cathepsin V. New inhibitors of cathepsin V demonstrated antitumor activity. They impair tumor cell proliferation and elastase degradation and increase immune cell cytotoxicity. Cathepsin V inhibitor impaired conversion of immunosuppressive factor cystatin F to its active monomeric form.
Cathepsin V is a human lysosomal cysteine peptidase with specific functions during pathological processes and is as such a promising therapeutic target. Peptidase inhibitors represent powerful pharmacological tools for regulating excessive proteolytic activity in various diseases. Cathepsin V is highly related to cathepsin L but differs in tissue distribution, binding site morphology, substrate specificity, and function. To validate its therapeutic potential and extend the number of potent and selective cathepsin V inhibitors, we used virtual high-throughput screening of commercially available compound libraries followed by an evaluation of kinetic properties to identify novel potent and selective cathepsin V inhibitors. We identified the ureido methylpiperidine carboxylate derivative, compound 7, as a reversible, selective, and potent inhibitor of cathepsin V. It also exhibited the most preferable characteristics for further evaluation with in vitro functional assays that simulate the processes in which cathepsin V is known to play an important role. Compound 7 exerted significant effects on cell proliferation, elastin degradation, and immune cell cytotoxicity. The latter was increased because compound 7 impaired conversion of immunosuppressive factor cystatin F to its active monomeric form. Taken together, our results present novel potent inhibitors of cathepsin V and provide new hit compounds for detailed development and optimization. Further, we demonstrate that cathepsin V is a potential target for new approaches to cancer therapy.
Collapse
Affiliation(s)
- Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
- Corresponding author at: Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Jukić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lara Bolčina
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Pires D, Calado M, Velez T, Mandal M, Catalão MJ, Neyrolles O, Lugo-Villarino G, Vérollet C, Azevedo-Pereira JM, Anes E. Modulation of Cystatin C in Human Macrophages Improves Anti-Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. Front Immunol 2021; 12:742822. [PMID: 34867965 PMCID: PMC8637326 DOI: 10.3389/fimmu.2021.742822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and Mycobacterium tuberculosis (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches. Both manipulate the endocytic pathway in order to avoid destruction. Relevant players of the endocytic pathway to control pathogens include endolysosomal proteases, cathepsins, and their natural inhibitors, cystatins. Here, a mapping of the human macrophage transcriptome for type I and II cystatins during Mtb, HIV, or Mtb-HIV infection displayed different profiles of gene expression, revealing cystatin C as a potential target to control mycobacterial infection as well as HIV coinfection. We found that cystatin C silencing in macrophages significantly improves the intracellular killing of Mtb, which was concomitant with an increased general proteolytic activity of cathepsins. In addition, downmodulation of cystatin C led to an improved expression of the human leukocyte antigen (HLA) class II in macrophages and an increased CD4+ T-lymphocyte proliferation along with enhanced IFN-γ secretion. Overall, our results suggest that the targeting of cystatin C in human macrophages represents a promising approach to improve the control of mycobacterial infections including multidrug-resistant (MDR) TB.
