1
|
Cottone G, Chiodo L, Maragliano L, Popoff MR, Rasetti-Escargueil C, Lemichez E, Malliavin TE. In Silico Conformational Features of Botulinum Toxins A1 and E1 According to Intraluminal Acidification. Toxins (Basel) 2022; 14:toxins14090644. [PMID: 36136581 PMCID: PMC9500700 DOI: 10.3390/toxins14090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although botulinum neurotoxins (BoNTs) are among the most toxic compounds found in nature, their molecular mechanism of action is far from being elucidated. A key event is the conformational transition due to acidification of the interior of synaptic vesicles, leading to translocation of the BoNT catalytic domain into the neuronal cytosol. To investigate these conformational variations, homology modeling and atomistic simulations are combined to explore the internal dynamics of the sub-types BoNT/A1 (the most-used sub-type in medical applications) and BoNT/E1 (the most kinetically efficient sub-type). This first simulation study of di-chain BoNTs in closed and open states considers the effects of both neutral and acidic pH. The conformational mobility is driven by domain displacements of the ganglioside-binding site in the receptor binding domain, the translocation domain (HCNT) switch, and the belt α-helix, which present multiple conformations, depending on the primary sequence and the pH. Fluctuations of the belt α-helix are observed for closed conformations of the toxins and at acidic pH, while patches of more solvent-accessible residues appear under the same conditions in the core translocation domain HCNT. These findings suggest that, during translocation, the higher mobility of the belt could be transmitted to HCNT, leading to the favorable interaction of HCNT residues with the non-polar membrane environment.
Collapse
Affiliation(s)
- Grazia Cottone
- Department of Physics and Chemistry Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Letizia Chiodo
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Luca Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Michel-Robert Popoff
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Christine Rasetti-Escargueil
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, 75015 Paris, France
- Correspondence: (E.L.); (T.E.M.)
| | - Thérèse E. Malliavin
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Bioinformatique Structurale, 75015 Paris, France
- Laboratoire de Physique et Chimie Théoriques (LPCT), CNRS UMR7019, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France
- Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, 54506 Vandoeuvre-lès-Nancy, France
- Correspondence: (E.L.); (T.E.M.)
| |
Collapse
|
2
|
Gandi C, Sacco E. Pharmacological Management of Urinary Incontinence: Current and Emerging Treatment. Clin Pharmacol 2021; 13:209-223. [PMID: 34858068 PMCID: PMC8630428 DOI: 10.2147/cpaa.s289323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Pharmacological management of urinary incontinence (UI) is currently based on antimuscarinic and beta-3-agonist drugs. Botulinum toxin A detrusor injections represent an effective but more invasive alternative. This review covers the latest developments of the currently available drugs and the emerging compounds for the treatment of UI. Evidence shows that new antimuscarinics and beta-3-agonists with improved safety profiles may offer unique options to patients intolerant to currently available drugs. Combination therapy proved to be a non-invasive alternative for patients refractory to first-line monotherapy. Exciting advances are ongoing in the research to improve the efficacy/tolerability profile of botulinum toxin, through innovative routes of administration. Several new agents emerged from preclinical studies, some of which have now entered the clinical phase of development and could represent, in the coming years, a new way for the treatment of UI. Recent evidence on the existence of different overactive bladder phenotypes could be the key to tailored treatment. Rather than discovering new molecules, reaching the ability to identify the right drug for the right patient could be the real gamechanger of the future.
