1
|
Farhadi S, Hasanpur K, Shodja Ghias J, Palangi V, Lackner M. Analyzing the expression of the transcriptome in adipose tissue of fat- and thin-tailed sheep. Vet Anim Sci 2024; 25:100387. [PMID: 39253697 PMCID: PMC11381445 DOI: 10.1016/j.vas.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Significant efforts have been made to understand how fat deposition in sheep tail is regulated in genetic, transcriptomic, physiologic, biochemical, and metabolic levels in order to elucidate the complex mechanisms underlying the energy storage, lipid metabolism in adipose tissue, adaptability to harsh environments, and evolutionary domestication. Through RNA-seq data analysis, we are able to compare the gene expression of fat-tailed sheep versus thin-tailed sheep breeds in an acceptable resolution at transcriptome level. The purpose of this study was to compare the transcriptomes of Ghezel (fat-tailed) and Zel (thin-tailed) sheep. Total RNA from subcutaneous and tail tissue samples from healthy lambs was sequenced (150b PE) to identify differentially expressed genes (DEGs) between the two mentioned tissues and between the Ghezel and Zel sheep breeds. Further downstream pathway and network analyses were conducted afterwards. The results uncovered the association of the most important DEGs such as CAV1, ALB, and SOCS3 with cellular signaling pathways of lipids metabolism. It seems that the SOCS3 gene plays an important role in the differential deposition of lipid in the tails of two phenotypically different sheep breeds. Although the detail of gene expression in the tail and subcutaneous tissues of two morphologically different breeds was decoded here, to fully understand how differential expression of the SOCS3 gene affects the fat synthesis, further studies are needed.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
2
|
Mönki J, Mykkänen A. Lipids in Equine Airway Inflammation: An Overview of Current Knowledge. Animals (Basel) 2024; 14:1812. [PMID: 38929431 PMCID: PMC11200544 DOI: 10.3390/ani14121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mild-moderate and severe equine asthma (MEA and SEA) are prevalent inflammatory airway conditions affecting horses of numerous breeds and disciplines. Despite extensive research, detailed disease pathophysiology and the differences between MEA and SEA are still not completely understood. Bronchoalveolar lavage fluid cytology, broadly used in clinical practice and in equine asthma research, has limited means to represent the inflammatory status in the lower airways. Lipidomics is a field of science that can be utilized in investigating cellular mechanisms and cell-to-cell interactions. Studies in lipidomics have a broad variety of foci, of which fatty acid and lipid mediator profile analyses and global lipidomics have been implemented in veterinary medicine. As many crucial proinflammatory and proresolving mediators are lipids, lipidomic studies offer an interesting yet largely unexplored means to investigate inflammatory reactions in equine airways. The aim of this review article is to collect and summarize the findings of recent lipidomic studies on equine airway inflammation.
Collapse
Affiliation(s)
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014 Helsinki, Finland;
| |
Collapse
|
3
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Differential Mobilization of the Phospholipid and Triacylglycerol Pools of Arachidonic Acid in Murine Macrophages. Biomolecules 2022; 12:biom12121851. [PMID: 36551279 PMCID: PMC9775050 DOI: 10.3390/biom12121851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells such as monocytes and macrophages contain high levels of arachidonic acid (AA), part of which can be mobilized during cellular activation for the formation of a vast array of bioactive oxygenated metabolites. Monocytes and macrophages present in inflammatory foci typically incorporate large amounts of AA, not only in membrane phospholipids, but also in neutral lipids such as triacylglycerol. Thus, it was of interest to investigate the metabolic fate of these two AA pools in macrophages. Utilizing a variety of radiolabeling techniques to distinguish the phospholipid and triacylglycerol pools, we show in this paper that during an acute stimulation of the macrophages with yeast-derived zymosan, the membrane phospholipid AA pool acts as the major, if not the only, source of releasable AA. On the contrary, the AA pool in triacylglycerol appears to be used at a later stage, when the zymosan-stimulated response has declined, as a source to replenish the phospholipid pools that were consumed during the activation process. Thus, phospholipids and triacylglycerol play different in roles AA metabolism and dynamics during macrophage activation.
