1
|
Morales-Laverde L, Trobos M, Echeverz M, Solano C, Lasa I. Functional analysis of intergenic regulatory regions of genes encoding surface adhesins in Staphylococcus aureus isolates from periprosthetic joint infections. Biofilm 2022; 4:100093. [PMID: 36408060 PMCID: PMC9667196 DOI: 10.1016/j.bioflm.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJI). Surface adhesins play an important role in the primary attachment to plasma proteins that coat the surface of prosthetic devices after implantation. Previous efforts to identify a genetic component of the bacterium that confers an enhanced capacity to cause PJI have focused on gene content, kmers, or single-nucleotide polymorphisms (SNPs) in coding sequences. Here, using a collection of S. aureus strains isolated from PJI and wounds, we investigated whether genetic variations in the regulatory region of genes encoding surface adhesins lead to differences in their expression levels and modulate the capacity of S. aureus to colonize implanted prosthetic devices. The data revealed that S. aureus isolates from the same clonal complex (CC) contain a specific pattern of SNPs in the regulatory region of genes encoding surface adhesins. As a consequence, each clonal lineage shows a specific profile of surface proteins expression. Co-infection experiments with representative isolates of the most prevalent CCs demonstrated that some lineages have a higher capacity to colonize implanted catheters in a murine infection model, which correlated with a greater ability to form a biofilm on coated surfaces with plasma proteins. Together, results indicate that differences in the expression level of surface adhesins may modulate the propensity of S. aureus strains to cause PJI. Given the high conservation of surface proteins among staphylococci, our work lays the framework for investigating how diversification at intergenic regulatory regions affects the capacity of S. aureus to colonize the surface of medical implants.
Collapse
|
2
|
Parreira P, Martins MCL. The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. Cell Surf 2021; 7:100048. [PMID: 33665520 PMCID: PMC7898176 DOI: 10.1016/j.tcsw.2021.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are the most eminent public health challenge of the 21st century. The primary step leading to infection is bacterial adhesion to the surface of host cells or medical devices, which is mediated by a multitude of molecular interactions. At the interface of life sciences and physics, last years advances in atomic force microscopy (AFM)-based force spectroscopy techniques have made possible to measure the forces driving bacteria-cell and bacteria-materials interactions on a single molecule/cell basis (single molecule/cell force spectroscopy). Among the bacteria-(bio)materials surface interactions, the life-threatening infections associated to medical devices involving Staphylococcus aureus and Escherichia coli are the most eminent. On the other hand, Pseudomonas aeruginosa binding to the pulmonary and urinary tract or the Helicobacter pylori binding to the gastric mucosa, are classical examples of bacteria-host cell interactions that end in serious infections. As we approach the end of the antibiotic era, acquisition of a deeper knowledge of the fundamental forces involved in bacteria - host cells/(bio)materials surface adhesion is crucial for the identification of new ligand-binding events and its assessment as novel targets for alternative anti-infective therapies. This article aims to highlight the potential of AFM-based force spectroscopy for new targeted therapies development against bacterial infections in which adhesion plays a pivotal role and does not aim to be an extensive overview on the AFM technical capabilities and theory of single molecule force spectroscopy.
Collapse
Affiliation(s)
- Paula Parreira
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - M. Cristina L. Martins
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
3
|
Casillas-Ituarte NN, Staats AM, Lower BH, Stoodley P, Lower SK. Host blood proteins as bridging ligand in bacterial aggregation as well as anchor point for adhesion in the molecular pathogenesis of Staphylococcus aureus infections. Micron 2021; 150:103137. [PMID: 34392091 PMCID: PMC8484042 DOI: 10.1016/j.micron.2021.103137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Fibronectin (Fn) and fibrinogen (Fg) are major host proteins present in the extracellular matrix, blood, and coatings on indwelling medical devices. The ability of Staphylococcus aureus to cause infections in humans depends on favorable interactions with these host ligands. Closely related bacterial adhesins, fibronectin-binding proteins A and B (FnBPA, FnBPB) were evaluated for two key steps in pathogenesis: clumping and adhesion. Experiments utilized optical spectrophotometry, flow cytometry, and atomic force microscopy to probe FnBPA/B alone or in combination in seven different strains of S. aureus and Lactococcus lactis, a Gram-positive surrogate that naturally lacks adhesins to mammalian ligands. In the absence of soluble ligands, both FnBPA and FnBPB were capable of interacting with adjacent FnBPs from neighboring bacteria to mediate clumping. In the presence of soluble host ligands, clumping was enhanced particularly under shear stress and with Fn present in the media. FnBPB exhibited greater ability to clump compared to FnBPA. The strength of adhesion was similar for immobilized Fn to FnBPA and FnBPB. These findings suggest that these two distinct but closely related bacterial adhesins, have different functional capabilities to interact with host ligands in different settings (e.g., soluble vs. immobilized). Survival and persistence of S. aureus in a human host may depend on complementary roles of FnBPA and FnBPB as they interact with different conformations of Fn or Fg (compact in solution vs. extended on a surface) present in different physiological spaces.
