1
|
Leib L, Juli J, Jurida L, Mayr-Buro C, Priester J, Weiser H, Wirth S, Hanel S, Heylmann D, Weber A, Schmitz ML, Papantonis A, Bartkuhn M, Wilhelm J, Linne U, Meier-Soelch J, Kracht M. The proximity-based protein interactome and regulatory logics of the transcription factor p65 NF-κB/RELA. EMBO Rep 2025; 26:1144-1183. [PMID: 39753783 PMCID: PMC11850942 DOI: 10.1038/s44319-024-00339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 02/26/2025] Open
Abstract
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties. A targeted RNAi screen for 38 interactors and subsequent functional transcriptome and bioinformatics studies identify gene regulatory (sub)networks, each controlled by RELA in combination with one of the TFs ZBTB5, GLIS2, TFE3/TFEB, or S100A8/A9. The large, dynamic and versatile high-resolution interactome of RELA and its gene regulatory logics provides a rich resource and a new framework for explaining how RELA cooperativity determines gene expression patterns.
Collapse
Affiliation(s)
- Lisa Leib
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Jana Juli
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Christin Mayr-Buro
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Jasmin Priester
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Hendrik Weiser
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Stefanie Wirth
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Simon Hanel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | | | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
- German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
2
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
5
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
6
|
Lee SY, Park J, Seo SB. Negative regulation of HDAC3 transcription by histone acetyltransferase TIP60 in colon cancer. Genes Genomics 2024; 46:871-879. [PMID: 38805168 PMCID: PMC11208239 DOI: 10.1007/s13258-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.
Collapse
Affiliation(s)
- Seong Yun Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Zhu QM, Wang C, Liu JW, Zhang R, Xin XL, Zhang J, Sun CP, Ma XC. Degradation profile of environmental pollutant 17β-estradiol by human intestinal fungus Aspergillus niger RG13B1 and characterization of genes involved in its degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132617. [PMID: 37774607 DOI: 10.1016/j.jhazmat.2023.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Environmental hormones have attracted more attention because of their adverse impact on the health and ecological security of human. Biodegradation is still an efficient tactics to remove environmental hormones, but human intestinal microbes remain to be elucidated in the role of their degradation. In the present work, we intended to perform the in vitro experiment for investigating the degradation of 17β-estradiol, the main environmental estrogen, by human intestinal microflora Aspergillus niger RG13B1. Its degradation led to the production of eighteen metabolites characterized by 1H, 13C, and 2D NMR, and HRMS spectra, including nine new (1-9) and nine known metabolites (10-18). Based on their structures, the degradation pathway of 17β-estradiol mediated by A. niger RG13B1 involved hydroxylation, oxidation, methylation, acetylation, and dehydrogenation, especially infrequent lactylation, and the key degradation enzymes were found in the gene cluster of A. niger. In addition, we found that metabolite 12 interacted with amino acid residues Lys37, Gln39, Lys93, and Asn115 of NF-κB p65 to suppress expressions of inflammatory genes or proteins, exerting its anti-inflammatory effect. This study first illustrated the role of human gut microbe in 17β-estradiol degradation and provided new insights into its degradation mechanism by A. niger RG13B1.
Collapse
Affiliation(s)
- Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jing-Wen Liu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Rui Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Lan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518061, China.
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
9
|
Basak M, Das K, Mahata T, Kumar D, Nagar N, Poluri KM, Kumar P, Das P, Stewart A, Maity B. RGS7 balances acetylation/de-acetylation of p65 to control chemotherapy-dependent cardiac inflammation. Cell Mol Life Sci 2023; 80:255. [PMID: 37589751 PMCID: PMC11071981 DOI: 10.1007/s00018-023-04895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Cardiotoxicity remains a major limitation in the clinical utility of anthracycline chemotherapeutics. Regulator of G-protein Signaling 7 (RGS7) and inflammatory markers are up-regulated in the hearts of patients with a history of chemotherapy particularly those with reduced left-ventricular function. RGS7 knockdown in either the murine myocardium or isolated murine ventricular cardiac myocytes (VCM) or cultured human VCM provided marked protection against doxorubicin-dependent oxidative stress, NF-κB activation, inflammatory cytokine production, and cell death. In exploring possible mechanisms causally linking RGS7 to pro-inflammatory signaling cascades, we found that RGS7 forms a complex with acetylase Tip60 and deacetylase sirtuin 1 (SIRT1) and controls the acetylation status of the p65 subunit of NF-κB. In VCM, the detrimental impact of RGS7 could be mitigated by inhibiting Tip60 or activating SIRT1, indicating that the ability of RGS7 to modulate cellular acetylation capacity is critical for its pro-inflammatory actions. Further, RGS7-driven, Tip60/SIRT1-dependent cytokines released from ventricular cardiac myocytes and transplanted onto cardiac fibroblasts increased oxidative stress, markers of transdifferentiation, and activity of extracellular matrix remodelers emphasizing the importance of the RGS7-Tip60-SIRT1 complex in paracrine signaling in the myocardium. Importantly, while RGS7 overexpression in heart resulted in sterile inflammation, fibrotic remodeling, and compromised left-ventricular function, activation of SIRT1 counteracted the detrimental impact of RGS7 in heart confirming that RGS7 increases acetylation of SIRT1 substrates and thereby drives cardiac dysfunction. Together, our data identify RGS7 as an amplifier of inflammatory signaling in heart and possible therapeutic target in chemotherapeutic drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Madhuri Basak
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Kiran Das
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Tarun Mahata
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow, Uttar Pradesh, 226025, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
10
|
Shibahara D, Akanuma N, Kobayashi IS, Heo E, Ando M, Fujii M, Jiang F, Prin PN, Pan G, Wong K, Costa DB, Bararia D, Tenen DG, Watanabe H, Kobayashi SS. TIP60 is required for tumorigenesis in non-small cell lung cancer. Cancer Sci 2023; 114:2400-2413. [PMID: 36916958 PMCID: PMC10236639 DOI: 10.1111/cas.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Naoki Akanuma
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ikei S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Eunyoung Heo
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Internal MedicineSMG‐SNU Boramae Medical CenterSeoulSouth Korea
| | - Mariko Ando
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Masanori Fujii
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - P. Nicholas Prin
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gilbert Pan
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kwok‐Kin Wong
- Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Daniel B. Costa
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Deepak Bararia
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
11
|