Collapse
|
5
|
Watkins OC, Cracknell-Hazra VKB, Pillai RA, Selvam P, Yong HEJ, Sharma N, Patmanathan SN, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-Inositol Moderates Glucose-Induced Effects on Human Placental 13C-Arachidonic Acid Metabolism. Nutrients 2022; 14:nu14193988. [PMID: 36235641 PMCID: PMC9572372 DOI: 10.3390/nu14193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal hyperglycemia is associated with disrupted transplacental arachidonic acid (AA) supply and eicosanoid synthesis, which contribute to adverse pregnancy outcomes. Since placental inositol is lowered with increasing glycemia, and since myo-inositol appears a promising intervention for gestational diabetes, we hypothesized that myo-inositol might rectify glucose-induced perturbations in placental AA metabolism. Term placental explants (n = 19) from women who underwent a mid-gestation oral glucose-tolerance-test were cultured with 13C-AA for 48 h in media containing glucose (5, 10 or 17 mM) and myo-inositol (0.3 or 60 µM). Newly synthesized 13C-AA-lipids were quantified by liquid-chromatography-mass-spectrometry. Increasing maternal fasting glycemia was associated with decreased proportions of 13C-AA-phosphatidyl-ethanolamines (PE, PE-P), but increased proportions of 13C-AA-triacylglycerides (TGs) relative to total placental 13C-AA lipids. This suggests altered placental AA compartmentalization towards storage and away from pools utilized for eicosanoid production and fetal AA supply. Compared to controls (5 mM glucose), 10 mM glucose treatment decreased the amount of four 13C-AA-phospholipids and eleven 13C-AA-TGs, whilst 17 mM glucose increased 13C-AA-PC-40:8 and 13C-AA-LPC. Glucose-induced alterations in all 13C-AA lipids (except PE-P-38:4) were attenuated by concurrent 60 µM myo-inositol treatment. Myo-inositol therefore rectifies some glucose-induced effects, but further studies are required to determine if maternal myo-inositol supplementation could reduce AA-associated pregnancy complications.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sathya Narayanan Patmanathan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- Correspondence: ; Tel.: +65-67-722-672
| |
Collapse
|
6
|
Choline Glycerophospholipid-Derived Prostaglandins Attenuate TNFα Gene Expression in Macrophages via a cPLA 2α/COX-1 Pathway. Cells 2021; 10:cells10020447. [PMID: 33669841 PMCID: PMC7923243 DOI: 10.3390/cells10020447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophages are professional antigen presenting cells with intense phagocytic activity, strategically distributed in tissues and cavities. These cells are capable of responding to a wide variety of innate inflammatory stimuli, many of which are signaled by lipid mediators. The distribution of arachidonic acid (AA) among glycerophospholipids and its subsequent release and conversion into eicosanoids in response to inflammatory stimuli such as zymosan, constitutes one of the most studied models. In this work, we used liquid and/or gas chromatography coupled to mass spectrometry to study the changes in the levels of membrane glycerophospholipids of mouse peritoneal macrophages and the implication of group IVA cytosolic phospholipase A2 (cPLA2α) in the process. In the experimental model used, we observed that the acute response of macrophages to zymosan stimulation involves solely the cyclooxygenase-1 (COX-1), which mediates the rapid synthesis of prostaglandins E2 and I2. Using pharmacological inhibition and antisense inhibition approaches, we established that cPLA2α is the enzyme responsible for AA mobilization. Zymosan stimulation strongly induced the hydrolysis of AA-containing choline glycerophospholipids (PC) and a unique phosphatidylinositol (PI) species, while the ethanolamine-containing glycerophospholipids remained constant or slightly increased. Double-labeling experiments with 3H- and 14C-labeled arachidonate unambiguously demonstrated that PC is the major, if not the exclusive source, of AA for prostaglandin E2 production, while both PC and PI appeared to contribute to prostaglandin I2 synthesis. Importantly, in this work we also show that the COX-1-derived prostaglandins produced during the early steps of macrophage activation restrict tumor necrosis factor-α production. Collectively, these findings suggest new approaches and targets to the selective inhibition of lipid mediator production in response to fungal infection.
Collapse
|
7
|
Yang W, Yaggie RE, Schaeffer AJ, Klumpp DJ. AOAH remodels arachidonic acid-containing phospholipid pools in a model of interstitial cystitis pain: A MAPP Network study. PLoS One 2020; 15:e0235384. [PMID: 32925915 PMCID: PMC7489500 DOI: 10.1371/journal.pone.0235384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC) is a debilitating condition of chronic pelvic pain with unknown etiology. Recently, we used a genetic approach in a murine model of IC to identify the lipase acyloxyacyl hydrolase (AOAH) as a modulator of pelvic pain. We found that AOAH-deficient mice have elevated pelvic pain responses, and AOAH immunoreactivity was detected along the bladder-brain axis. Lipidomic analyses identified arachidonic acid (AA) and its metabolite PGE2 as significantly elevated in the sacral spinal cord of AOAH-deficient mice, suggesting AA is a substrate for AOAH. Here, we quantified the effects of AOAH on phospholipids containing AA. Spinal cord lipidomics revealed increased AA-containing phosphatidylcholine in AOAH-deficient mice and concomitantly decreased AA-phosphatidylethanolamine, consistent with decreased CoA-independent transferase activity (CoIT). Overexpression of AOAH in cell cultures similarly altered distribution of AA in phospholipid pools, promoted AA incorporation, and resulted in decreased membrane fluidity. Finally, administration of a PGE2 receptor antagonist reduced pelvic pain in AOAH-deficient mice. Together, these findings suggest that AOAH represents a potential CoA-independent AA transferase that modulates CNS pain pathways at the level of phospholipid metabolism.