Collapse
Affiliation(s)
- Nadia N Casillas-Ituarte
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA; School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amelia M Staats
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA
| | - Brian H Lower
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA; Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven K Lower
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA; School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA; Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA
| |
Collapse
|
4
|
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol 2021; 23:e13324. [PMID: 33710716 DOI: 10.1111/cmi.13324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Dufrêne YF, Viljoen A. Binding Strength of Gram-Positive Bacterial Adhesins. Front Microbiol 2020; 11:1457. [PMID: 32670256 PMCID: PMC7330015 DOI: 10.3389/fmicb.2020.01457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens are equipped with specialized surface-exposed proteins that bind strongly to ligands on host tissues and biomaterials. These adhesins play critical roles during infection, especially during the early step of adhesion where the cells are exposed to physical stress. Recent single-molecule experiments have shown that staphylococci interact with their ligands through a wide diversity of mechanosensitive molecular mechanisms. Adhesin-ligand interactions are activated by tensile force and can be ten times stronger than classical non-covalent biological bonds. Overall these studies demonstrate that Gram-positive adhesins feature unusual stress-dependent molecular interactions, which play essential roles during bacterial colonization and dissemination. With an increasing prevalence of multidrug resistant infections caused by Staphylococcus aureus and Staphylococcus epidermidis, chemotherapeutic targeting of adhesins offers an innovative alternative to antibiotics.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Abstract
Microbial adhesion and biofilm formation are usually studied using molecular and cellular biology assays, optical and electron microscopy, or laminar flow chamber experiments. Today, atomic force microscopy (AFM) represents a valuable addition to these approaches, enabling the measurement of forces involved in microbial adhesion at the single-molecule level. In this minireview, we discuss recent discoveries made applying state-of-the-art AFM techniques to microbial specimens in order to understand the strength and dynamics of adhesive interactions. These studies shed new light on the molecular mechanisms of adhesion and demonstrate an intimate relationship between force and function in microbial adhesins.
Collapse
|
8
|
Viljoen A, Alsteens D, Dufrêne Y. Mechanical Forces between Mycobacterial Antigen 85 Complex and Fibronectin. Cells 2020; 9:cells9030716. [PMID: 32183296 PMCID: PMC7140604 DOI: 10.3390/cells9030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/27/2022] Open
Abstract
Adhesion to extracellular matrix proteins is an important first step in host invasion, employed by many bacterial pathogens. In mycobacteria, the secreted Ag85 complex proteins, involved in the synthesis of the cell envelope, are known to bind to fibronectin (Fn) through molecular forces that are currently unknown. In this study, single-molecule force spectroscopy is used to study the strength, kinetics and thermodynamics of the Ag85-Fn interaction, focusing on the multidrug-resistant Mycobacterium abscessus species. Single Ag85 proteins bind Fn with a strength of ~75 pN under moderate tensile loading, which compares well with the forces reported for other Fn-binding proteins. The binding specificity is demonstrated by using free Ag85 and Fn peptides with active binding sequences. The Ag85-Fn rupture force increases with mechanical stress (i.e., loading rate) according to the Friddle–Noy–de Yoreo theory. From this model, we extract thermodynamic parameters that are in good agreement with previous affinity determinations by surface plasmon resonance. Strong bonds (up to ~500 pN) are observed under high tensile loading, which may favor strong mycobacterial attachment in the lung where cells are exposed to high shear stress or during hematogenous spread which leads to a disseminated infection. Our results provide new insight into the pleiotropic functions of an important mycobacterial virulence factor that acts as a stress-sensitive adhesin.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
9
|
Viela F, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. What makes bacterial pathogens so sticky? Mol Microbiol 2020; 113:683-690. [PMID: 31916325 DOI: 10.1111/mmi.14448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Indexed: 01/06/2023]