Zhang S, Xu P, Zhu Z, Zhou L, Li J, Zhou R, Kan Y, Li Y, Yu X, Zhao J, Jin Y, Yan J, Fang P, Shang W. Acetylation of p65 Lys310 by p300 in macrophages mediates anti-inflammatory property of berberine. Redox Biol 2023; 62:102704. [PMID: 37086629 PMCID: PMC10172918 DOI: 10.1016/j.redox.2023.102704] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiao Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaru Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
13
|
Basak M, Das K, Mahata T, Sengar AS, Verma SK, Biswas S, Bhadra K, Stewart A, Maity B. RGS7-ATF3-Tip60 Complex Promotes Hepatic Steatosis and Fibrosis by Directly Inducing TNFα. Antioxid Redox Signal 2023; 38:137-159. [PMID: 35521658 DOI: 10.1089/ars.2021.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: The pathophysiological mechanism(s) underlying non-alcoholic fatty liver disease (NAFLD) have yet to be fully delineated and only a single drug, peroxisome proliferator-activated receptor (PPAR) α/γ agonist saroglitazar, has been approved. Here, we sought to investigate the role of Regulator of G Protein Signaling 7 (RGS7) in hyperlipidemia-dependent hepatic dysfunction. Results: RGS7 is elevated in the livers of NAFLD patients, particularly those with severe hepatic damage, pronounced insulin resistance, and high inflammation. In the liver, RGS7 forms a unique complex with transcription factor ATF3 and histone acetyltransferase Tip60, which is implicated in NAFLD. The removal of domains is necessary for ATF3/Tip60 binding compromises RGS7-dependent reactive oxygen species generation and cell death. Hepatic RGS7 knockdown (KD) prevented ATF3/Tip60 induction, and it provided protection against fibrotic remodeling and inflammation in high-fat diet-fed mice translating to improvements in liver function. Hyperlipidemia-dependent oxidative stress and metabolic dysfunction were largely reversed in RGS7 KD mice. Interestingly, saroglitazar failed to prevent RGS7/ATF3 upregulation but it did partially restore Tip60 levels. RGS7 drives the release of particularly tumor necrosis factor α (TNFα) from isolated hepatocytes, stellate cells and its depletion reverses steatosis, oxidative stress by direct TNFα exposure. Conversely, RGS7 overexpression in the liver is sufficient to trigger oxidative stress in hepatocytes that can be mitigated via TNFα inhibition. Innovation: We discovered a novel non-canonical function for an R7RGS protein, which usually functions to regulate G protein coupled receptor (GPCR) signaling. This is the first demonstration for a functional role of RGS7 outside the retina and central nervous system. Conclusion: RGS7 represents a potential novel target for the amelioration of NAFLD. Antioxid. Redox Signal. 38, 137-159.
Collapse
Affiliation(s)
| | - Kiran Das
- Centre of Biomedical Research, Lucknow, India
| | | | | | | | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Kalyani, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida, USA
| | | |
Collapse
|
14
|
Zhang M, Zhang J, Wang C, Yan JK, Yi J, Ning J, Huo XK, Yu ZL, Zhang BJ, Sun CP, Ma XC. Biotransformation of 18β-Glycyrrhetinic Acid by Human Intestinal Fungus Aspergillus niger RG13B1 and the Potential Anti-Inflammatory Mechanism of Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15104-15115. [PMID: 36414003 DOI: 10.1021/acs.jafc.2c05455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
18β-Glycyrrhetinic acid (GA) is a triterpenoid possessing an anti-inflammatory activity in vivo, while the low bioavailability limits its application due to its intestinal accumulation. In order to investigate the metabolism of GA in intestinal microbes, it was incubated with human intestinal fungus Aspergillus niger RG13B1, finally leading to the isolation and identification of three new metabolites (1-3) and three known metabolites (4-6) based on 1D and 2D NMR and high-resolution electrospray ionization mass spectroscopy spectra. Metabolite 6 could target myeloid differentiation protein 2 (MD2) to suppress the activation of nuclear factor-kappa B (NF-κB) signaling pathway via inhibiting the nuclear translocation of p65 to downregulate its target proteins and genes in lipopolysaccharide (LPS)-mediated RAW264.7 cells. Molecular dynamics suggested that metabolite 6 interacted with MD2 through the hydrogen bond of amino acid residue Arg90. These findings demonstrated that metabolite 6 could serve as a potential candidate to develop the new inhibitors of MD2.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Juan Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jian-Kun Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jing Yi
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ning
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Bao-Jing Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
15
|
MRGBP promotes colorectal cancer metastasis via DKK1/Wnt/β-catenin and NF-kB/p65 pathways mediated EMT. Exp Cell Res 2022; 421:113375. [PMID: 36208716 DOI: 10.1016/j.yexcr.2022.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 12/29/2022]
Abstract
MRG domain binding protein (MRGBP) has been proposed to participate in the development of multiple tumors. However, the role of MRGBP in colorectal cancer (CRC) still remains largely unknown. Here, we found that MRGBP expression is significantly elevated in CRC, and that higher MRGBP expression correlates with poorer survival in CRC patients. Experiments in vivo and in vitro indicated that MRGBP promotes CRC cells proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and xenograft tumor growth. Mechanically, for one thing, we discovered that MRGBP suppresses DKK1 expression, thus further activating the Wnt/β-catenin pathway in CRC cells. For another, MRGBP also enhances acetylation of NF-kB/p65 pathway. Treatment with Wnt/β-catenin and NF-kB pathways inhibitors further confirmed the mediation of these two pathways in MRGBP-promoted CRC cell processes. In conclusion, these findings together suggest that MRGBP promotes CRC progression via DKK1/Wnt/β-catenin and NF-kB/p65 pathways mediated EMT, identifying MRGBP as a promising prognostic and therapeutic target for CRC.
Collapse
|
16
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
17
|
Liu H, Wei T, Sun L, Wu T, Li F, Zhao J, Chu J, Wang F, Cai Y, Jin J. The Non-Specific Lethal (NSL) Histone Acetyltransferase Complex Transcriptionally Regulates Yin Yang 1-Mediated Cell Proliferation in Human Cells. Int J Mol Sci 2022; 23:ijms23073801. [PMID: 35409160 PMCID: PMC8998616 DOI: 10.3390/ijms23073801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
The human males absent on the first (MOF)-containing non-specific lethal (NSL) histone acetyltransferase (HAT) complex acetylates histone H4 at lysine K5, K8, and K16. This complex shares several subunits with other epigenetic regulatory enzymes, which highlights the complexity of its intracellular function. However, the effect of the NSL HAT complex on the genome and target genes in human cells is still unclear. By using a CRISPR/Cas9-mediated NSL3-knockout 293T cell line and chromatin immunoprecipitation-sequencing (ChIP-Seq) approaches, we identified more than 100 genes as NSL HAT transcriptional targets, including several transcription factors, such as Yin Yang 1 (YY1) which are mainly involved in cell proliferation, biological adhesion, and metabolic processes. We found here that the ChIP-Seq peaks of MOF and NSL3 co-localized with H4K16ac, H3K4me2, and H3K4me3 at the transcriptional start site of YY1. In addition, both the mRNA and protein expression levels of YY1 were regulated by silencing or overexpressing NSL HAT. Interestingly, the expression levels of cell division cycle 6, a downstream target gene of YY1, were regulated by MOF or NSL3. In addition, the suppressed clonogenic ability of HepG2 cells caused by siNSL3 was reversed by overexpressing YY1, suggesting the involvement of YY1 in NSL HAT functioning. Additionally, de novo motif analysis of MOF and NSL3 targets indicated that the NSL HAT complex may recognize the specific DNA-binding sites in the promoter region of target genes in order to regulate their transcription.