Collapse
Affiliation(s)
- David Pires
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Calado
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tomás Velez
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Anes E, Azevedo-Pereira JM, Pires D. Cathepsins and Their Endogenous Inhibitors in Host Defense During Mycobacterium tuberculosis and HIV Infection. Front Immunol 2021; 12:726984. [PMID: 34421929 PMCID: PMC8371317 DOI: 10.3389/fimmu.2021.726984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden. Both pathogens work synergistically contributing to speed up the replication of each other. Mycobacterium tuberculosis (Mtb) and HIV infections are in the 21st century among the leaders of morbidity and mortality of humankind. There is an urgent need for development of new approaches for prevention, better diagnosis, and new therapies for both infections. Moreover, these approaches should consider Mtb and HIV as a co-infection, rather than just as separate problems, to prevent further aggravation of the HIV-TB syndemic. Both pathogens manipulate the host immune responses to establish chronic infections in intracellular niches of their host cells. This includes manipulation of host relevant antimicrobial proteases such as cathepsins or their endogenous inhibitors. Here we discuss recent understanding on how Mtb and HIV interact with cathepsins and their inhibitors in their multifactorial functions during the pathogenesis of both infections. Particularly we will address the role on pathogen transmission, during establishment of intracellular chronic niches and in granuloma clinical outcome and tuberculosis diagnosis. This area of research will open new avenues for the design of innovative therapies and diagnostic interventions so urgently needed to fight this threat to humanity.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Perišić Nanut M, Pečar Fonović U, Jakoš T, Kos J. The Role of Cysteine Peptidases in Hematopoietic Stem Cell Differentiation and Modulation of Immune System Function. Front Immunol 2021; 12:680279. [PMID: 34335582 PMCID: PMC8322073 DOI: 10.3389/fimmu.2021.680279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Cysteine cathepsins are primarily involved in the degradation and recycling of proteins in endo-lysosomal compartments but are also gaining recognition as pivotal proteolytic contributors to various immune functions. Through their extracellular proteolytic activities within the hematopoietic stem cell niche, they are involved in progenitor cell mobilization and differentiation. Cysteine cathepsins, such as cathepsins L and S contribute to antigen-induced adaptive immunity through major histocompatibility complex class II antigen presentation whereas cathepsin X regulates T-cell migration. By regulating toll-like receptor signaling and cytokine secretion cysteine cathepsins activate innate immune cells and affect their functional differentiation. Cathepsins C and H are expressed in cytotoxic T lymphocytes and natural killer cells and are involved in processing of pro-granzymes into proteolytically active forms. Cytoplasmic activities of cathepsins B and L contribute to the maintenance of homeostasis of the adaptive immune response by regulating cell death of T and B lymphocytes. The expression pattern, localization, and activity of cysteine cathepsins is tightly connected to their function in immune cells. Furthermore, cysteine cathepsins together with their endogenous inhibitors, serve as mediators in the interplay between cancer and immune cells that results in immune cell anergy. The aim of the present article is to review the mechanisms of dysregulation of cysteine cathepsins and their inhibitors in relation to immune dysfunction to address new possibilities for regulation of their function.
Collapse
Affiliation(s)
| | | | - Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Wallin H, Hunaiti S, Abrahamson M. Externally added cystatin C reduces growth of A375 melanoma cells by increasing cell cycle time. FEBS Open Bio 2021; 11:1645-1658. [PMID: 33837649 PMCID: PMC8167853 DOI: 10.1002/2211-5463.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Some secreted cysteine protease inhibitors of the cystatin family appear to affect intracellular proteolysis and growth of human cells, as a result of internalization. Here, we studied the effects of external addition of the most abundant human cystatin, cystatin C, on viability and proliferation of cancer cells in culture. A dose‐dependent decrease in viable cells was seen for A375 melanoma, MCF‐7 breast cancer, and PC‐3 prostate cancer cells cultured in 1–5 µm cystatin C after 24 h. Real‐time assessment of growth rates in A375 cell cultures for 48 h by digital holographic microscopy showed an increased doubling time for cells cultured in the presence of 5 µm cystatin C (20.1 h) compared with control cells (14.7 h). A prolonged doubling time was already observed during the first 12 h, indicating a rapid general decrease in cell proliferation at the population level. Tracking of individual cells in phase holographic images showed that dividing cells incubated with 5 µm cystatin C underwent fewer mitoses during 48 h than control cells. In addition, the time between cell divisions was longer, especially for the first cell cycle. Incubation with the variant W106F‐cystatin C (with high cellular uptake rate) resulted in a lower number of viable cells and a prolonged doubling time than when cells were incubated with wild‐type cystatin C, but no effect was observed for (R24A,R25A)‐cystatin C (low cellular uptake). Thus, cystatin C causes prolonged cell division leading to decreased proliferation of melanoma cells, and internalization seems to be a prerequisite for this effect.