Abstract
Pathogenic bacteria use a variety of cell surface adhesins to promote binding to host tissues and protein-coated biomaterials, as well as cell-cell aggregation. These cellular interactions represent the first essential step that leads to host colonization and infection. Atomic force microscopy (AFM) has greatly contributed to increase our understanding of the specific interactions at play during microbial adhesion, down to the single-molecule level. A key asset of AFM is that adhesive interactions are studied under mechanical force, which is highly relevant as surface-attached pathogens are often exposed to physical stresses in the human body. These studies have identified sophisticated binding mechanisms in adhesins, which represent promising new targets for antiadhesion therapy.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
10
|
Lo Giudice C, Dumitru AC, Alsteens D. Probing ligand-receptor bonds in physiologically relevant conditions using AFM. Anal Bioanal Chem 2019; 411:6549-6559. [PMID: 31410537 DOI: 10.1007/s00216-019-02077-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Cell surface receptors, often called transmembrane receptors, are key cellular components as they control and mediate cell communication and signalling, converting extracellular signals into intracellular signals. Elucidating the molecular details of ligand binding (cytokine, growth factors, hormones, pathogens,...) to cell surface receptors and how this binding triggers conformational changes that initiate intracellular signalling is needed to improve our understanding of cellular processes and for rational drug design. Unfortunately, the molecular complexity and high hydrophobicity of membrane proteins significantly hamper their structural and functional characterization in conditions mimicking their native environment. With its piconewton force sensitivity and (sub)nanometer spatial resolution, together with the capability of operating in liquid environment and at physiological temperature, atomic force microscopy (AFM) has proven to be one of the most powerful tools to image and quantify receptor-ligand bonds in situ under physiologically relevant conditions. In this article, a brief overview of the rapid evolution of AFM towards quantitative biological mapping will be given, followed by selected examples highlighting the main advances that AFM-based ligand-receptor studies have brought to the fields of cell biology, immunology, microbiology, and virology, along with future prospects and challenges. Graphical abstract.
Collapse
Affiliation(s)
- Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Fibrinogen binding is affected by amino acid substitutions in C-terminal repeat region of fibronectin binding protein A. Sci Rep 2019; 9:11619. [PMID: 31406152 PMCID: PMC6690874 DOI: 10.1038/s41598-019-48031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/29/2019] [Indexed: 11/14/2022] Open
Abstract
Fibronectin-binding protein A (FnBPA), a protein displayed on the outer surface of Staphylococcus aureus, has a structured A-domain that binds fibrinogen (Fg) and a disordered repeat-region that binds fibronectin (Fn). Amino acid substitutions in Fn-binding repeats (FnBRs) have previously been linked to cardiovascular infection in humans. Here we used microtiter and atomic force microscopy (AFM) to investigate adhesion by variants of full-length FnBPA covalently anchored in the outer cell wall of Lactococcus lactis, a Gram-positive surrogate that otherwise lacks adhesins to mammalian ligands. Fn adhesion increased in five of seven FnBPA variants under static conditions. The bond targeting Fn increased its strength with load under mechanical dissociation. Substitutions extended bond lifetime (1/koff) up to 2.1 times for FnBPA-Fn. Weaker adhesion was observed for Fg in all FnBPA variants tested with microtiter. However, mechanical dissociation with AFM showed significantly increased tensile strength for Fg interacting with the E652D/H782Q variant. This is consistent with a force-induced mechanism and suggests that the dock, lock, and latch (DLL) mechanism is favored for Fg-binding under mechanical stress. Collectively, these experiments reveal that FnBPA exhibits bimodal, ligand-dependent adhesive behavior. Amino acid substitutions in the repeat-region of FnBPA impact binding to both ligands. This was unexpected for Fg since all variants have the same A-domain sequence, and the Fg-binding site is distant from the repeat region. This indicates that FnBRs may fold back on the A-domain in a way that impacts the DLL binding mechanism for Fg.