Collapse
Affiliation(s)
- Wenbin Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ryan E. Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Anthony J. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - David J. Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gil-de-Gómez L, Monge P, Rodríguez JP, Astudillo AM, Balboa MA, Balsinde J. Phospholipid Arachidonic Acid Remodeling During Phagocytosis in Mouse Peritoneal Macrophages. Biomedicines 2020; 8:biomedicines8080274. [PMID: 32764331 PMCID: PMC7459916 DOI: 10.3390/biomedicines8080274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages contain large amounts of arachidonic acid (AA), which distributes differentially across membrane phospholipids. This is largely due to the action of coenzyme A-independent transacylase (CoA-IT), which transfers the AA primarily from diacyl choline-containing phospholipids to ethanolamine-containing phospholipids. In this work we have comparatively analyzed glycerophospholipid changes leading to AA mobilization in mouse peritoneal macrophages responding to either zymosan or serum-opsonized zymosan (OpZ). These two phagocytic stimuli promote the cytosolic phospholipase A2-dependent mobilization of AA by activating distinct surface receptors. Application of mass spectrometry-based lipid profiling to identify changes in AA-containing phospholipids during macrophage exposure to both stimuli revealed significant decreases in the levels of all major choline phospholipid molecular species and a major phosphatidylinositol species. Importantly, while no changes in ethanolamine phospholipid species were detected on stimulation with zymosan, significant decreases in these species were observed when OpZ was used. Analyses of CoA-IT-mediated AA remodeling revealed that the process occurred faster in the zymosan-stimulated cells compared with OpZ-stimulated cells. Pharmacological inhibition of CoA-IT strongly blunted AA release in response to zymosan but had only a moderate effect on the OpZ-mediated response. These results suggest a hitherto undescribed receptor-dependent role for CoA-independent AA remodeling reactions in modulating the eicosanoid biosynthetic response of macrophages. Our data help define novel targets within the AA remodeling pathway with potential use to control lipid mediator formation.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Juan P. Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina
| | - Alma M. Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (L.G.-d.-G.); (P.M.); (J.P.R.); (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
9
|
Rodríguez JP, Leiguez E, Guijas C, Lomonte B, Gutiérrez JM, Teixeira C, Balboa MA, Balsinde J. A Lipidomic Perspective of the Action of Group IIA Secreted Phospholipase A 2 on Human Monocytes: Lipid Droplet Biogenesis and Activation of Cytosolic Phospholipase A 2α. Biomolecules 2020; 10:biom10060891. [PMID: 32532115 PMCID: PMC7355433 DOI: 10.3390/biom10060891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2α. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid droplet synthesis. Additionally, it was shown that the increased availability of arachidonic acid arising from phospholipid hydrolysis promoted abundant eicosanoid synthesis. The inactive form, MT-II, failed to produce any of the effects described above. These studies provide a complete lipidomic characterization of the monocyte response to snake venom group IIA phospholipase A2, and reveal significant connections among lipid droplet biogenesis, cell signaling and biochemical pathways that contribute to initiating the inflammatory response.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina
| | - Elbio Leiguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - José M. Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - Catarina Teixeira
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
10
|
Monge P, Garrido A, Rubio JM, Magrioti V, Kokotos G, Balboa MA, Balsinde J. The Contribution of Cytosolic Group IVA and Calcium-Independent Group VIA Phospholipase A 2s to Adrenic Acid Mobilization in Murine Macrophages. Biomolecules 2020; 10:biom10040542. [PMID: 32260121 PMCID: PMC7226511 DOI: 10.3390/biom10040542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenic acid (AA), the 2-carbon elongation product of arachidonic acid, is present at significant levels in membrane phospholipids of mouse peritoneal macrophages. Despite its abundance and structural similarity to arachidonic acid, very little is known about the molecular mechanisms governing adrenic acid mobilization in cells of the innate immune system. This contrasts with the wide availability of data on arachidonic acid mobilization. In this work, we used mass-spectrometry-based lipidomic procedures to define the profiles of macrophage phospholipids that contain adrenic acid and their behavior during receptor activation. We identified the phospholipid sources from which adrenic acid is mobilized, and compared the data with arachidonic acid mobilization. Taking advantage of the use of selective inhibitors, we also showed that cytosolic group IVA phospholipase A2 is involved in the release of both adrenic and arachidonic acids. Importantly, calcium independent group VIA phospholipase A2 spared arachidonate-containing phospholipids and hydrolyzed only those that contain adrenic acid. These results identify separate mechanisms for regulating the utilization of adrenic and arachidonic acids, and suggest that the two fatty acids may serve non-redundant functions in cells.
Collapse
Affiliation(s)
- Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alvaro Garrido
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Julio M. Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (V.M.); (G.K.)