Collapse
Affiliation(s)
- Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
10
|
Sawyer AJ, Garand M, Chaussabel D, Feng CG. Transcriptomic Profiling Identifies Neutrophil-Specific Upregulation of Cystatin F as a Marker of Acute Inflammation in Humans. Front Immunol 2021; 12:634119. [PMID: 33868254 PMCID: PMC8047108 DOI: 10.3389/fimmu.2021.634119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cystatin F encoded by CST7 is a cysteine peptidase inhibitor known to be expressed in natural killer (NK) and CD8+ T cells during steady-state conditions. However, little is known about its expression during inflammatory disease states in humans. We have developed an analytic approach capable of not only identifying previously poorly characterized disease-associated genes but also defining regulatory mechanisms controlling their expression. By exploring multiple cohorts of public transcriptome data comprising 43 individual datasets, we showed that CST7 is upregulated in the blood during a diverse set of infectious and non-infectious inflammatory conditions. Interestingly, this upregulation of CST7 was neutrophil-specific, as its expression was unchanged in NK and CD8+ T cells during sepsis. Further analysis demonstrated that known microbial products or cytokines commonly associated with inflammation failed to increase CST7 expression, suggesting that its expression in neutrophils is induced by an endogenous serum factor commonly present in human inflammatory conditions. Overall, through the identification of CST7 upregulation as a marker of acute inflammation in humans, our study demonstrates the value of publicly available transcriptome data in knowledge generation and potential biomarker discovery.
Collapse
Affiliation(s)
- Andrew J Sawyer
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | | | | | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Extracellular Cystatin F Is Internalised by Cytotoxic T Lymphocytes and Decreases Their Cytotoxicity. Cancers (Basel) 2020; 12:cancers12123660. [PMID: 33291222 PMCID: PMC7762138 DOI: 10.3390/cancers12123660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cytotoxic T lymphocytes kill cancer or virally infected cells by exocytosis of lytic granules. This leads to perforin-mediated granzyme entry into the target cell, consequently killing the target cell. Granzymes and perforin are activated by cysteine cathepsins whose activity is regulated by the protein inhibitor cystatin F. Since cystatin F can be secreted by a range of cancer and immune cells in tumour microenvironments, we here investigated whether extracellular cystatin F can be taken up by and affect the function of cytotoxic T lymphocytes. We demonstrated cystatin F uptake into cytotoxic T lymphocytes, down-regulation of target peptidases, and reduced target cell killing. Overall, our results indicate that cystatin F is an important mediator that can impair the killing efficiency of cytotoxic T lymphocytes and thus suggest that it is a possible target for cancer immunotherapy. Abstract Cystatin F is a protein inhibitor of cysteine cathepsins, peptidases involved in the activation of the effector molecules of the perforin/granzyme pathway. Cystatin F was previously shown to regulate natural killer cell cytotoxicity. Here, we show that extracellular cystatin F has a role in regulating the killing efficiency of cytotoxic T lymphocytes (CTLs). Extracellular cystatin F was internalised into TALL-104 cells, a cytotoxic T cell line, and decreased their cathepsin C and H activity. Correspondingly, granzyme A and B activity was also decreased and, most importantly, the killing efficiency of TALL-104 cells as well as primary human CTLs was reduced. The N-terminally truncated form of cystatin F, which can directly inhibit cathepsin C (unlike the full-length form), was more effective than the full-length inhibitor. Furthermore, cystatin F decreased cathepsin L activity, which, however, did not affect perforin processing. Cystatin F derived from K-562 target cells could also decrease the cytotoxicity of TALL-104 cells. These results clearly show that, by inhibiting cysteine cathepsin proteolytic activity, extracellular cystatin F can decrease the cytotoxicity of CTLs and thus compromise their function.