Collapse
|
12
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
13
|
Prystopiuk V, Feuillie C, Herman-Bausier P, Viela F, Alsteens D, Pietrocola G, Speziale P, Dufrêne YF. Mechanical Forces Guiding Staphylococcus aureus Cellular Invasion. ACS NANO 2018; 12:3609-3622. [PMID: 29633832 DOI: 10.1021/acsnano.8b00716] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Staphylococcus aureus can invade various types of mammalian cells, thereby enabling it to evade host immune defenses and antibiotics. The current model for cellular invasion involves the interaction between the bacterial cell surface located fibronectin (Fn)-binding proteins (FnBPA and FnBPB) and the α5β1 integrin in the host cell membrane. While it is believed that the extracellular matrix protein Fn serves as a bridging molecule between FnBPs and integrins, the fundamental forces involved are not known. Using single-cell and single-molecule experiments, we unravel the molecular forces guiding S. aureus cellular invasion, focusing on the prototypical three-component FnBPA-Fn-integrin interaction. We show that FnBPA mediates bacterial adhesion to soluble Fn via strong forces (∼1500 pN), consistent with a high-affinity tandem β-zipper, and that the FnBPA-Fn complex further binds to immobilized α5β1 integrins with a strength much higher than that of the classical Fn-integrin bond (∼100 pN). The high mechanical stability of the Fn bridge favors an invasion model in which Fn binding by FnBPA leads to the exposure of cryptic integrin-binding sites via allosteric activation, which in turn engage in a strong interaction with integrins. This activation mechanism emphasizes the importance of protein mechanobiology in regulating bacterial-host adhesion. We also find that Fn-dependent adhesion between S. aureus and endothelial cells strengthens with time, suggesting that internalization occurs within a few minutes. Collectively, our results provide a molecular foundation for the ability of FnBPA to trigger host cell invasion by S. aureus and offer promising prospects for the development of therapeutic approaches against intracellular pathogens.
Collapse
Affiliation(s)
- Valeria Prystopiuk
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Cécile Feuillie
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - Felipe Viela
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | - David Alsteens
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
| | | | | | - Yves F Dufrêne
- Institute of Life Sciences , Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06 , B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , 4000 Liège , Belgium
| |
Collapse
|
14
|
Becke TD, Ness S, Gürster R, Schilling AF, di Guilmi AM, Sudhop S, Hilleringmann M, Clausen-Schaumann H. Single Molecule Force Spectroscopy Reveals Two-Domain Binding Mode of Pilus-1 Tip Protein RrgA of Streptococcus pneumoniae to Fibronectin. ACS NANO 2018; 12:549-558. [PMID: 29298375 DOI: 10.1021/acsnano.7b07247] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For host cell adhesion and invasion, surface piliation procures benefits for bacteria. A detailed investigation of how pili adhere to host cells is therefore a key aspect in understanding their role during infection. Streptococcus pneumoniae TIGR 4, a clinical relevant serotype 4 strain, is capable of expressing pilus-1 with terminal RrgA, an adhesin interacting with host extracellular matrix (ECM) proteins. We used single molecule force spectroscopy to investigate the binding of full-length RrgA and single RrgA domains to fibronectin. Our results show that full-length RrgA and its terminal domains D3 and D4 bind to fibronectin with forces of 51.6 (full length), 52.8 (D3), and 46.2 pN (D4) at force-loading rates of around 1500 pN/s. Selective saturation of D3 and D4 binding sites on fibronectin showed that both domains can interact simultaneously with fibronectin, revealing a two-domain binding mechanism for the pilus-1 tip protein. The high off rates and the corresponding short lifetime of the RrgA Fn bond (τ = 0.26 s) may enable piliated pneumococci to form and maintain a transient contact to fibronectin-containing host surfaces and thus to efficiently scan the surface for specific receptors promoting host cell adhesion and invasion. These molecular properties could be essential for S. pneumoniae pili to mediate initial contact to the host cells and-shared with other piliated Gram-positive bacteria-favor host invasion.
Collapse
Affiliation(s)
- Tanja D Becke
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München , 81675 Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | | | | | - Arndt F Schilling
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München , 81675 Munich, Germany
- Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, University Medical Center Göttingen , 37075 Göttingen, Germany
| | | | - Stefanie Sudhop
- Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | | | | |
Collapse
|
15
|
Casillas-Ituarte NN, Cruz CHB, Lins RD, DiBartola AC, Howard J, Liang X, Höök M, Viana IFT, Sierra-Hernández MR, Lower SK. Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation. J Biol Chem 2017; 292:8797-8810. [PMID: 28400484 DOI: 10.1074/jbc.m117.786012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/08/2017] [Indexed: 11/06/2022] Open
Abstract
The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/koff) and dissociation constants (Kd = koff/kon), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 μm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 μm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I (Kdapp = 0.2-0.5 μm, as determined by SPR) compared with the lowest-affinity double-alanine peptide (Kdapp = 3.8 μm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections.