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (V.M.); (G.K.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
11
|
Structural Similarity with Cholesterol Reveals Crucial Insights into Mechanisms Sustaining the Immunomodulatory Activity of the Mycotoxin Alternariol. Cells 2020; 9:cells9040847. [PMID: 32244540 PMCID: PMC7226804 DOI: 10.3390/cells9040847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The proliferation of molds in domestic environments can lead to uncontrolled continuous exposure to mycotoxins. Even if not immediately symptomatic, this may result in chronic effects, such as, for instance, immunosuppression or allergenic promotion. Alternariol (AOH) is one of the most abundant mycotoxins produced by Alternaria alternata fungi, proliferating among others in fridges, as well as in humid walls. AOH was previously reported to have immunomodulatory potential. However, molecular mechanisms sustaining this effect remained elusive. In differentiated THP-1 macrophages, AOH hardly altered the secretion of pro-inflammatory mediators when co-incubated with lipopolysaccharide (LPS), opening up the possibility that the immunosuppressive potential of the toxin could be related to an alteration of a downstream pro-inflammatory signaling cascade. Intriguingly, the mycotoxin affected the membrane fluidity in macrophages and it synergistically reacted with the cholesterol binding agent MβCD. In silico modelling revealed the potential of the mycotoxin to intercalate in cholesterol-rich membrane domains, like caveolae, and immunofluorescence showed the modified interplay of caveolin-1 with Toll-like Receptor (TLR) 4. In conclusion, we identified the structural similarity with cholesterol as one of the key determinants of the immunomodulatory potential of AOH.
Collapse
|
12
|
Guijas C, Bermúdez MA, Meana C, Astudillo AM, Pereira L, Fernández-Caballero L, Balboa MA, Balsinde J. Neutral Lipids Are Not a Source of Arachidonic Acid for Lipid Mediator Signaling in Human Foamy Monocytes. Cells 2019; 8:cells8080941. [PMID: 31434356 PMCID: PMC6721759 DOI: 10.3390/cells8080941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human monocytes exposed to free arachidonic acid (AA), a secretory product of endothelial cells, acquire a foamy phenotype which is due to the accumulation of cytoplasmic lipid droplets with high AA content. Recruitment of foamy monocytes to the inflamed endothelium contributes to the development of atherosclerotic lesions. In this work, we investigated the potential role of AA stored in the neutral lipids of foamy monocytes to be cleaved by lipases and contribute to lipid mediator signaling. To this end, we used mass spectrometry-based lipidomic approaches combined with strategies to generate monocytes with different concentrations of AA. Results from our experiments indicate that the phospholipid AA pool in monocytes is stable and does not change upon exposure of the cells to the external AA. On the contrary, the AA pool in triacylglycerol is expandable and can accommodate relatively large amounts of fatty acid. Stimulation of the cells with opsonized zymosan results in the expected decreases of cellular AA. Under all conditions examined, all of the AA decreases observed in stimulated cells were accounted for by decreases in the phospholipid pool; we failed to detect any contribution of the triacylglycerol pool to the response. Experiments utilizing selective inhibitors of phospholipid or triacylglyerol hydrolysis confirmed that the phospholipid pool is the sole contributor of the AA liberated by stimulated cells. Thus, the AA in the triacylglycerol is not a source of free AA for the lipid mediator signaling during stimulation of human foamy monocytes and may be used for other cellular functions.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Miguel A Bermúdez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lidia Fernández-Caballero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Cellular Plasmalogen Content Does Not Influence Arachidonic Acid Levels or Distribution in Macrophages: A Role for Cytosolic Phospholipase A 2γ in Phospholipid Remodeling. Cells 2019; 8:cells8080799. [PMID: 31370188 PMCID: PMC6721556 DOI: 10.3390/cells8080799] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Availability of free arachidonic acid (AA) constitutes a rate limiting factor for cellular eicosanoid synthesis. AA distributes differentially across membrane phospholipids, which is largely due to the action of coenzyme A-independent transacylase (CoA-IT), an enzyme that moves the fatty acid primarily from diacyl phospholipid species to ether-containing species, particularly the ethanolamine plasmalogens. In this work, we examined the dependence of AA remodeling on plasmalogen content using the murine macrophage cell line RAW264.7 and its plasmalogen-deficient variants RAW.12 and RAW.108. All three strains remodeled AA between phospholipids with similar magnitude and kinetics, thus demonstrating that cellular plasmalogen content does not influence the process. Cell stimulation with yeast-derived zymosan also had no effect on AA remodeling, but incubating the cells in AA-rich media markedly slowed down the process. Further, knockdown of cytosolic-group IVC phospholipase A2γ (cPLA2γ) by RNA silencing significantly reduced AA remodeling, while inhibition of other major phospholipase A2 forms such as cytosolic phospholipase A2α, calcium-independent phospholipase A2β, or secreted phospholipase A2 had no effect. These results uncover new regulatory features of CoA-IT-mediated transacylation reactions in cellular AA homeostasis and suggest a hitherto unrecognized role for cPLA2γ in maintaining membrane phospholipid composition via regulation of AA remodeling.