Collapse
|
12
|
Hunaiti S, Wallin H, Eriksson M, Järås M, Abrahamson M. Secreted cystatins decrease proliferation and enhance apoptosis of human leukemic cells. FEBS Open Bio 2020; 10:2166-2181. [PMID: 32810913 PMCID: PMC7530398 DOI: 10.1002/2211-5463.12958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cysteine proteases are implicated in proteolysis events favoring cancer cell growth, spread, and death by apoptosis. Herein, we have studied whether the net growth and survival of the leukemic cell lines Jurkat, U937, and HL‐60 are affected by external addition of five proteins acting as natural cysteine protease inhibitors. None of the cystatins examined (A, C, D, and E/M) or chagasin showed consistent effects on Fas‐induced apoptosis when evaluated at 1 µm. In contrast, when the intrinsic apoptosis pathway was activated by hydrogen peroxide, addition of cystatin D augmented caspase‐3‐like activity within all three cell lines. Flow cytometric analysis of U937 cells also showed increased numbers of annexin V‐positive cells when hydrogen peroxide was used to initiate apoptosis and cells were cultured in the presence of cystatin D or C. Moreover, stimulation of hydrogen peroxide‐induced apoptotic U937 cells with either cystatin C or D resulted in a dose‐dependent decrease in the number of cells. Cell viability was also decreased when U937 cells were cultured in the presence of cystatin C or D (1–9 µm) only, demonstrating that these cystatins can reduce cell proliferation by themselves in addition to enhancing apoptosis induced by oxidative stress. These effects on U937 cells were paralleled by internalization of cystatins C and D, indicating these effects are caused by downregulation of intracellular proteolysis. External addition of cystatins C and D to HL‐60 and Jurkat cells demonstrated similar degrees of cystatin D uptake and decreased viability as for U937 cells, indicating that these effects are general for leukemic cells.
Collapse
Affiliation(s)
- Samar Hunaiti
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Hanna Wallin
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| | - Mia Eriksson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Marcus Järås
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | - Magnus Abrahamson
- Division of Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
13
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
14
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
15
|
Prunk M, Nanut MP, Sabotic J, Svajger U, Kos J. Increased cystatin F levels correlate with decreased cytotoxicity of cytotoxic T cells. Radiol Oncol 2019; 53:57-68. [PMID: 30840596 PMCID: PMC6411024 DOI: 10.2478/raon-2019-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cystatin F is a protein inhibitor of cysteine peptidases, expressed predominantly in immune cells and localised in endosomal/lysosomal compartments. In cytotoxic immune cells cystatin F inhibits both the major pro-granzyme convertases, cathepsins C and H that activate granzymes, and cathepsin L, that acts as perforin activator. Since perforin and granzymes are crucial molecules for target cell killing by cytotoxic lymphocytes, defects in the activation of either granzymes or perforin can affect their cytotoxic potential. Materials and methods Levels of cystatin F were assessed by western blot and interactions of cystatin F with cathepsins C, H and L were analysed by immunoprecipitation and confocal microscopy. In TALL-104 cells specific activities of the cathepsins and granzyme B were determined using peptide substrates. Results Two models of reduced T cell cytotoxicity of TALL-104 cell line were established, either by treatment by ionomycin or by immunosuppressive transforming growth factor beta. Reduced cytotoxicity correlated with increased levels of cystatin F and with attenuated activities of cathepsins C, H and L and of granzyme B. Co-localisation of cystatin F and cathepsins C, H and L and interactions between cystatin F and cathepsins C and H were demonstrated. Conclusions Cystatin F is designated as a possible regulator of T cell cytotoxicity, similar to its role in natural killer cells.
Collapse
Affiliation(s)
- Mateja Prunk
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | - Jerica Sabotic
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
| | - Urban Svajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Janko Kos
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
- Prof. Janko Kos, Ph.D., Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
Phone: +386 1 4769 604; Fax: +386 1 4258 031
| |
Collapse
|
16
|
The transcription factor C/EBP α controls the role of cystatin F during the differentiation of monocytes to macrophages. Eur J Cell Biol 2018; 97:463-473. [PMID: 30033148 DOI: 10.1016/j.ejcb.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
Abstract
Cystatin F is an inhibitor of cysteine peptidases expressed solely in immune cells. It is the only type II cystatin able to enter endosomal/lysosomal vesicles and to regulate directly the activity of intracellular cysteine cathepsins. Its expression in promonocytic U937 and promyeloblastic HL-60 cells is highly upregulated but, after differentiation with phorbol 12-myristate 13-acetate - PMA, its levels drop significantly. In contrast, the activities of intracellular cysteine cathepsins C, L and S are higher in differentiated cells than in non-differentiated ones due, presumably, to the lower inhibitory capacity of cystatin F. Using immunofluorescence confocal microscopy, proximity ligation assay and co-immunoprecipitation, cathepsins C, L and S were confirmed to be the main interacting partners of cystatin F in U937 and HL-60 cells. The promoter region of the cystatin F gene, CST7, contains a unique binding site for transcription factor C/EBP α, one of the main myeloid differentiation instructors. Using the chromatin immunoprecipitation assay, C/EBP α was shown to bind to CST7 gene in U937 cells. Following cell differentiation with PMA, the binding of C/EBP α was decreased significantly. The protein level of C/EBP α was also significantly lower in differentiated than in non-differentiated cells. It was shown that, during monocyte to macrophage differentiation, the endosomal/lysosomal proteolytic activity can be regulated by cystatin F whose expression is under the control of transcriptional factor C/EBP α.