Collapse
Affiliation(s)
- Hongsen Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Tao Wei
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Lin Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Tingting Wu
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jianlei Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Jinmeng Chu
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Fei Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Y.C.); (J.J.); Tel.: +86-431-8515-5132 (Y.C.); +86-431-8515-5475 (J.J.)
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (T.W.); (L.S.); (T.W.); (F.L.); (J.Z.); (J.C.); (F.W.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Y.C.); (J.J.); Tel.: +86-431-8515-5132 (Y.C.); +86-431-8515-5475 (J.J.)
| |
Collapse
|
18
|
Li Y, Liu X, Ma Z. EGFR, NF-κB and noncoding RNAs in precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:189-218. [DOI: 10.1016/bs.pmbts.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Xu L, Qin Y, Liu M, Jiao J, Tu D, Zhang M, Yan D, Song X, Sun C, Zhu F, Wang X, Sang W, Xu K. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med Chem 2021; 22:1530-1540. [PMID: 34503423 DOI: 10.2174/1871520621666210908103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non-Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. OBJECTIVE The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. METHODS The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. RESULTS NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. CONCLUSION NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongyun Tu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Meng Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xiangmin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| |
Collapse
|
20
|
Tan D, Chen R, Mo Y, Gu S, Ma J, Xu W, Lu X, He H, Jiang F, Fan W, Wang Y, Chen X, Huang W. Quantitative control of noise in mammalian gene expression by dynamic histone regulation. eLife 2021; 10:65654. [PMID: 34379055 PMCID: PMC8357418 DOI: 10.7554/elife.65654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Fluctuation ('noise') in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet the mechanisms behind large fluctuations that are induced by single transcriptional activators remain elusive. Here, we probed putative mechanisms by studying the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, chromatin accessibility, and levels of mRNAs and proteins in single cells. Using a light-induced expression system, we showed that the transcriptional activator could form an interplay with dual functional co-activator/histone acetyltransferases CBP/p300. This interplay resulted in substantial heterogeneity in H3K27ac, chromatin accessibility, and transcription. Simultaneous attenuation of CBP/p300 and HDAC4/5 reduced heterogeneity in the expression of endogenous genes, suggesting that this mechanism is universal. We further found that the noise was reduced by pulse-wide modulation of transcriptional activator binding possibly as a result of alternating the epigenetic states. Our findings suggest a mechanism for the modulation of noise in synthetic and endogenous gene expression systems.
Collapse
Affiliation(s)
- Deng Tan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Rui Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuejian Mo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shu Gu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jiao Ma
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xibin Lu
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Huiyu He
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fan Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weimin Fan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yili Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
21
|
Shahinozzaman M, Islam M, Basak B, Sultana A, Emran R, Ashrafizadeh M, Islam ATMR. A review on chemistry, source and therapeutic potential of lambertianic acid. Z NATURFORSCH C 2021; 76:347-356. [PMID: 33826808 DOI: 10.1515/znc-2020-0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 01/05/2023]
Abstract
Lambertianic acid (LA) is a diterpene bioactive compound mainly purified from different species of Pinus. It is an optical isomer of another natural compound daniellic acid and was firstly purified from Pinus lambertiana. LA can be synthesized in laboratory from podocarpic acid. It has been reported to have potential health benefits in attenuating obesity, allergies and different cancers including breast, liver, lung and prostate cancer. It exhibits anticancer properties through inhibiting cancer cell proliferation and survival, and inducing apoptosis, targeting major signalling components including AKT, AMPK, NFkB, COX-2, STAT3, etc. Most of the studies with LA were done using in vitro models, thus warranting future investigations with animal models to evaluate its pharmacological effects such as antidiabetic, anti-inflammatory and neuroprotective effects as well as to explore the underlying molecular mechanisms and toxicological profile. This review describes the chemistry, source, purification and therapeutic potentials of LA and it can therefore be a suitable guideline for any future study with LA.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Moutushi Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Arifa Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Department of Agricultural Extension (DAE), Dhaka 1215, Bangladesh
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | | |
Collapse
|
22
|
Li Y, Huang H, Zhu M, Bai H, Huang X. Roles of the MYST Family in the Pathogenesis of Alzheimer's Disease via Histone or Non-histone Acetylation. Aging Dis 2021; 12:132-142. [PMID: 33532133 PMCID: PMC7801277 DOI: 10.14336/ad.2020.0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/29/2020] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a major cause of death among elderly individuals. The etiology of AD involves a combination of genetic, environmental, and lifestyle factors. A number of epigenetic alterations in AD have recently been reported; for example, studies have found an increase in histone acetylation in patients with AD and the protective function of histone deacetylase inhibitors. The histone acetylases in the MYST family are involved in a number of key nuclear processes, such as gene-specific transcriptional regulation, DNA replication, and DNA damage response. Therefore, it is not surprising that they contribute to epigenetic regulation as an intermediary between genetic and environmental factors. MYST proteins also exert acetylation activity on non-histone proteins that are closely associated with the pathogenesis of AD. In this review, we summarized the current understanding of the roles of MYST acetyltransferases in physiological functions and pathological processes related to AD. Additionally, using published RNA-seq, ChIP-seq, and ChIP-chip data, we identified enriched pathways to further evaluate the correlation between MYST and AD. The recent research described in this review supports the importance of epigenetic modifications and the MYST family in AD, providing a basis for future functional studies.