Collapse
Affiliation(s)
| | - Carlos H B Cruz
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | - Roberto D Lins
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | | | | | - Xiaowen Liang
- the Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Magnus Höök
- the Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Isabelle F T Viana
- the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50.740-465, Brazil, and
| | | | | |
Collapse
|
16
|
Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 2016; 6:33909. [PMID: 27652888 PMCID: PMC5031991 DOI: 10.1038/srep33909] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.
Collapse
|
17
|
Hymes JP, Klaenhammer TR. Stuck in the Middle: Fibronectin-Binding Proteins in Gram-Positive Bacteria. Front Microbiol 2016; 7:1504. [PMID: 27713740 PMCID: PMC5031765 DOI: 10.3389/fmicb.2016.01504] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
Fibronectin is a multidomain glycoprotein found ubiquitously in human body fluids and extracellular matrices of a variety of cell types from all human tissues and organs, including intestinal epithelial cells. Fibronectin plays a major role in the regulation of cell migration, tissue repair, and cell adhesion. Importantly, fibronectin also serves as a common target for bacterial adhesins in the gastrointestinal tract. Fibronectin-binding proteins (FnBPs) have been identified and characterized in a wide variety of host-associated bacteria. Single bacterial species can contain multiple, diverse FnBPs. In pathogens, some FnBPs contribute to virulence via host cell attachment, invasion, and interference with signaling pathways. Although FnBPs in commensal and probiotic strains are not sufficient to confer virulence, they are essential for attachment to their ecological niches. Here we describe the interaction between human fibronectin and bacterial adhesins by highlighting the FnBPs of Gram-positive pathogens and commensals. We provide an overview of the occurrence and diversity of FnBPs with a focus on the model pathogenic organisms in which FnBPs are most characterized. Continued investigation of FnBPs is needed to fully understand their divergence and specificity in both pathogens and commensals.
Collapse
Affiliation(s)
- Jeffrey P Hymes
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
| | - Todd R Klaenhammer
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
18
|
Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A 2015; 113:410-5. [PMID: 26715750 DOI: 10.1073/pnas.1519265113] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.
Collapse
|
19
|
Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF. Forces guiding staphylococcal adhesion. J Struct Biol 2015; 197:65-69. [PMID: 26707623 DOI: 10.1016/j.jsb.2015.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are two important nosocomial pathogens that form biofilms on indwelling medical devices. Biofilm infections are difficult to fight as cells within the biofilm show increased resistance to antibiotics. Our understanding of the molecular interactions driving bacterial adhesion, the first stage of biofilm formation, has long been hampered by the paucity of appropriate force-measuring techniques. In this minireview, we discuss how atomic force microscopy techniques have enabled to shed light on the molecular forces at play during staphylococcal adhesion. Specific highlights include the study of the binding mechanisms of adhesion molecules by means of single-molecule force spectroscopy, the measurement of the forces involved in whole cell interactions using single-cell force spectroscopy, and the probing of the nanobiophysical properties of living bacteria via multiparametric imaging. Collectively, these findings emphasize the notion that force and function are tightly connected in staphylococcal adhesion.
Collapse
Affiliation(s)
- Philippe Herman-Bausier
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium.