Collapse
|
14
|
Rodríguez JP, Guijas C, Astudillo AM, Rubio JM, Balboa MA, Balsinde J. Sequestration of 9-Hydroxystearic Acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a Protective Mechanism for Colon Carcinoma Cells to Avoid Apoptotic Cell Death. Cancers (Basel) 2019; 11:cancers11040524. [PMID: 31013768 PMCID: PMC6521239 DOI: 10.3390/cancers11040524] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Hydroxy fatty acids are known to cause cell cycle arrest and apoptosis. The best studied of them, 9-hydroxystearic acid (9-HSA), induces apoptosis in cell lines by acting through mechanisms involving different targets. Using mass spectrometry-based lipidomic approaches, we show in this study that 9-HSA levels in human colorectal tumors are diminished when compared with normal adjacent tissue. Since this decrease could be compatible with an escape mechanism of tumors from 9-HSA-induced apoptosis, we investigated different features of the utilization of this hydroxyfatty acid in colon. We show that in colorectal tumors and related cell lines such as HT-29 and HCT-116, 9-HSA is the only hydroxyfatty acid constituent of branched fatty acid esters of hydroxyfatty acids (FAHFA), a novel family of lipids with anti-inflammatory properties. Importantly, FAHFA levels in tumors are elevated compared with normal tissue and, unlike 9-HSA, they do not induce apoptosis of colorectal cell lines over a wide range of concentrations. Further, the addition of 9-HSA to colon cancer cell lines augments the synthesis of different FAHFA before the cells commit to apoptosis, suggesting that FAHFA formation may function as a buffer system that sequesters the hydroxyacid into an inactive form, thereby restricting apoptosis.
Collapse
Affiliation(s)
- Juan P Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina.
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
15
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
16
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
17
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
18
|
Astudillo AM, Meana C, Guijas C, Pereira L, Lebrero P, Balboa MA, Balsinde J. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J Lipid Res 2017; 59:237-249. [PMID: 29167413 DOI: 10.1194/jlr.m079145] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
Recent studies have highlighted the role of palmitoleic acid [16:1n-7 (cis-9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1n-7 isomer, cis-7-hexadecenoic acid (16:1n-9), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1n-10 (6-cis-hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1n-7 and 16:1n-9, 16:1n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1n-7 and 16:1n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation.
Collapse
Affiliation(s)
- Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Patricia Lebrero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
19
|
Gil-de-Gómez L, Astudillo AM, Lebrero P, Balboa MA, Balsinde J. Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release. Front Immunol 2017; 8:1251. [PMID: 29033952 PMCID: PMC5626835 DOI: 10.3389/fimmu.2017.01251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Due to their high content in esterified arachidonic acid (AA), macrophages provide large amounts of eicosanoids during innate immune reactions. Bacterial lipopolysaccharide (LPS) is a poor trigger of AA mobilization in macrophages but does have the capacity to prime these cells for greatly increased AA release upon subsequent stimulation. In this work, we have studied molecular mechanisms underlying this phenomenon. By using mass spectrometry-based lipidomic analyses, we show in this work that LPS-primed zymosan-stimulated macrophages exhibit an elevated consumption of a particular phospholipid species, i.e., the ethanolamine plasmalogens, which results from reduced remodeling of phospholipids via coenzyme A-independent transacylation reactions. Importantly however, LPS-primed macrophages show no changes in their capacity to directly incorporate AA into phospholipids via CoA-dependent acylation reactions. The essential role for ethanolamine plasmalogen hydrolysis in LPS priming is further demonstrated by the use of plasmalogen-deficient cells. These cells, while responding normally to zymosan by releasing quantities of AA similar to those released by cells expressing normal plasmalogen levels under the same conditions, fail to show an LPS-primed response to the same stimulus, thus unambiguously demonstrating a cause–effect relationship between LPS priming and plasmalogen hydrolysis. Collectively, these results suggest a hitherto unrecognized role for ethanolamine plasmalogen hydrolysis and CoA-independent transacylation reactions in modulating the eicosanoid biosynthetic response.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Patricia Lebrero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
20
|
Peña L, Meana C, Astudillo AM, Lordén G, Valdearcos M, Sato H, Murakami M, Balsinde J, Balboa MA. Critical role for cytosolic group IVA phospholipase A2 in early adipocyte differentiation and obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1083-1095. [PMID: 27317983 DOI: 10.1016/j.bbalip.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Adipogenesis is the process of differentiation of immature mesenchymal stem cells into adipocytes. Elucidation of the mechanisms that regulate adipocyte differentiation is key for the development of novel therapies for the control of obesity and related comorbidities. Cytosolic group IVA phospholipase A2 (cPLA2α) is the pivotal enzyme in receptor-mediated arachidonic acid (AA) mobilization and attendant eicosanoid production. Using primary multipotent cells and cell lines predetermined to become adipocytes, we show here that cPLA2α displays a proadipogenic function that occurs very early in the adipogenic process. Interestingly, cPLA2α levels decrease during adipogenesis, but cPLA2α-deficient preadipocytes exhibit a reduced capacity to differentiate into adipocytes, which affects early and terminal adipogenic transcription factors. Additionally, the absence of the phospholipase alters proliferation and cell-cycle progression that takes place during adipogenesis. Preconditioning of preadipocytes with AA increases the adipogenic capacity of these cells. Moreover, animals deficient in cPLA2α show resistance to obesity when fed a high fat diet that parallels changes in the expression of adipogenic transcription factors of the adipose tissue. Collectively, these results show that preadipocyte cPLA2α activation is a hitherto unrecognized factor for adipogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Martín Valdearcos