Collapse
Affiliation(s)
- Carlo Gandi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, Rome, Italy
| | - Emilio Sacco
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
3
|
O'Neil PT, Vasquez-Montes V, Swint-Kruse L, Baldwin MR, Ladokhin AS. Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion. Biophys J 2021; 120:4763-4776. [PMID: 34555358 PMCID: PMC8595737 DOI: 10.1016/j.bpj.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Tetanus neurotoxin (TeNT) is an A-B toxin with three functional domains: endopeptidase, translocation (HCT), and receptor binding. Endosomal acidification triggers HCT to interact with and insert into the membrane, translocating the endopeptidase across the bilayer. Although the function of HCT is well defined, the mechanism by which it accomplishes this task is unknown. To gain insight into the HCT membrane interaction on both local and global scales, we utilized an isolated, beltless HCT variant (bHCT), which retained the ability to release potassium ions from vesicles. To examine which bHCT residues interact with the membrane, we widely sampled the surface of bHCT using 47 single-cysteine variants labeled with the environmentally sensitive fluorophore NBD. At neutral pH, no interaction was observed for any variant. In contrast, all NBD-labeled positions reported environmental change in the presence of acidic pH and membranes containing anionic lipids. We then examined the conformation of inserted bHCT using circular dichroism and intrinsic fluorescence. Upon entering the membrane, bHCT retained predominantly α-helical secondary structure, whereas the tertiary structure exhibited substantial refolding. The use of lipid-attached quenchers revealed that at least one of the three tryptophan residues penetrated deep into the hydrocarbon core of the membrane, suggesting formation of a bHCT transmembrane conformation. The possible conformational topology was further explored with the hydropathy analysis webtool MPEx, which identified a large, potential α-helical transmembrane region. Altogether, the spectroscopic evidence supports a model in which, upon acidification, the majority of TeNT bHCT entered the membrane with a concurrent change in tertiary structure.
Collapse
Affiliation(s)
- Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
4
|
Abdel-Rahman EA, Hosseiny S, Aaliya A, Adel M, Yasseen B, Al-Okda A, Radwan Y, Saber SH, Elkholy N, Elhanafy E, Walker EE, Zuniga-Hertz JP, Patel HH, Griffiths HR, Ali SS. Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria. J Adv Res 2021; 31:35-47. [PMID: 34194831 PMCID: PMC8240107 DOI: 10.1016/j.jare.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events. Objectives Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods. Methods We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points. Results Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene Bmal1, lower expression of per2, greater expression of MICU1 gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene cyclophilin D. Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration. Conclusions Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.
Collapse
Affiliation(s)
- Engy A. Abdel-Rahman
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Salma Hosseiny
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Abdullah Aaliya
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Adel
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Yasseen
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| | - Abdelrahman Al-Okda
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Yasmine Radwan
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Saber H. Saber
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Nada Elkholy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Eslam Elhanafy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Emily E. Walker
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan P. Zuniga-Hertz
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sameh S. Ali
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| |
Collapse
|
5
|
Zuverink M, Barbieri JT. Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 1:123-134. [PMID: 33615314 PMCID: PMC7894615 DOI: 10.33696/neurol.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs), botulinum toxin and tetanus toxin, are the most toxic proteins for humans. Neurotoxicity is based upon the specificity of the CNTs for neural host receptors and substrates. CNTs are organized into three domains, a Light Chain (LC) that is a metalloprotease and a Heavy Chain (HC) that has two domains, an N-terminal LC translocation domain (HCN) and a C-terminal receptor binding domain (HCC). While catalysis and receptor binding functions of the CNTs have been developed, our understanding of LC translocation is limited. This is due to the intrinsic complexity of the translocation process and limited tools to assess the step-by-step events in LC translocation. Recently, we developed a novel, cell-based TT-reporter to measure LC translocation as the translocation of a β-lactamase reporter across a vesicle membrane in neurons. Using this approach, we identified a role for a cis-Loop, located within the HCN, in LC translocation. In this commentary, we describe our current understanding of how CNTs mediate LC translocation and place the role of the cis-Loop in the LC translocation process relative to other independent functions that have been implicated in LC translocation. Understanding the basis for LC translocation will enhance the use of CNTs in vaccine development and as human therapies.