Collapse
Affiliation(s)
- Yuhong Li
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,2Yunnan Institute of Tropical Crops, Jinghong, China
| | - Hui Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Man Zhu
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Hua Bai
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,3College of Public Health, Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
23
|
Gruber JJ, Chen J, Geller B, Jäger N, Lipchik AM, Wang G, Kurian AW, Ford JM, Snyder MP. Chromatin Remodeling in Response to BRCA2-Crisis. Cell Rep 2020; 28:2182-2193.e6. [PMID: 31433991 DOI: 10.1016/j.celrep.2019.07.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022] Open
Abstract
Individuals with a single functional copy of the BRCA2 tumor suppressor have elevated risks for breast, ovarian, and other solid tumor malignancies. The exact mechanisms of carcinogenesis due to BRCA2 haploinsufficiency remain unclear, but one possibility is that at-risk cells are subject to acute periods of decreased BRCA2 availability and function ("BRCA2-crisis"), which may contribute to disease. Here, we establish an in vitro model for BRCA2-crisis that demonstrates chromatin remodeling and activation of an NF-κB survival pathway in response to transient BRCA2 depletion. Mechanistically, we identify BRCA2 chromatin binding, histone acetylation, and associated transcriptional activity as critical determinants of the epigenetic response to BRCA2-crisis. These chromatin alterations are reflected in transcriptional profiles of pre-malignant tissues from BRCA2 carriers and, therefore, may reflect natural steps in human disease. By modeling BRCA2-crisis in vitro, we have derived insights into pre-neoplastic molecular alterations that may enhance the development of preventative therapies.
Collapse
Affiliation(s)
- Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - Justin Chen
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Geller
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Natalie Jäger
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Lipchik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Allison W Kurian
- Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - James M Ford
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int J Mol Sci 2020; 21:E5164. [PMID: 32708302 PMCID: PMC7404026 DOI: 10.3390/ijms21145164] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling is implicated in all major human chronic diseases, with its role in transcription of hundreds of gene well established in the literature. This has propelled research into targeting the NF-κB pathways for modulating expression of those genes and the diseases mediated by them. In-spite of the critical, but often promiscuous role played by this pathway and the inhibition causing adverse drug reaction, currently many biologics, macromolecules, and small molecules that modulate this pathway are in the market or in clinical trials. Furthermore, many marketed drugs that were later found to also have NF-κB targeting activity were repurposed for new therapeutic interventions. Despite the rising importance of biologics in drug discovery, small molecules got around 76% of US-FDA (Food and Drug Administration-US) approval in the last decade. This encouraged us to review information regarding clinically relevant small molecule inhibitors of the NF-κB pathway from cell surface receptor stimulation to nuclear signaling. We have also highlighted the underexplored targets in this pathway that have potential to succeed in clinic.
Collapse
Affiliation(s)
| | | | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore;
- Department of Pathology, NUS, Singapore 117597, Singapore
| |
Collapse
|
25
|
Stabilization of the histone acetyltransferase Tip60 by deubiquitinating enzyme USP7 stimulates the release of pro-inflammatory mediators in acute lung injury. J Mol Med (Berl) 2020; 98:907-921. [PMID: 32440780 DOI: 10.1007/s00109-020-01910-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is often associated with inflammation. Increasing evidence has identified the role for ubiquitin-specific protease 7 (USP7) in activating the expression of inflammatory factors in macrophages. The present study evaluated whether USP7 also mediates histone acetyltransferase Tat-interactive protein 60 (Tip60) in the development of ALI inflammation. An ALI mouse model was induced by intratracheal lipopolysaccharide (LPS) administration. Next, lung myeloperoxidase (MPO) activity and the ratio of dry weight/wet weight of lung were examined to evaluate tissue damage. In addition, RAW 264.7 cells were treated with LPS to induce an in vitro LPS-induced inflammatory cell model. ELISA was performed to measure expression of IL-1β, TNF-α, IL-6, and IL-8 in cells and tissues. TUNEL was used to detect LPS-induced cell apoptosis. Furthermore, the interaction between USP7 and Tip60 was identified by IP, Western blot analysis, and cycloheximide (CHX) treatment. The enrichment of Tip60 and H3K27ac in the promoter region of IL-6 and IL-8 was assessed by ChIP. USP7 was highly expressed in LPS-endotoxin-induced ALI mouse models and silencing of USP7 delayed the progression of ALI in mice. Silencing of USP7 protected RAW 264.7 cells against LPS-induced inflammation and apoptosis by downregulating IL-1β, TNF-α, IL-6, and IL-8. USP7 enhanced Tip60 protein stability, and Tip60 increased the enrichment of H3K27ac on IL-6 and IL-8 promoter region and activated NF-κB p65 to increase IL-6 and IL-8 expression. These findings reveal a new post-transcriptional role for USP7 in inflammation by stabilizing Tip60 and increasing the release of the pro-inflammatory cytokines, and implicate USP7 inhibitors as potential therapeutic agents for ALI. KEY MESSAGES: USP7 expresses highly in an acute lung injury (ALI) mouse models. Silencing of USP7 inhibits inflammation and cell apoptosis in ALI mouse. USP7 stabilizes Tip60 to boost the release of IL-6 and IL-8. Tip60 increases IL-6 and IL-8 expression by acetylating NF-κB p65. Silencing of USP7 alleviates ALI by repressing NF-κB p65 and Tip60.
Collapse
|
26
|
Nuclear Factor κB Signaling and Its Related Non-coding RNAs in Cancer Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:208-217. [PMID: 31841993 PMCID: PMC6920321 DOI: 10.1016/j.omtn.2019.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Nuclear factor κB (NF-κB) acts as a nuclear factor that is composed of five main subunits. It is a pluripotent and crucial dimer transcription factor that has a close relationship with many serious illnesses, especially its influences on cell proliferation, inflammation, and cancer initiation and progression. NF-κB acts as part of the signaling pathway and determines its effect on the expression of several other genes, such as epidermal growth factor receptor (EGFR), p53, signal transducer and activator of transcription 3 (STAT3), and non-coding RNA (ncRNA). Continuous activation of the NF-κB signaling pathway has been seen in many cancer types. While the NF-κB signaling pathway is tightly regulated in physiological settings, quite frequently it is constitutively activated in cancer, and the molecular biology mechanism underlying the deregulated activation of NF-κB signaling remains unclear. In this review, we discuss the regulatory role and possible clinical significance of ncRNA (microRNA [miRNA] and long non-coding RNA [lncRNA]) in NF-κB signaling in cancer, including in the conversion of inflammation to carcinogenesis. Non-coding RNA plays an essential and complex role in the NF-κB signaling pathway. NF-κB activation can also induce the ncRNA status. Targeting NF-κB signaling by ncRNA is becoming a promising strategy of drug development and cancer treatment.