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
21
|
Guijas C, Meana C, Astudillo AM, Balboa MA, Balsinde J. Foamy Monocytes Are Enriched in cis-7-Hexadecenoic Fatty Acid (16:1n-9), a Possible Biomarker for Early Detection of Cardiovascular Disease. Cell Chem Biol 2016; 23:689-99. [PMID: 27265749 DOI: 10.1016/j.chembiol.2016.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
Human monocytes respond to arachidonic acid, a secretory product of endothelial cells, by activating the de novo pathway of fatty acid biosynthesis, resulting in the acquisition of a foamy phenotype due to accumulation of cytoplasmic lipid droplets. Recruitment of foamy monocytes to endothelium is a key step in the formation of atherosclerotic plaques. Here we describe that lipid droplets of foamy monocytes are enriched in a rather uncommon fatty acid, cis-7-hexadecenoic acid (16:1n-9), a positional isomer of palmitoleic acid. 16:1n-9 was found to possess an anti-inflammatory activity both in vitro and in vivo that is comparable with that of omega-3 fatty acids and clearly distinguishable from the effects of palmitoleic acid. Selective accumulation in neutral lipids of phagocytic cells of an uncommon fatty acid reveals an early phenotypic change that may provide a biomarker of proatherogenicity, and a potential target for intervention in the early stages of cardiovascular disease.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Calle Sanz y Forés 3, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
22
|
Rubio JM, Rodríguez JP, Gil-de-Gómez L, Guijas C, Balboa MA, Balsinde J. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids. THE JOURNAL OF IMMUNOLOGY 2015; 194:3327-39. [PMID: 25725101 DOI: 10.4049/jimmunol.1401026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on the heterogeneity and plasticity of macrophage populations led to the identification of two major polarization states: classically activated macrophages or M1, induced by IFN-γ plus LPS, and alternatively activated macrophages, induced by IL-4. We studied the expression of multiple phospholipase A2 enzymes in human macrophages and the effect that polarization of the cells has on their levels. At least 11 phospholipase A2 genes were found at significant levels in human macrophages, as detected by quantitative PCR. None of these exhibited marked changes after treating the cells with IFN-γ plus LPS. However, macrophage treatment with IL-4 led to strong upregulation of the secreted group V phospholipase A2 (sPLA2-V), both at the mRNA and protein levels. In parallel with increasing sPLA2-V expression levels, IL-4-treated macrophages exhibited increased phagocytosis of yeast-derived zymosan and bacteria, and we show that both events are causally related, because cells deficient in sPLA2-V exhibited decreased phagocytosis, and cells overexpressing the enzyme manifested higher rates of phagocytosis. Mass spectrometry analyses of lipid changes in the IL-4-treated macrophages suggest that ethanolamine lysophospholipid (LPE) is an sPLA2-V-derived product that may be involved in regulating phagocytosis. Cellular levels of LPE are selectively maintained by sPLA2-V. By supplementing sPLA2-V-deficient cells with LPE, phagocytosis of zymosan or bacteria was fully restored in IL-4-treated cells. Collectively, our results show that sPLA2-V is required for efficient phagocytosis by IL-4-treated human macrophages and provide evidence that sPLA2-V-derived LPE is involved in the process.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Juan P Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Laboratorio de Investigación en Proteínas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| |
Collapse
|
23
|
Dong B, Li H, Singh AB, Cao A, Liu J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 2014; 290:4047-58. [PMID: 25540198 DOI: 10.1074/jbc.m114.597229] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α.
Collapse
Affiliation(s)
- Bin Dong
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Hai Li
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Amar Bahadur Singh
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Aiqin Cao
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
24
|
Meana C, Peña L, Lordén G, Esquinas E, Guijas C, Valdearcos M, Balsinde J, Balboa MA. Lipin-1 integrates lipid synthesis with proinflammatory responses during TLR activation in macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:4614-22. [PMID: 25252959 DOI: 10.4049/jimmunol.1400238] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipin-1 is a Mg(2+)-dependent phosphatidic acid phosphatase involved in the de novo synthesis of phospholipids and triglycerides. Using macrophages from lipin-1-deficient animals and human macrophages deficient in the enzyme, we show in this work that this phosphatase acts as a proinflammatory mediator during TLR signaling and during the development of in vivo inflammatory processes. After TLR4 stimulation lipin-1-deficient macrophages showed a decreased production of diacylglycerol and activation of MAPKs and AP-1. Consequently, the generation of proinflammatory cytokines like IL-6, IL-12, IL-23, or enzymes like inducible NO synthase and cyclooxygenase 2, was reduced. In addition, animals lacking lipin-1 had a faster recovery from endotoxin administration concomitant with a reduced production of harmful molecules in spleen and liver. These findings demonstrate an unanticipated role for lipin-1 as a mediator of macrophage proinflammatory activation and support a critical link between lipid biosynthesis and systemic inflammatory responses.