Collapse
Affiliation(s)
- Madison Zuverink
- Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Road, BSB2 Rm. 2830, Microbiology and Immunology, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Chen YC, Gad SF, Chobisa D, Li Y, Yeo Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J Control Release 2021; 330:438-460. [PMID: 33352244 DOI: 10.1016/j.jconrel.2020.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years. However, numerous challenges remain, and drug delivery technology is underutilized in some applications. This review showcases local drug delivery systems in different inflammatory diseases, including the targets well-known to drug delivery scientists (e.g., joints, eyes, and teeth) and other applications with untapped opportunities (e.g., sinus, bladder, and colon). In each section, we start with a brief description of the disease and commonly used therapy, introduce local drug delivery systems currently on the market or in the development stage, focusing on polymeric systems, and discuss the remaining challenges and opportunities in future product development.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sheryhan F Gad
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Dhawal Chobisa
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Integrated product development organization, Innovation plaza, Dr. Reddy's Laboratories, Hyderabad 500090, India
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Zhang CM, Imoto Y, Hikima T, Inoue T. Structural flexibility of the tetanus neurotoxin revealed by crystallographic and solution scattering analyses. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100045. [PMID: 33598655 PMCID: PMC7868712 DOI: 10.1016/j.yjsbx.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the tetanus neurotoxin (TeNT) delivers its protease domain (LC) across the synaptic vesicle lumen into the cytosol via its receptor binding domain (HC) and translocation domain (HN), the molecular mechanism coordinating this membrane translocation remains unresolved. Here, we report the high-resolution crystal structures of full-length reduced TeNT (rTeNT, 2.3 Å), TeNT isolated HN (TeNT/iHN, 2.3 Å), TeNT isolated HC (TeNT/iHC, 1.5 Å), together with the solution structures of TeNT/iHN and beltless TeNT/iHN (TeNT/blHN). TeNT undergoes significant domains rotation of the HN and LC were demonstrated by structural comparison of rTeNT and non-reduced-TeNT (nrTeNT). A linker loop connects the HN and HC is essential for the self-domain rotation of TeNT. The TeNT-specific C869-C1093 disulfide bond is sensitive to the redox environment and its disruption provides linker loop flexibility, which enables domain arrangement of rTeNT distinct from that of nrTeNT. Furthermore, the mobility of C869 in the linker loop and the sensitivity to redox condition of C1093 were confirmed by crystal structure analysis of TeNT/iHC. On the other hand, the structural flexibility of HN was investigated by crystallographic and solution scattering analyses. It was found that the region (residues 698-769), which follows the translocation region had remarkable change in TeNT/iHN. Besides, the so-called belt region has a high propensity to swing around the upper half of TeNT/iHN at acidic pH. It provides the first overview of the dynamics of the Belt in solution. These newly obtained structural information that shed light on the transmembrane mechanism of TeNT.
Collapse
Affiliation(s)
- Chun-Ming Zhang
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Yoshihiro Imoto
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Takaaki Hikima
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, 679-6148, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| |
Collapse
|
8
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
9
|
A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 2018; 9:5367. [PMID: 30560862 PMCID: PMC6299077 DOI: 10.1038/s41467-018-07789-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic β-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery. The translocation domain (HN) of Botulinum neurotoxins (BoNTs) mediates the delivery of the BoNT light chain (LC) into neuronal cytosol. Here the authors provide insights into HN membrane insertion by determining the crystal structure of BoNT/A1 HN at acidic pH, which reveals a molecular switch in HN, where buried α-helices are transformed into surface-exposed hydrophobic β-hairpins.