Collapse
|
27
|
Leong MML, Cheung AKL, Kwok TCT, Lung ML. Functional characterization of a candidate tumor suppressor gene, Mirror Image Polydactyly 1, in nasopharyngeal carcinoma. Int J Cancer 2019; 146:2891-2900. [PMID: 31609475 DOI: 10.1002/ijc.32732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Mirror Image Polydactyly 1 (MIPOL1) is generally associated with congenital anomalies. However, its role in cancer development is poorly understood. Previously, by utilizing the functional complementation approach, microcell-mediated chromosome transfer (MMCT), a tumor suppressor gene, MIPOL1, was identified. MIPOL1 was confirmed to be downregulated in nasopharyngeal carcinoma (NPC) cells and tumor tissues, and re-expression of MIPOL1 induced tumor suppression. The aim of the current study is to further elucidate the functional tumor suppressive role of MIPOL1. In our study, with an expanded sample size of different clinical stages of NPC tumor tissues, we further confirmed the downregulation of MIPOL1 in different cancer stages. MIPOL1 re-expression down-regulated angiogenic factors and reduced phosphorylation of metastasis-associated proteins including AKT, p65, and FAK. In addition, MIPOL1 was confirmed to interact with a tumor suppressor, RhoB, and re-expression of MIPOL1 enhanced RhoB activity. The functional role of MIPOL1 was further validated by utilizing a panel of wild-type (WT) and truncated MIPOL1 expression constructs. The MIPOL1 tumor-suppressive effect can only be observed in the WT MIPOL1-expressing cells. In vitro and nude mice in vivo functional studies further confirmed the critical role of WT MIPOL1 in inhibiting migration, invasion and metastasis in NPC. Overall, our study provides strong evidence about the tumor-suppressive role of MIPOL1 in inhibiting angiogenesis and metastasis in NPC.
Collapse
Affiliation(s)
- Merrin M L Leong
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Arthur K L Cheung
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tommy C T Kwok
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maria L Lung
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong.,Centre for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
28
|
Ruan Z, Zhao D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1. FASEB J 2019; 33:12047-12059. [PMID: 31574234 DOI: 10.1096/fj.201900101rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is one of the major causes of cancer-related mortality in women worldwide. Long noncoding RNAs might play a role as oncogenes or tumor suppressors. Therefore, we investigated the effect and underlying mechanisms of long intergenic noncoding RNA (LINC00) 284 on angiogenesis in OC cells. Expression of LINC00284 in OC tissues and cells was determined. Next, the interaction between LINC00284 and mesoderm-specific transcript (MEST) was evaluated. Subsequently, OC cells were transfected with overexpressed (oe)-LINC00284, silenced (si)-LINC00284, si-NF-κB1, oe-MEST, or si-MEST plasmids to investigate the underlying mechanism of LINC00284 in OC. Afterwards, the expression of matrix metalloproteinase (MMP)-2, MMP-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated protein x (Bax), VEGF, and CD31 was determined to assess the effect of LINC00284 on OC cell proliferation, invasion, migration angiogenesis, and apoptosis. Finally, the effect of LINC00284 on tumorigenesis was investigated in nude mice models of OC. LINC00284 was highly expressed in OC. si-LINC00284 increased expression of MEST. si-LINC00284 or si-NF-κB1 led to the reduction in cell proliferation, migration, invasion, tube formation, angiogenesis, and tumorigenic ability and promoted apoptosis in OC by down-regulating MMP-2, MMP-9, Bcl-2, VEGF, and CD31 and up-regulating Bax. These effects were all reversed following the si-MEST. In vivo experiments found the same results, confirming the aforementioned findings. Taken together, LINC00284 is involved in angiogenesis during OC development by recruiting NF-κB1 and down-regulating MEST.-Ruan, Z., Zhao, D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
29
|
Suppression of STAT3 Phosphorylation and RelA/p65 Acetylation Mediated by MicroRNA134 Plays a Pivotal Role in the Apoptotic Effect of Lambertianic Acid. Int J Mol Sci 2019; 20:ijms20122993. [PMID: 31248140 PMCID: PMC6628272 DOI: 10.3390/ijms20122993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
As p300-mediated RelA/p65 hyperacetylation by signal transducers and activators of transcription 3 (STAT3) is critical for NF-κB activation, in the current study, the apoptotic mechanism of lambertianic acid (LA) was explored in relation to STAT3 phosphorylation and RelA/p65 acetylation in MCF-7, DU145, PC-3, and MDA-MB-453 cells. LA significantly increased the cytotoxicity, sub G 1 population, and the cleavage of poly (ADP-ribose) polymerase (PARP) in MDA-MB-453 or PC-3 cells (STAT3 mutant), more than in the MCF-7 or DU145 cells (STAT3 wild). Consistently, LA inhibited the phosphorylation of STAT3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and disrupted the interaction between p-STAT3, p300, NF-κB, and RelA/p65 acetylation (Ac-RelA/p65) in the MCF-7 and DU145 cells. Also, LA reduced the nuclear translocation of STAT3 and NF-κB via their colocalization, and also suppressed the protein expression of XIAP, survivin, Bcl-2, Bcl-xL, vascular endothelial growth factor (VEGF), Cox-2, c-Myc and mRNA expression of interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in MCF-7 cells. Conversely, IL-6 blocked the ability of LA to suppress the cytotoxicity and PARP cleavage, while the depletion of STAT3 or p300 enhanced the PARP cleavage of LA in the MCF-7 cells. Notably, LA upregulated the level of miRNA134 and so miRNA134 mimic attenuated the expression of pro-PARP, p-STAT3, and Ac-RelA, while the miRNA134 inhibitor reversed the ability of LA to reduce the expression of Ac-RelA and pro-PARP in MCF-7 cells. Overall, these findings suggest that LA induced apoptosis via the miRNA-134 mediated inhibition of STAT3 and RelA/p65 acetylation.
Collapse
|
30
|
Abstract
The transcription factor NF-κB is a critical regulator of immune and inflammatory responses. In mammals, the NF-κB/Rel family comprises five members: p50, p52, p65 (Rel-A), c-Rel, and Rel-B proteins, which form homo- or heterodimers and remain as an inactive complex with the inhibitory molecules called IκB proteins in resting cells. Two distinct NF-κB signaling pathways have been described: 1) the canonical pathway primarily activated by pathogens and inflammatory mediators, and 2) the noncanonical pathway mostly activated by developmental cues. The most abundant form of NF-κB activated by pathologic stimuli via the canonical pathway is the p65:p50 heterodimer. Disproportionate increase in activated p65 and subsequent transactivation of effector molecules is integral to the pathogenesis of many chronic diseases such as the rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and even neurodegenerative pathologies. Hence, the NF-κB p65 signaling pathway has been a pivotal point for intense drug discovery and development. This review begins with an overview of p65-mediated signaling followed by discussion of strategies that directly target NF-κB p65 in the context of chronic inflammation.