Collapse
Affiliation(s)
- Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Esperanza Esquinas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Martín Valdearcos
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
25
|
Francisella tularensis LVS induction of prostaglandin biosynthesis by infected macrophages requires specific host phospholipases and lipid phosphatases. Infect Immun 2014; 82:3299-311. [PMID: 24866789 DOI: 10.1128/iai.02060-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis induces the synthesis of prostaglandin E(2) (PGE(2)) by infected macrophages to alter host immune responses, thus providing a survival advantage to the bacterium. We previously demonstrated that PGE(2) synthesis by F. tularensis-infected macrophages requires cytosolic phospholipase A2 (cPLA(2)), cyclooxygenase 2 (COX-2), and microsomal prostaglandin E synthase 1 (mPGES1). During inducible PGE(2) synthesis, cPLA(2) hydrolyzes arachidonic acid (AA) from cellular phospholipids to be converted to PGE(2). However, in F. tularensis-infected macrophages we observed a temporal disconnect between Ser505-cPLA(2) phosphorylation (a marker of activation) and PGE(2) synthesis. These results suggested to us that cPLA(2) is not responsible for the liberation of AA to be converted into PGE(2) by F. tularensis-infected macrophages. Utilizing small-molecule inhibitors, we demonstrated that phospholipase D and diacylglycerol lipase were required for providing AA for PGE(2) biosynthesis. cPLA(2), on the other hand, was required for macrophage cytokine responses to F. tularensis. We also demonstrated for the first time that lipin-1 and PAP2a contribute to macrophage inflammation in response to F. tularensis. Our results identify both an alternative pathway for inducible PGE(2) synthesis and a role for lipid-modifying enzymes in the regulation of macrophage inflammatory function.
Collapse
|
26
|
Gil-de-Gómez L, Astudillo AM, Guijas C, Magrioti V, Kokotos G, Balboa MA, Balsinde J. Cytosolic group IVA and calcium-independent group VIA phospholipase A2s act on distinct phospholipid pools in zymosan-stimulated mouse peritoneal macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 192:752-62. [PMID: 24337743 DOI: 10.4049/jimmunol.1302267] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phospholipase A2s generate lipid mediators that constitute an important component of the integrated response of macrophages to stimuli of the innate immune response. Because these cells contain multiple phospholipase A2 forms, the challenge is to elucidate the roles that each of these forms plays in regulating normal cellular processes and in disease pathogenesis. A major issue is to precisely determine the phospholipid substrates that these enzymes use for generating lipid mediators. There is compelling evidence that group IVA cytosolic phospholipase A2 (cPLA2α) targets arachidonic acid-containing phospholipids but the role of the other cytosolic enzyme present in macrophages, the Ca(2+)-independent group VIA phospholipase A2 (iPLA2β) has not been clearly defined. We applied mass spectrometry-based lipid profiling to study the substrate specificities of these two enzymes during inflammatory activation of macrophages with zymosan. Using selective inhibitors, we find that, contrary to cPLA2α, iPLA2β spares arachidonate-containing phospholipids and hydrolyzes only those that do not contain arachidonate. Analyses of the lysophospholipids generated during activation reveal that one of the major species produced, palmitoyl-glycerophosphocholine, is generated by iPLA2β, with minimal or no involvement of cPLA2α. The other major species produced, stearoyl-glycerophosphocholine, is generated primarily by cPLA2α. Collectively, these findings suggest that cPLA2α and iPLA2β act on different phospholipids during zymosan stimulation of macrophages and that iPLA2β shows a hitherto unrecognized preference for choline phospholipids containing palmitic acid at the sn-1 position that could be exploited for the design of selective inhibitors of this enzyme with therapeutic potential.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Rep 2013; 4:238-47. [DOI: 10.1016/j.celrep.2013.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/04/2013] [Accepted: 06/14/2013] [Indexed: 12/14/2022] Open
|
28
|
Gil-de-Gómez L, Astudillo AM, Meana C, Rubio JM, Guijas C, Balboa MA, Balsinde J. A phosphatidylinositol species acutely generated by activated macrophages regulates innate immune responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:5169-77. [PMID: 23567931 DOI: 10.4049/jimmunol.1203494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of macrophages with stimuli of the innate immune response results in the intense remodeling of arachidonate-containing phospholipids, leading to the mobilization of large quantities of this fatty acid for conversion into biologically active eicosanoids. As a consequence of this process, the arachidonate levels in membrane phospholipids markedly decrease. We have applied mass spectrometry-based lipid profiling to study the levels of arachidonate-containing phospholipids under inflammatory activation of macrophages. We identify an unusual inositol phospholipid molecule, PI(20:4/20:4), the levels of which do not decrease but actually increase by 300% after activation of the macrophages. PI(20:4/20:4) is formed and degraded rapidly, suggesting a role for this molecule in regulating cell signaling events. Using a metabolipidomic approach consisting in exposing the cells