| |
Collapse
|
20
|
Eichenberger EM, Thaden JT, Sharma-Kuinkel B, Park LP, Rude TH, Ruffin F, Hos NJ, Seifert H, Rieg S, Kern WV, Lower SK, Fowler VG, Kaasch AJ. Polymorphisms in Fibronectin Binding Proteins A and B among Staphylococcus aureus Bloodstream Isolates Are Not Associated with Arthroplasty Infection. PLoS One 2015; 10:e0141436. [PMID: 26606522 PMCID: PMC4659655 DOI: 10.1371/journal.pone.0141436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 10/08/2015] [Indexed: 11/30/2022] Open
Abstract
Background Nonsynonymous single nucleotide polymorphisms (SNPs) in fibronectin binding protein A (fnbA) of Staphylococcus aureus are associated with cardiac device infections. However, the role of fnbA SNPs in S. aureus arthroplasty infection is unknown. Methods Bloodstream S. aureus isolates from a derivation cohort of patients at a single U.S. medical center with S. aureus bacteremia (SAB) and prosthetic hip or knee arthroplasties that were infected (PJI, n = 27) or uninfected (PJU, n = 43) underwent sequencing of fnbA and fnbB. A validation cohort of S. aureus bloodstream PJI (n = 12) and PJU (n = 58) isolates from Germany also underwent fnbA and fnbB sequencing. Results Overall, none of the individual fnbA or fnbB SNPs were significantly associated with the PJI or PJU clinical groups within the derivation cohort. Similarly, none of the individual fnbA or fnbB SNPs were associated with PJI or PJU when the analysis was restricted to patients with either early SAB (i.e., bacteremia occurring <1 year after placement or manipulation of prostheses) or late SAB (i.e., bacteremia >1 year after placement or manipulation of prostheses). Conclusions In contrast to cardiac device infections, there is no association between nonsynonymous SNPs in fnbA or fnbB of bloodstream S. aureus isolates and arthroplasty infection. These results suggest that initial steps leading to S. aureus infection of cardiovascular and orthopedic prostheses may arise by distinct processes.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Bacteremia/microbiology
- Biofilms
- Female
- Gene Expression
- Genetic Association Studies
- Humans
- Male
- Middle Aged
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Prosthesis-Related Infections/microbiology
- Sequence Analysis, DNA
- Staphylococcal Infections/microbiology
- Staphylococcus aureus/genetics
- Staphylococcus aureus/isolation & purification
- Young Adult
Collapse
Affiliation(s)
- Emily M. Eichenberger
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Joshua T. Thaden
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Batu Sharma-Kuinkel
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Lawrence P. Park
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States of America
| | - Thomas H. Rude
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Felicia Ruffin
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Nina J. Hos
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Winfried V. Kern
- Division of Infectious Diseases, Department of Medicine II, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Steven K. Lower
- Division of Natural and Mathematical Sciences, Ohio State University, Columbus, OH 43210, United States of America
| | - Vance G. Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
- * E-mail:
| | - Achim J. Kaasch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| |
Collapse
|
21
|
Endovascular infections caused by methicillin-resistant Staphylococcus aureus are linked to clonal complex-specific alterations in binding and invasion domains of fibronectin-binding protein A as well as the occurrence of fnbB. Infect Immun 2015; 83:4772-80. [PMID: 26416903 DOI: 10.1128/iai.01074-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022] Open
Abstract
Endovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and foster initiation of disease, and (ii) CC45-like FnBPs promote cell invasion, a key attribute in persistent endovascular infections.
Collapse
|
22
|
Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds. mBio 2015; 6:e00413-15. [PMID: 26015495 PMCID: PMC4447249 DOI: 10.1128/mbio.00413-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet established. Here, we use single-cell and single-molecule atomic force microscopy to unravel the mechanism by which FnBPA mediates intercellular adhesion. We show that FnBPA is responsible for specific cell-cell interactions that involve the FnBPA A domain and cause microscale cell aggregation. We demonstrate that the strength of FnBPA-mediated adhesion originates from multiple low-affinity homophilic interactions between FnBPA A domains on neighboring cells. Low-affinity binding by means of FnBPA may be important for biofilm dynamics. These results provide a molecular basis for the ability of FnBPA to promote cell accumulation during S. aureus biofilm formation. We speculate that homophilic interactions may represent a generic strategy among staphylococcal cell surface proteins for guiding intercellular adhesion. As biofilm formation by MRSA strains depends on proteins rather than polysaccharides, our approach offers exciting prospects for the design of drugs or vaccines to inhibit protein-dependent intercellular interactions in MRSA biofilms. IMPORTANCE Staphylococcus aureus is a human pathogen that forms biofilms on indwelling medical devices, such as central venous catheters and prosthetic joints. This leads to biofilm infections that are difficult to treat with antibiotics because many cells within the biofilm matrix are dormant. The fibronectin-binding proteins (FnBPs) FnBPA and FnBPB promote biofilm formation by clinically relevant methicillin-resistant S. aureus (MRSA) strains, but the molecular mechanisms involved remain poorly understood. We used atomic force microscopy techniques to demonstrate that FnBPA mediates cell-cell adhesion via multiple, low-affinity homophilic bonds between FnBPA A domains on adjacent cells. Therefore, FnBP-mediated homophilic interactions represent an interesting target to prevent MRSA biofilms. We propose that such homophilic mechanisms may be widespread among staphylococcal cell surface proteins, providing a means to guide intercellular adhesion and biofilm accumulation.