Collapse
Affiliation(s)
- Sivagami Giridharan
- Department of Oral Medicine, Madha Dental College, Kundrathur, Chennai, TN, India
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA,
- Provaidya LLC, Indianapolis, IN, USA,
| |
Collapse
|
31
|
Cheon SY, Kim JM, Kim EJ, Kim SY, Kam EH, Ho CC, Lee SK, Koo BN. Intranuclear delivery of synthetic nuclear factor-kappa B p65 reduces inflammasomes after surgery. Biochem Pharmacol 2018; 158:141-152. [PMID: 30096289 DOI: 10.1016/j.bcp.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Patients undergoing surgery can suffer from various complications, including post-operative bleeding, local or systematic infection, and neurologic disorders. Major surgery can initiate innate immune responses and trigger overproduction of inflammatory mediators, which can contribute to organ dysfunction. Inflammasomes are innate immune complexes, which are connected to the pathogenesis of various diseases, including atherosclerosis, hemorrhagic brain injury, and Alzheimer's disease. In the present study, we hypothesized that nucleotide-binding oligomerization domain-containing-like receptor protein (NLRP) inflammasomes may have a role in the pathological effects of surgery. Therefore, we designed a protein inhibitor of nuclear factor kappa B (NF-κB) p65 transcripts, called nt-p65-TMD (nuclear transducible (nt) transcription modulated domain (TMD) of RelA (p65)), that can penetrate the nucleus, and evaluated its therapeutic efficacy for dampening surgery-induced inflammasome activation. It was found that the nt-p65-TMD significantly reduced the NLRP1 inflammasome complex components (NLRP1, ASC, and Caspase-1) and interleukin (IL)-1β and IL-18 productions in the spleen after surgery. In the spleen, specific cell population and selective mediators were altered after surgery with/without nt-p65-TMD treatment. Also, we found that treatment of nt-p65-TMD decreased cell death in the spleen after surgery. Therefore, nt-p65-TMD is a potential novel strategy for reducing surgery-induced NLRP1 inflammasome and complications.
Collapse
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun-Chang Ho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A- and PIK3CA-Mutation-Driven Ovarian Cancer. Cell Rep 2017; 17:275-288. [PMID: 27681437 DOI: 10.1016/j.celrep.2016.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
ARID1A is frequently mutated in ovarian clear cell carcinoma (OCCC) and often co-exists with activating mutations of PIK3CA. Although induction of pro-inflammatory cytokines has been observed in this cancer, the mechanism by which the two mutations synergistically activate cytokine genes remains elusive. Here, we established an in vitro model of OCCC by introducing ARID1A knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line, resulting in cell transformation and cytokine gene induction. We demonstrate that loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the PIK3CA mutation releases RelA from IκB, leading to cytokine gene activation. We show that an NF-κB inhibitor partly attenuates the proliferation of OCCC and improves the efficacy of carboplatin both in cell culture and in a mouse model. Our study thus reveals the mechanistic link between ARID1A/PIK3CA mutations and cytokine gene induction in OCCC and suggests that NF-κB inhibition could be a potential therapeutic option.
Collapse
|
33
|
Zhou B, Mu J, Gong Y, Lu C, Zhao Y, He T, Qin Z. Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 2016; 11:390-402. [PMID: 28063381 PMCID: PMC5219604 DOI: 10.1016/j.redox.2016.12.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/09/2023] Open
Abstract
Uncovering new therapeutic targets for renal fibrosis holds promise for the treatment of chronic kidney diseases. Bromodomain and extra-terminal (BET) protein inhibitors have been shown to effectively ameliorate pathological fibrotic responses. However, the pharmacological effects and underlying mechanisms of these inhibitors in renal fibrosis remain elusive. In this study, we determined that the inhibition of Brd4, a BET family member, with a selective potent chemical inhibitor, JQ1, could prevent the development of renal fibrosis and block the progression of fibrosis in rats that have undergone unilateral ureteral obstruction (UUO). Inhibiting Brd4 with either JQ1 or genetic knockdown resulted in decreased expression of fibrotic genes such as α-smooth muscle actin, collagen IV and fibronectin both in UUO-induced fibrosis and upon TGF-β1 stimulation in HK-2 cells. Brd4 inhibition also suppressed the oxidative stress induced by UUO in vivo or by TGF-β1 in HK-2 cells. Moreover, Nox4, which is constitutively active in renal cells and is involved in the generation of hydrogen peroxide, was up-regulated during UUO-mediated fibrosis and induced by TGF-β1 in HK-2 cells, and this up-regulation could be blunted by Brd4 inhibition. Consistently, Nox4-mediated ROS generation and fibrotic gene expression were attenuated upon Brd4 inhibition. Further, the transcriptional activity of Nox4 was suppressed by JQ1 or siRNA against Brd4. Additionally, Smad3 and ERK1/2 phosphorylation, which are upstream signals of Nox4 expression, were inhibited both in JQ1-administered UUO rats and Brd4-inhibited HK-2 cells. In conclusion, these results indicated that the inhibition of Brd4 might protect against renal fibrosis by blocking the TGF-β-Nox4-ROS-fibrosis axis, suggesting that Brd4 could be a promising therapeutic target. Brd4 was up-regulated in the progression of renal fibrosis. Brd4 inhibitor JQ1 prevented renal fibrosis and delayed the fibrotic progression. Brd4 inhibition blocked TGF-β1-induced oxidative stress and fibrosis through Nox4. Brd4 regulated Nox4 expression via Smad and ERK pathways.
Collapse
Affiliation(s)
- Baoshang Zhou
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiao Mu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yi Gong
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Caibao Lu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Youguang Zhao
- Department of Urology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Ting He
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
34
|
Abstract
A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. Significance statement: This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis.
Collapse
|
35
|
Thangjam GS, Birmpas C, Barabutis N, Gregory BW, Clemens MA, Newton JR, Fulton D, Catravas JD. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L964-74. [PMID: 27036868 DOI: 10.1152/ajplung.00054.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/13/2016] [Indexed: 11/22/2022] Open
Abstract
The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation.
Collapse
Affiliation(s)
- Gagan S Thangjam
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Charalampos Birmpas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Betsy W Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Mary Ann Clemens
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia
| | - Joseph R Newton
- Department of Surgery, Eastern Virginia Medical School, Norfolk, Virginia
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
36
|
Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H, He Y, Zhu J. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 2016; 6:10195-206. [PMID: 25991669 PMCID: PMC4496349 DOI: 10.18632/oncotarget.3555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jun Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China.,Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
37
|
Kaypee S, Sudarshan D, Shanmugam MK, Mukherjee D, Sethi G, Kundu TK. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics. Pharmacol Ther 2016; 162:98-119. [PMID: 26808162 DOI: 10.1016/j.pharmthera.2016.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment.