to deuterium-labeled arachidonate at the time they are exposed to stimuli, we show that PI(20:4/20:4) biosynthesis occurs via the sequential incorporation of arachidonate, first into the sn-2 position of a preformed phosphatidylinositol (PI) molecule, followed by the rapid introduction of a second arachidonate moiety into the sn-1 position. Generation requires the participation of cytosolic phospholipase A2α and CoA-dependent acyltransferases. PI(20:4/20:4) formation is also detected in vivo in murine peritonitis exudates. Elevating the intracellular concentration of PI(20:4/20:4) by introducing the lipid into the cells results in enhancement of the microbicidal capacity of macrophages, as measured by reactive oxygen metabolite production and lysozyme release. These findings suggest that PI(20:4/20:4) is a novel bioactive inositol phospholipid molecule that regulates innate immune responses in macrophages.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Vihervaara T, Käkelä R, Liebisch G, Tarasov K, Schmitz G, Olkkonen VM. Modification of the lipidome in RAW264.7 macrophage subjected to stable silencing of oxysterol-binding proteins. Biochimie 2013; 95:538-47. [DOI: 10.1016/j.biochi.2012.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/04/2012] [Indexed: 12/16/2022]
|
30
|
Guijas C, Pérez-Chacón G, Astudillo AM, Rubio JM, Gil-de-Gómez L, Balboa MA, Balsinde J. Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes. J Lipid Res 2012; 53:2343-54. [PMID: 22949356 DOI: 10.1194/jlr.m028423] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60-70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A(2)α (cPLA(2)α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA(2)α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA(2)α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Guijas C, Astudillo AM, Gil-de-Gómez L, Rubio JM, Balboa MA, Balsinde J. Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1386-93. [PMID: 22824377 DOI: 10.1016/j.bbalip.2012.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/08/2012] [Accepted: 07/13/2012] [Indexed: 02/04/2023]
Abstract
Cells metabolize arachidonic acid (AA) to adrenic acid (AdA) via 2-carbon elongation reactions. Like AA, AdA can be converted into multiple oxygenated metabolites, with important roles in various physiological and pathophysiological processes. However, in contrast to AA, there is virtually no information on how the cells regulate the availability of free AdA for conversion into bioactive products. We have used a comparative lipidomic approach with both gas chromatography and liquid chromatography coupled to mass spectrometry to characterize changes in the levels of AA- and AdA-containing phospholipid species in RAW 264.7 macrophage-like cells. Incubation of the cells with AA results in an extensive conversion to AdA but both fatty acids do not compete with each other for esterification into phospholipids. AdA but not AA, shows preference for incorporation into phospholipids containing stearic acid at the sn-1 position. After stimulation of the cells with zymosan, both AA and AdA are released in large quantities, albeit AA is released to a greater extent. Finally, a variety of phosphatidylcholine and phosphatidylinositol molecular species contribute to AA; however, AdA is liberated exclusively from phosphatidylcholine species. Collectively, these results identify significant differences in the cellular utilization of AA and AdA by the macrophages, suggesting non-redundant biological actions for these two fatty acids.
Collapse
Affiliation(s)
- Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Valdearcos M, Esquinas E, Meana C, Peña L, Gil-de-Gómez L, Balsinde J, Balboa MA. Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. J Biol Chem 2012; 287:10894-904. [PMID: 22334674 DOI: 10.1074/jbc.m112.342915] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipin-2 is a member of the lipin family of enzymes, which are key effectors in the biosynthesis of lipids. Mutations in the human lipin-2 gene are associated with inflammatory-based disorders; however, the role of lipin-2 in cells of the immune system remains obscure. In this study, we have investigated the role of lipin-2 in the proinflammatory action of saturated fatty acids in murine and human macrophages. Depletion of lipin-2 promotes the increased expression of the proinflammatory genes Il6, Ccl2, and Tnfα, which depends on the overstimulation of the JNK1/c-Jun pathway by saturated fatty acids. In contrast, overexpression of lipin-2 reduces the release of proinflammatory factors. Metabolically, the absence of lipin-2 reduces the cellular content of triacylglycerol in saturated fatty acid-overloaded macrophages. Collectively, these studies demonstrate a protective role for lipin-2 in proinflammatory signaling mediated by saturated fatty acids that occurs concomitant with an enhanced cellular capacity for triacylglycerol synthesis. The data provide new insights into the role of lipin-2 in human and murine macrophage biology and may open new avenues for controlling the fatty acid-related low grade inflammation that constitutes the sine qua non of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Martín Valdearcos
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003 Valladolid and the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:249-56. [PMID: 22155285 DOI: 10.1016/j.bbalip.2011.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023]
Abstract
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.
Collapse
|