Collapse
|
23
|
Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBio 2014; 5:e01363-14. [PMID: 25053785 PMCID: PMC4120197 DOI: 10.1128/mbio.01363-14] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights.
Collapse
|
24
|
Herman P, El-Kirat-Chatel S, Beaussart A, Geoghegan JA, Foster TJ, Dufrêne YF. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol Microbiol 2014; 93:356-68. [PMID: 24898289 DOI: 10.1111/mmi.12663] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/27/2022]
Abstract
SdrG is a cell surface adhesin from Staphylococcus epidermidis which binds to the blood plasma protein fibrinogen (Fg). Ligand binding follows a 'dock, lock and latch' model involving dynamic conformational changes of the adhesin that result in a greatly stabilized adhesin-ligand complex. To date, the force and dynamics of this multistep interaction are poorly understood. Here we use atomic force microscopy (AFM) to unravel the binding strength and cell surface localization of SdrG at molecular resolution. Single-cell force spectroscopy shows that SdrG mediates time-dependent attachment to Fg-coated surfaces. Single-molecule force spectroscopy with Fg-coated AFM tips demonstrates that the adhesin forms nanoscale domains on the cell surface, which we believe contribute to strengthen cell adhesion. Notably, we find that the rupture force of single SdrG-Fg bonds is very large, ∼ 2 nN, equivalent to the strength of a covalent bond, and shows a low dissociation rate, suggesting that the bond is very stable. The strong binding force, slow dissociation and clustering of SdrG provide a molecular foundation for the ability of S. epidermidis to colonize implanted biomaterials and to withstand physiological shear forces.
Collapse
Affiliation(s)
- Philippe Herman
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Taylor ES, Wylie AG, Mossman BT, Lower SK. Repetitive dissociation from crocidolite asbestos acts as persistent signal for epidermal growth factor receptor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6323-6330. [PMID: 23672436 DOI: 10.1021/la400561t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mesothelioma is an incurable form of cancer located most commonly in the pleural lining of the lungs and is associated almost exclusively with the inhalation of asbestos. The binding of asbestos to epidermal growth factor receptor (EGFR), a transmembrane signal protein, has been proposed as a trigger for downstream signaling of kinases and expression of genes involved in cell proliferation and inhibition of apoptosis. Here, we investigate the molecular binding of EGFR to crocidolite (blue asbestos; Na2(Fe(2+),Mg)3Fe2(3+)Si8O22(OH)2) in buffer solution. Atomic force microscopy measurements revealed an attractive force of interaction (i.e., bond) as EGFR was pulled from contact with long fibers of crocidolite. The rupture force of this bond increased with loading rate. According to the Bell model, the off-rate of bond dissociation (k(off)) for EGFR was 22 s(-1). Similar experiments with riebeckite crystals, the nonasbestiform variety of crocidolite, yielded a k(off) of 8 s(-1). These k(off) values on crocidolite and riebeckite are very rapid compared to published values for natural agonists of EGFR like transforming growth factor and epidermal growth factor. This suggests binding of EGFR to the surfaces of these minerals could elicit a response that is more potent than biological hormone or cytokine ligands. Signal transduction may cease for endogenous ligands due to endocytosis and subsequent degradation, and even riebeckite particles can be cleared from the lungs due to their short, equant habit. However, the fibrous habit of crocidolite leads to lifelong persistence in the lungs where aberrant, repetitious binding with EGFR may continually trigger the activation switch leading to chronic expression of genes involved in oncogenesis.
Collapse
Affiliation(s)
- Eric S Taylor
- Kent State University at Stark, 6000 Frank Ave NW, North Canton, Ohio 44720, USA.
| | | | | | | |
Collapse
|
26
|
Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 2013; 28:250-66. [PMID: 23413785 DOI: 10.1111/omi.12022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
Abstract
The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.
Collapse
Affiliation(s)
- C E Jauregui
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
27
|
Mrak LN, Zielinska AK, Beenken KE, Mrak IN, Atwood DN, Griffin LM, Lee CY, Smeltzer MS. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. PLoS One 2012; 7:e38453. [PMID: 22685571 PMCID: PMC3369899 DOI: 10.1371/journal.pone.0038453] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/05/2012] [Indexed: 11/19/2022] Open
Abstract
Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level.
Collapse
Affiliation(s)
- Lara N. Mrak
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Agnieszka K. Zielinska
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ian N. Mrak
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Danielle N. Atwood
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Linda M. Griffin
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Chia Y. Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|