Collapse
|
17
|
Cystatin F involvement in adenosine A 2A receptor-mediated neuroinflammation in BV2 microglial cells. Sci Rep 2018; 8:6820. [PMID: 29717153 PMCID: PMC5931559 DOI: 10.1038/s41598-018-25031-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/05/2018] [Indexed: 11/23/2022] Open
Abstract
Our previous studies have shown adenosine A2A R activation markedly promotes the expression of cystatin F (CF) and exacerbates the white matter lesions induced by hypoxic brain injuries. Thus, we hypothesized that CF was probably involved in neuroinflammation of activated microglia induced by A2A R activation. We transfected the BV2 cells with a CF shRNA vector and examined the production of pro-inflammatory cytokines in hypoxic-BV2 cells in which A2A R was activated or inactivated to confirm this hypothesis. Additionally, we also investigated the probable signaling pathways involved in modulation of A2A R activation on CF expression in hypoxia-activated BV2 cells. Activation of A2A R promoted CF expression, which was significantly increased after the low glucose and hypoxia treatments in BV2 cells. CF gene knockdown markedly inhibited the increase in the expression of pro-inflammatory cytokines induced by A2A R activation in hypoxic-BV2 cells. Furthermore, the increased expression of the CF induced by A2A R activation was remarkably inhibited in hypoxic-BV2 cells administrated with the PKA inhibitor H-89 and the PKC inhibitor staurosporine. Hence, these results indicate that hypoxia BV2 cells highly express CF, which is involved in A2A R activation-mediated neuroinflammation via the PKA/CREB and PKC/CREB or ERK1/2 signaling pathways.
Collapse
|
18
|
Perišić Nanut M, Sabotič J, Švajger U, Jewett A, Kos J. Cystatin F Affects Natural Killer Cell Cytotoxicity. Front Immunol 2017; 8:1459. [PMID: 29180998 PMCID: PMC5693851 DOI: 10.3389/fimmu.2017.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Cystatin F is a cysteine peptidase inhibitor which, unlike other cystatin family members, is targeted to endosomal/lysosomal compartments. It is synthesized as an inactive disulfide-linked dimer which is then converted to an active monomer by proteolytic cleavage of 15 N-terminal residues. Cystatin F has been suggested to regulate the cytotoxicity of natural killer (NK) cells by inhibiting the major granzyme convertases, cathepsins C and H. To test this hypothesis, we prepared variants of cystatin F and analyzed their uptake, subcellular trafficking, and peptidase inhibition, as well as their impact on the cytotoxicity of NK-92 cells and primary NK cells. The N-glycosylation pattern is responsible for the secretion, uptake, and subcellular sorting of cystatin F in HeLa and Hek293 cells, whereas the legumain binding site had no effect on these processes. Active, N-terminally truncated, monomeric cystatin F can also be internalized by recipient cells and targeted to endo/lysosomes, affecting also cells lacking the activating peptidase. Cystatin F mutants capable of cell internalization and trafficking through the endo/lysosomal pathway significantly decreased cathepsin C and H activities, both in situ, following transfection and in trans, using conditioned media. Further, incubation of IL-2 stimulated NK-92 and primary NK cells with full-length and N-terminally truncated cystatin F mutants led to suppression of their granule-mediated cytotoxicity. This effect was most significant with the N-terminally truncated mutants. These results suggest that cystatin F can be an important mediator within tumor microenvironment affecting the cytotoxicity of NK cells and consequently antitumor immune response.