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Deepthi Sudarshan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India.
| |
Collapse
|
38
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
39
|
Zhang J, Zhang Y, Xiao F, Liu Y, Wang J, Gao H, Rong S, Yao Y, Li J, Xu G. The peroxisome proliferator-activated receptor γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem Pharmacol 2015; 101:100-11. [PMID: 26673543 DOI: 10.1016/j.bcp.2015.11.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
Abstract
The thiazolidinedione pioglitazone, which is also a PPAR-γ agonist, now is widely used in patients with hypercholesterolemia and hypertriglyceridemia. NF-κB is a ubiquitously expressed transcription factor controlling the expression of numerous genes involved in inflammation. The aim of the present study was to evaluate whether the activation of PPAR-γ attenuates the cisplatin-induced NF-κB activation in cisplatin nephrotoxicity. The results showed that the PPAR-γ agonist pioglitazone decreased the expression of NF-κB p65 transcription target genes (e.g., IL-6, IL-1β, and TNF-α) and inhibited histological injury and inflammatory cells infiltration in cisplatin nephrotoxicity. The suppression of NF-κB activity following pioglitazone treatment inhibited the cisplatin-induced IκB-α degredation and NF-κB p65 subunit translocation. Translocation of the NF-κB p65 subunit depends on p65 acetylation, which primarily regulated by SIRT1 or p300. Notably, AMP kinase (AMPK) activation not only decreased the phosphorylation, activation and p65 interaction of p300 but also increased SIRT1 expression, activation and p65 binding, thus leading to a significant reduction in p65 acetylation. Interestingly, the reduction of IL-6, TNF-α and IL-1β, the inhibition of histological injury and the inflammatory cells infiltration following pioglitazone treatment in cisplatin nephrotoxicity were attenuated after treatment with the PPAR-γ antagonist GW9662. These results suggest that the PPAR-γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through a reduction in p65 acetylation via the AMPK-SIRT1/p300 pathway.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Unversity of Science and Technology, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jin Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Hongyu Gao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
40
|
KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death Dis 2015; 6:e1857. [PMID: 26291311 PMCID: PMC4558493 DOI: 10.1038/cddis.2015.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Transcription factor SOX4 has been implicated in skeletal myoblast differentiation through the regulation of Cald1 gene expression; however, the detailed molecular mechanism underlying this process is largely unknown. Here, we demonstrate that SOX4 acetylation at lysine 95 by KAT5 (also known as Tip60) is essential for Cald1 promoter activity at the onset of C2C12 myoblast differentiation. KAT5 chromodomain was found to facilitate SOX4 recruitment to the Cald1 promoter, which is involved in chromatin remodeling at the promoter. Chromatin occupancy analysis of SOX4, KAT5, and HDAC1 indicated that the expression of putative SOX4 target genes during C2C12 myoblast differentiation is specifically regulated by the molecular switching of the co-activator KAT5 and the co-repressor HDAC1 on SOX4 transcriptional activation.
Collapse
|
41
|
Ye X, Yuan L, Zhang L, Zhao J, Zhang CM, Deng HY. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol. Asian Pac J Cancer Prev 2015; 15:5001-7. [PMID: 24998578 DOI: 10.7314/apjcp.2014.15.12.5001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol (E2) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-κB/ p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl- xl. We found that on treatment with garcinol in MCF-7 cells, E2-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-κB/ac-p65 proteins in E2-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac- H4.The nuclear translocation of NF-κB/p65 in E2-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of E2 on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-κB/ p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by E2. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-κB pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.
Collapse
Affiliation(s)
- Xia Ye
- Department of Pathophysiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | |
Collapse
|
42
|
Kim CH, Kim JW, Jang SM, An JH, Seo SB, Choi KH. The chromodomain-containing histone acetyltransferase TIP60 acts as a code reader, recognizing the epigenetic codes for initiating transcription. Biosci Biotechnol Biochem 2015; 79:532-8. [PMID: 25560918 DOI: 10.1080/09168451.2014.993914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
TIP60 can act as a transcriptional activator or a repressor depending on the cellular context. However, little is known about the role of the chromodomain in the functional regulation of TIP60. In this study, we found that TIP60 interacted with H3K4me3 in response to TNF-α signaling. TIP60 bound to H3K4me3 at the promoters of the NF-κB target genes IL6 and IL8. Unlike the wild-type protein, a TIP60 chromodomain mutant did not localize to chromatin regions. Because TIP60 binds to histones with specific modifications and transcriptional regulators, we used a histone peptide assay to identify histone codes recognized by TIP60. TIP60 preferentially interacted with methylated or acetylated histone H3 and H4 peptides. Phosphorylation near a lysine residue significantly reduced the affinity of TIP60 for the modified histone peptides. Our findings suggest that TIP60 acts as a functional link between the histone code and transcriptional regulators.
Collapse
Affiliation(s)
- Chul-Hong Kim
- a Department of Life Science, College of Natural Sciences , Chung-Ang University , Seoul , Korea
| | | | | | | | | | | |
Collapse
|
43
|
Kim JY, Hwang JY, Lee DY, Song EH, Park KJ, Kim GH, Jeong EA, Lee YJ, Go MJ, Kim DJ, Lee SS, Kim BJ, Song J, Roh GS, Gao B, Kim WH. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo. J Biol Chem 2014; 289:27065-27079. [PMID: 25074928 PMCID: PMC4175344 DOI: 10.1074/jbc.m114.585653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from −287 to −158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Joo-Yeon Hwang
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Dae Yeon Lee
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Eun Hyun Song
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Keon Jae Park
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea; Division of Cardiology, Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju 361-763, Korea, and
| | - Gyu Hee Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Eun Ae Jeong
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Min Jin Go
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Dae Jin Kim
- Departments of Psychiatry and College of Medicine, Catholic University, Bucheon 420-743, Korea
| | - Seong Su Lee
- Departments of Endocrinology, College of Medicine, Catholic University, Bucheon 420-743, Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Jihyun Song
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam 660-751, Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892
| | - Won-Ho Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea.