Collapse
|
10
|
Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. J Mol Biol 2018; 430:3190-3199. [DOI: 10.1016/j.jmb.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
|
11
|
Orrell KE, Zhang Z, Sugiman-Marangos SN, Melnyk RA. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. Crit Rev Biochem Mol Biol 2017; 52:461-473. [DOI: 10.1080/10409238.2017.1325831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathleen E. Orrell
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Zhifen Zhang
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Roman A. Melnyk
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Tyagi P, Kashyap M, Yoshimura N, Chancellor M, Chermansky CJ. Past, Present and Future of Chemodenervation with Botulinum Toxin in the Treatment of Overactive Bladder. J Urol 2016; 197:982-990. [PMID: 27871929 DOI: 10.1016/j.juro.2016.11.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE We systematically reviewed preclinical and clinical studies on bladder chemodenervation with onabotulinumtoxin A to highlight current limitations and future drug delivery approaches. MATERIALS AND METHODS We identified peer reviewed basic and clinical research studies of onabotulinumtoxin A in the treatment of neurogenic bladder and refractory idiopathic overactive bladder published between March 2000 and March 2016. Paired investigators independently screened 125 English language articles to identify controlled studies on onabotulinumtoxin A administration in the MEDLINE® database and abstracts presented at annual American Urological Association meetings. The review yielded an evidence base of more than 50 articles relevant to the approach of injection-free onabotulinumtoxin A chemodenervation. RESULTS The efficacy and safety of intradetrusor injection of onabotulinumtoxin A for the treatment of overactive bladder are sensitive to injection volume and depth, and this issue has motivated researchers to study injection-free modes of drug delivery into the bladder. Urothelial denudation with protamine sulfate or dimethyl sulfoxide, liposome encapsulated onabotulinumtoxin A and other physical approaches are being studied to increase toxin permeability and avoid intradetrusor injections. Liposome encapsulated onabotulinumtoxin A enhances toxin activity while reducing its toxin degradation. The safety and efficacy of liposome encapsulated onabotulinumtoxin A were tested in a multicenter, placebo controlled study. Although this treatment successfully reduced urinary frequency and urgency, it did not significantly reduce urgency urinary incontinence episodes. CONCLUSIONS Intradetrusor injection of onabotulinumtoxin A is a safe and effective treatment as reported in several large multicenter, randomized controlled trials. Injection of the toxin into the bladder wall impairs afferent and efferent nerves, but injection-free drug delivery approaches only impair the bladder afferent nerves. Further studies are needed to develop better drug delivery platforms that overcome the drawbacks of intradetrusor injection, increase patient acceptance and reduce treatment costs.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Mahendra Kashyap
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Chancellor
- Department of Urology, William Beaumont School of Medicine, Royal Oak, Michigan
| | | |
Collapse
|
13
|
Chuang YC, Chermansky C, Kashyap M, Tyagi P. Investigational drugs for bladder pain syndrome (BPS) / interstitial cystitis (IC). Expert Opin Investig Drugs 2016; 25:521-9. [PMID: 26940379 DOI: 10.1517/13543784.2016.1162290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bladder pain syndrome (BPS)/interstitial cystitis (IC) is associated with sensory lower urinary tract symptoms. Unfortunately, many of the existing oral treatments are ineffective in most patients of BPS/IC, which is the motivation for developing new drugs and therapeutic approaches. This review covers the latest drugs that have been investigated in BPS/IC patients. Intravesical treatments offer the opportunity to directly target the painful bladder with less systemic side effects. AREAS COVERED In this review, the authors analyze the existing literature supporting the treatment of BPS/IC with conventional drugs including heparin, hyaluronic acid, chondroitin sulfate, and dimethylsulfoxide (DMSO). Furthermore, investigational drugs such as tanezumab and adalimumab, capable of sequestering nerve growth factor (NGF), and Tumor necrosis factor-α (TNF- α) are discussed. Investigational treatments such as liposomes, botulinum toxin (BTX), liposomal BTX, PD-0299685 (a Ca(2+) channel ɑ2δ ligand), continuous intravesical lidocaine, and AQX-1125 (a novel SHIP1 activating compound) are also covered. EXPERT OPINION New investigational drugs offer promising improvements in clinical outcomes for BPS/IC patients; however, BPS/IC is a chronic pain disorder that is very vulnerable to a strong placebo effect. In addition, BPS/IC is a heterogeneous disorder that can be classified into several phenotypes. Since different phenotypes of BPS/IC respond differently to systemic and intravesical treatments, the authors believe that new drugs developed for BPS/IC are more likely to meet their predetermined clinical endpoints if the inclusion/exclusion criterion is tailored to specific phenotype of BPS/IC patients.