Collapse
Affiliation(s)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California-Los Angeles, Los Angeles, CA, United States
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Magister Š, Tseng HC, Bui VT, Kos J, Jewett A. Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F. Oncotarget 2016; 6:22310-27. [PMID: 26247631 PMCID: PMC4673165 DOI: 10.18632/oncotarget.4208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022] Open
Abstract
Freshly isolated human primary NK cells induce preferential lysis of Oral Squamous Carcinoma Stem Cells (OSCSCs) when compared to differentiated Oral Squamous Carcinoma Cells (OSCCs), while anti-CD16 antibody and monocytes induce functional split anergy in primary NK cells by decreasing the cytotoxic function of NK cells and increasing the release of IFN-γ. Since NK92 cells have relatively lower levels of cytotoxicity when compared to primary NK cells, and have the ability to increase secretion of regulatory cytokines IL-10 and IL-6, we used these cells as a model of NK cell anergy to identify and to study the upstream regulators of anergy. We demonstrate in this paper that the levels of truncated monomeric cystatin F, which is known to inhibit the functions of cathepsins C and H, is significantly elevated in NK92 cells and in anergized primary NK cells. Furthermore, cystatin F co-localizes with cathepsins C and H in the lysosomal/endosomal vesicles of NK cells. Accordingly, the mature forms of aminopeptidases cathepsins C and H, which regulate the activation of effector granzymes in NK cells, are significantly decreased, whereas the levels of pro-cathepsin C enzyme is increased in anergized NK cells after triggering of the CD16 receptor. In addition, the levels of granzyme B is significantly decreased in anti-CD16mAb and target cell anergized primary NK cells and NK92 cells. Our study provides the cellular and molecular mechanisms by which target cells may utilize to inhibit the cytotoxic function of NK cells.
Collapse
Affiliation(s)
- Špela Magister
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
| | - Han-Ching Tseng
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Vickie T Bui
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Janko Kos
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California-Los Angeles, Los Angeles, CA, USA.,The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Ao J, Li Q, Yang Z, Mu Y. A cystatin F homologue from large yellow croaker (Larimichthys crocea) inhibits activity of multiple cysteine proteinases and Ii chain processing in vitro. FISH & SHELLFISH IMMUNOLOGY 2016; 48:62-70. [PMID: 26578250 DOI: 10.1016/j.fsi.2015.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Cystatin F, a member of the family II cystatins, plays important roles in immune response-related processes through inhibiting specific enzyme targets. In this study, a cystatin F homologue, LycCysF, was identified and characterized from large yellow croaker (Larimichthys crocea). The deduced LycCysF protein exhibits a typical structural feature of type II cystatins, including three evolutionally conserved motifs, Gly(35), QVVRG(79-83) and PW(130-131). Tissue expression analysis showed that LycCysF mRNA was expressed in all tissues examined, albeit at different levels. Recombinant LycCysF (rLycCysF) produced in Pichia pastoris could inhibit the activity of multiple cysteine proteases, including papain, legumain and recombinant large yellow croaker cathepsin B, L and S. Moreover, rLycCysF could inhibit the Ii chain processing by recombinant cathepsin S in vitro. These data suggest that LycCysF may participate in regulation of cathepsins and MHC-II associated Ii chain processing. In addition, mammalian cystatin F is produced as an inactive dimer, becoming activated by proteolysis in the endo/lysosome of immune cells and then exerts its function of regulating downstream proteases activity. However, the N-terminal extension and two additional cysteine residues responsible for dimer formation are absent in LycCysF and cystatin F from other fish species, reptiles and Aves, indicating that these proteins can not form dimer and may regulate the proteases activity via an alternate pathway distinct from mammalian cystatin F. To our knowledge, this is the first report on molecular characteristics of a teleost cystatin F and its role in Ii chain processing.
Collapse
Affiliation(s)
- Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China.
| | - Qiuhua Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Zhijun Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| |
Collapse
|
21
|
Perišić Nanut M, Sabotič J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5:616. [PMID: 25520721 PMCID: PMC4251435 DOI: 10.3389/fimmu.2014.00616] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes.