| |
Collapse
|
44
|
Khan YM, Kirkham P, Barnes PJ, Adcock IM. Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells. PLoS One 2014; 9:e95051. [PMID: 24759736 PMCID: PMC3997389 DOI: 10.1371/journal.pone.0095051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/23/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are key features of chronic obstructive pulmonary disease (COPD). Oxidative stress enhances COPD inflammation under the control of the pro-inflammatory redox-sensitive transcription factor nuclear factor-kappaB (NF-κB). Histone acetylation plays a critical role in chronic inflammation and bromodomain and extra terminal (BET) proteins act as "readers" of acetylated histones. Therefore, we examined the role of BET proteins in particular Brd2 and Brd4 and their inhibitors (JQ1 and PFI-1) in oxidative stress- enhanced inflammation in human bronchial epithelial cells. METHODS Human primary epithelial (NHBE) cells and BEAS-2B cell lines were stimulated with IL-1β (inflammatory stimulus) in the presence or absence of H2O2 (oxidative stress) and the effect of pre-treatment with bromodomain inhibitors (JQ1 and PFI-1) was investigated. Pro-inflammatory mediators (CXCL8 and IL-6) were measured by ELISA and transcripts by RT-PCR. H3 and H4 acetylation and recruitment of p65 and Brd4 to the native IL-8 and IL-6 promoters was investigated using chromatin immunoprecipitation (ChIP). The impact of Brd2 and Brd4 siRNA knockdown on inflammatory mediators was also investigated. RESULT H2O2 enhanced IL1β-induced IL-6 and CXCL8 expression in NHBE and BEAS-2B cells whereas H2O2 alone did not have any affect. H3 acetylation at the IL-6 and IL-8 promoters was associated with recruitment of p65 and Brd4 proteins. Although p65 acetylation was increased this was not directly targeted by Brd4. The BET inhibitors JQ1 and PFI-1 significantly reduced IL-6 and CXCL8 expression whereas no effect was seen with the inactive enantiomer JQ1(-). Brd4, but not Brd2, knockdown markedly reduced IL-6 and CXCL8 release. JQ1 also inhibited p65 and Brd4 recruitment to the IL-6 and IL-8 promoters. CONCLUSION Oxidative stress enhanced IL1β-induced IL-6 and CXCL8 expression was significantly reduced by Brd4 inhibition. Brd4 plays an important role in the regulation of inflammatory genes and provides a potential novel anti-inflammatory target.
Collapse
Affiliation(s)
- Younis M. Khan
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Kirkham
- School of Applied Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Peter J. Barnes
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M. Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Kim D, Ko P, You E, Rhee S. The intracellular juxtamembrane domain of discoidin domain receptor 2 (DDR2) is essential for receptor activation and DDR2-mediated cancer progression. Int J Cancer 2014; 135:2547-57. [PMID: 24740739 DOI: 10.1002/ijc.28901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/02/2014] [Indexed: 01/05/2023]
Abstract
Discoidin domain receptors (DDRs) are unusual receptor tyrosine kinases (RTKs) that are activated by fibrillar collagens instead of soluble growth factors. DDRs play an important role in various cellular functions and disease processes, including malignant progression. Compared to other RTKs, DDRs have relatively long juxtamembrane domains, which are believed to contribute to receptor function. Despite this possibility, the function and mechanism of the juxtamembrane domain of DDRs have not yet been fully elucidated. In this study, we found that the cytoplasmic juxtamembrane 2 (JM2) region of DDR2 contributed to receptor dimerization, which is critical for receptor activation in response to collagen stimulation. A collagen-binding assay showed that JM2 was required for efficient binding of collagen to the discoidin (DS) domain. Immunohistochemical analysis of DDR2 expression using a tissue microarray demonstrated that DDR2 was overexpressed in several carcinoma tissues, including bladder, testis, lung, kidney, prostate and stomach. In H1299 cells, inhibition of DDR2 activity by overexpressing the juxtamembrane domain containing JM2 suppressed collagen-induced colony formation, cell proliferation and invasion via the inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9. Taken together, our results suggest that JM2-mediated dimerization is likely to be essential for DDR2 activation and cancer progression. Thus, inhibition of DDR2 function using a JM2-containing peptide might be a useful strategy for the treatment of DDR2-positive cancers.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | | | | | | |
Collapse
|
46
|
Bhatt D, Ghosh S. Regulation of the NF-κB-Mediated Transcription of Inflammatory Genes. Front Immunol 2014; 5:71. [PMID: 24611065 PMCID: PMC3933792 DOI: 10.3389/fimmu.2014.00071] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
The NF-κB family of transcription factors plays a central role in the inducible expression of inflammatory genes during the immune response, and the proper regulation of these genes is a critical factor in the maintenance of immune homeostasis. The chromatin environment at stimulus-responsive NF-κB sites is a major determinant in transcription factor binding, and dynamic alteration of the chromatin state to facilitate transcription factor binding is a key regulatory mechanism. NF-κB is in turn able to influence the chromatin state through a variety of mechanisms, including the recruitment of chromatin modifying co-activator complexes such as p300, the competitive eviction of negative chromatin modifications, and the recruitment of components of the general transcriptional machinery. Frequently, the selective interaction with these co-activators is dependent on specific post-translational modification of NF-κB subunits. Finally, the mechanisms of inducible NF-κB activity in different immune cell types seem to be largely conserved. The diversity of cell-specific NF-κB-mediated transcriptional programs is established at the chromatin level during cell differentiation by lineage-defining transcription factors. These factors generate and maintain a cell-specific chromatin landscape that is accessible to NF-κB, thus restricting the inducible transcriptional response to a cell-appropriate output.
Collapse
Affiliation(s)
- Dev Bhatt
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| |
Collapse
|
47
|
Zhan Y, Wang Z, Yang P, Wang T, Xia L, Zhou M, Wang Y, Wang S, Hua Z, Zhang J. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Dis 2014; 5:e985. [PMID: 24407238 PMCID: PMC4040656 DOI: 10.1038/cddis.2013.516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 11/09/2022]
Abstract
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Collapse
Affiliation(s)
- Y Zhan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Wang
- East Hospital, Tongji University, Shanghai 200120, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Y Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Hua
- The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - J Zhang
- 1] Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China [2] The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
48
|
Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 2013; 19:654-60. [PMID: 24269836 DOI: 10.1016/j.drudis.2013.11.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/15/2013] [Accepted: 11/14/2013] [Indexed: 01/22/2023]
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) of cellular proteins and represents an important regulatory switch in signal transduction. Lysine acetylation, in combination with other PTMs, directs the outcomes as well as the activation levels of important signal transduction pathways such as the nuclear factor (NF)-κB pathway. Small molecule modulators of the 'writers' (HATs) and 'erasers' (HDACs) can regulate the NF-κB pathway in a specific manner. This review focuses on the effects of frequently used HAT and HDAC inhibitors on the NF-κB signal transduction pathway and inflammatory responses, and their potential as novel therapeutics.
Collapse
|
49
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
50
|
Witham J, Ouboussad L, Lefevre PF. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages. PLoS One 2013; 8:e59389. [PMID: 23533622 PMCID: PMC3606415 DOI: 10.1371/journal.pone.0059389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3′ end of the gene.
Collapse
Affiliation(s)
- James Witham
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Pascal F. Lefevre
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|