Collapse
Affiliation(s)
- Yao-Chi Chuang
- a Department of Urology, Kaohsiung Chang Gung Memorial Hospital , Chang Gung University College of Medicine , Kaohsiung , Taiwan.,b Institute of Medicine , Chung Shan Medical University , Taichung , Taiwan
| | - Christopher Chermansky
- c Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Mahendra Kashyap
- c Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Pradeep Tyagi
- c Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
14
|
Chellappan G, Kumar R, Santos E, Goyal D, Cai S, Singh BR. Structural and functional analysis of botulinum neurotoxin subunits for pH-dependent membrane channel formation and translocation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1510-6. [PMID: 26012869 DOI: 10.1016/j.bbapap.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
The structure-function relationship of Botulinum Neurotoxin (BoNT) proteins is greatly influenced by pH. While the low pH of endosome favors membrane interaction of the heavy chain (HC) for the formation of a membrane channel and translocation of the light chain (LC), the catalytic activity of the LC requires a neutral pH for cleavage of the soluble NSF attachment protein receptor (SNARE) complex in the cytosol. In this study, we monitored secondary structural characteristics of LC, HC and holotoxin at individual pHs 4.5 and 7.2 and at the transition pH4.5 to 7.2 to identify the structural signatures underlying their function. The HC showed higher thermal stability at pH4.5 with a melting temperature (Tm) of 60.4°C. The structural analysis of HC in the presence of liposomes showed no difference in ellipticity with that of HC at pH7.2 at 208 and 222 nm but a 25.2% decrease in ellipticity at 208 nm at acidic pH, indicating low pH-induced structural changes that might facilitate interaction with the membrane. Further, HC showed 18% release of K+ ions from liposomes at pH4.5 as against 6% at neutral pH, reinforcing its role in membrane channel formation. LC on the other hand, showed maximum ellipticity at pH7.2, a condition that is relevant to its endopeptidase activity in the cytosol of the neurons. Also, the similarity in the structures at pH7.2 and transition pH4.5 to 7.2 suggested that the flexibility acquired by the protein at low pH was reversible upon exposure to neutral pH for cleavage of SNARE proteins.
Collapse
Affiliation(s)
- Gowri Chellappan
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Raj Kumar
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA
| | - Erin Santos
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Dipak Goyal
- Department of Chemistry and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Bal Ram Singh
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; Prime Bio, Inc., Dartmouth, MA 02747, USA.
| |
Collapse
|
15
|
Abstract
Background: Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; Objective: To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; Conclusions: The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin’s effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G.
Collapse
|
16
|
Fischer A. Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Fischer A, Sambashivan S, Brunger AT, Montal M. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 2011; 287:1657-61. [PMID: 22158863 PMCID: PMC3265847 DOI: 10.1074/jbc.c111.319400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.
Collapse
Affiliation(s)
- Audrey Fischer
- Section of Neurobiology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
18
|
Masuyer G, Stancombe P, Chaddock JA, Acharya KR. Structures of engineered Clostridium botulinum neurotoxin derivatives. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1466-72. [PMID: 22139146 PMCID: PMC3232119 DOI: 10.1107/s1744309111034671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/23/2011] [Indexed: 11/10/2022]
Abstract
Targeted secretion inhibitors (TSIs) are a new class of engineered biopharmaceutical molecules derived from the botulinum neurotoxins (BoNTs). They consist of the metalloprotease light chain (LC) and translocation domain (Hn) of BoNT; they thus lack the native toxicity towards motor neurons but are able to target soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) proteins. These functional fragment (LHn) derivatives are expressed as single-chain proteins and require post-translational activation into di-chain molecules for function. A range of BoNT derivatives have been produced to demonstrate the successful use of engineered SNARE substrate peptides at the LC-Hn interface that gives these molecules self-activating capabilities. Alternatively, recognition sites for specific exoproteases can be engineered to allow controlled activation. Here, the crystal structures of three LHn derivatives are reported between 2.7 and 3.0 Å resolution. Two of these molecules are derivatives of serotype A that contain a SNARE peptide. Additionally, a third structure corresponds to LHn serotype B that includes peptide linkers at the exoprotease activation site. In all three cases the added engineered segments could not be modelled owing to disorder. However, these structures highlight the strong interactions holding the LHn fold together despite the inclusion of significant polypeptide sequences at the LC-Hn interface.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Patrick Stancombe
- Syntaxin Limited, Units 4–10, The Quadrant, Barton Lane, Abingdon, Oxon OX14 3YS, England
| | - John A. Chaddock
- Syntaxin Limited, Units 4–10, The Quadrant, Barton Lane, Abingdon, Oxon OX14 3YS, England
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| |
Collapse
|