Collapse
Affiliation(s)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California Los Angeles , Los Angeles, CA , USA
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia ; Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
22
|
Puente-Rivera J, de los Ángeles Ramón-Luing L, Figueroa-Angulo EE, Ortega-López J, Arroyo R. Trichocystatin-2 (TC-2): An endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39. Int J Biochem Cell Biol 2014; 54:255-65. [DOI: 10.1016/j.biocel.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 12/24/2022]
|
23
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
24
|
Kopitar-Jerala N. The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr Protein Pept Sci 2013; 13:767-75. [PMID: 23305363 PMCID: PMC3594739 DOI: 10.2174/138920312804871102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 01/12/2023]
Abstract
Proteinases and their inhibitors play essential functional roles in basic biological processes in both hosts and pathogens. Endo/lysosomal cathepsins participate in immune response in pathogen recognition and elimination. They are essential for both antigen processing and presentation (host adaptive immune response) and activation of endosomal Toll like receptors (innate immune response). Pathogens can produce proteases and also natural inhibitors to subvert the host immune response. Several pathogens are sensed through the intracellular pathogen recognition receptors, but only some of them use the host proteolytic system to escape into the cytosol. In this review, I provide an update on the most recent developments regarding the role of proteinases and their inhibitors in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Natasa Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, ›Jozef Stefan‹ Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Nashida T, Sato R, Haga-Tsujimura M, Yoshie S, Yoshimura K, Imai A, Shimomura H. Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells. Arch Biochem Biophys 2013; 530:32-9. [DOI: 10.1016/j.abb.2012.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 02/03/2023]
|
26
|
Duan W, Ran H, Zhou Z, He Q, Zheng J. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion. PLoS One 2012; 7:e52566. [PMID: 23285090 PMCID: PMC3527570 DOI: 10.1371/journal.pone.0052566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/20/2012] [Indexed: 02/03/2023] Open
Abstract
In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.
Collapse
Affiliation(s)
- Wei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hong Ran
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qifen He
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
27
|
Smith R, Johansen HT, Nilsen H, Haugen MH, Pettersen SJ, Mælandsmo GM, Abrahamson M, Solberg R. Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M. Biochimie 2012; 94:2590-9. [PMID: 22902879 DOI: 10.1016/j.biochi.2012.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/26/2012] [Indexed: 02/07/2023]
Abstract
Legumain, an asparaginyl endopeptidase, is up-regulated in tumour and tumour-associated cells, and is linked to the processing of cathepsin B, L, and proMMP-2. Although legumain is mainly localized to the endosomal/lysosomal compartments, legumain has been reported to be localized extracellularly in the tumour microenvironment and associated with extracellular matrix and cell surfaces. The most potent endogenous inhibitor of legumain is cystatin E/M, which is a secreted protein synthesised with an export signal. Therefore, we investigated the cellular interplay between legumain and cystatin E/M. As a cell model, HEK293 cells were transfected with legumain cDNA, cystatin E/M cDNA, or both, and over-expressing monoclonal cell lines were selected (termed M38L, M4C, and M3CL, respectively). Secretion of prolegumain from M38L cells was inhibited by treatment with brefeldin A, whereas bafilomycin A1 enhanced the secretion. Cellular processing of prolegumain to the 46 and 36 kDa enzymatically active forms was reduced by treatment with either substance alone. M38L cells showed increased, but M4C cells decreased, cathepsin L processing suggesting a crucial involvement of legumain activity. Furthermore, we observed internalization of cystatin E/M and subsequently decreased intracellular legumain activity. Also, prolegumain was shown to internalize followed by increased intracellular legumain processing and activation. In addition, in M4C cells incomplete processing of the internalized prolegumain was observed, as well as nuclear localized cystatin E/M. Furthermore, auto-activation of secreted prolegumain was inhibited by cystatin E/M, which for the first time shows a regulatory role of cystatin E/M in controlling both intra- and extracellular legumain activity.
Collapse
Affiliation(s)
- Robert Smith
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells. Eur J Cell Biol 2012; 91:391-401. [DOI: 10.1016/j.ejcb.2012.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/01/2012] [Indexed: 11/18/2022] Open
|