1
|
Feng R, Lan J, Goh MC, Du M, Chen Z. Advances in the application of gas vesicles in medical imaging and disease treatment. J Biol Eng 2024; 18:41. [PMID: 39044273 PMCID: PMC11267810 DOI: 10.1186/s13036-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 07/25/2024] Open
Abstract
The gas vesicle (GV) is like a hollow nanoparticle consisting of an internal gas and a protein shell, which mainly consists of hydrophobic gas vesicle protein A (GvpA) and GvpC attached to the surface. GVs, first discovered in cyanobacteria, are mainly produced by photosynthetic bacteria (PSB) and halophilic archaea. After being modified and engineered, GVs can be utilized as contrast agents, delivery carriers, and immunological boosters for disease prevention, diagnosis, and treatment with good results due to their tiny size, strong stability and non-toxicity advantages. Many diagnostic and therapeutic approaches based on GV are currently under development. In this review, we discuss the source, function, physical and chemical properties of GV, focus on the current application progress of GV, and put forward the possible application prospect and development direction of GV in the future.
Collapse
Affiliation(s)
- Renjie Feng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jie Lan
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meei Chyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Nitschke W, Farr O, Gaudu N, Truong C, Guyot F, Russell MJ, Duval S. The Winding Road from Origin to Emergence (of Life). Life (Basel) 2024; 14:607. [PMID: 38792628 PMCID: PMC11123232 DOI: 10.3390/life14050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Humanity's strive to understand why and how life appeared on planet Earth dates back to prehistoric times. At the beginning of the 19th century, empirical biology started to tackle this question yielding both Charles Darwin's Theory of Evolution and the paradigm that the crucial trigger putting life on its tracks was the appearance of organic molecules. In parallel to these developments in the biological sciences, physics and physical chemistry saw the fundamental laws of thermodynamics being unraveled. Towards the end of the 19th century and during the first half of the 20th century, the tensions between thermodynamics and the "organic-molecules-paradigm" became increasingly difficult to ignore, culminating in Erwin Schrödinger's 1944 formulation of a thermodynamics-compliant vision of life and, consequently, the prerequisites for its appearance. We will first review the major milestones over the last 200 years in the biological and the physical sciences, relevant to making sense of life and its origins and then discuss the more recent reappraisal of the relative importance of metal ions vs. organic molecules in performing the essential processes of a living cell. Based on this reassessment and the modern understanding of biological free energy conversion (aka bioenergetics), we consider that scenarios wherein life emerges from an abiotic chemiosmotic process are both thermodynamics-compliant and the most parsimonious proposed so far.
Collapse
Affiliation(s)
- Wolfgang Nitschke
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - Orion Farr
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
- CINaM, CNRS, Aix-Marseille-University, 13009 Marseille, France
| | - Nil Gaudu
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - Chloé Truong
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| | - François Guyot
- IMPMC (UMR 7590), CNRS, Sorbonne University, 75005 Paris, France;
| | - Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, 10124 Torino, Italy;
| | - Simon Duval
- BIP (UMR 7281), CNRS, Aix-Marseille-University, 13009 Marseille, France; (O.F.); (N.G.); (C.T.); (S.D.)
| |
Collapse
|
3
|
Huber ST, Jakobi AJ. Structural biology of microbial gas vesicles: historical milestones and current knowledge. Biochem Soc Trans 2024; 52:205-215. [PMID: 38329160 PMCID: PMC10903477 DOI: 10.1042/bst20230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Gas vesicles mediate buoyancy-based motility in aquatic bacteria and archaea and are the only protein-based structures known to enclose a gas-filled volume. Their unique physicochemical properties and ingenious architecture rank them among the most intriguing macromolecular assemblies characterised to date. This review covers the 60-year journey in quest for a high-resolution structural model of gas vesicles, first highlighting significant strides made in establishing the detailed ultrastructure of gas vesicles through transmission electron microscopy, X-ray fibre diffraction, atomic force microscopy, and NMR spectroscopy. We then survey the recent progress in cryogenic electron microscopy studies of gas vesicles, which eventually led to a comprehensive atomic model of the mature assembly. Synthesising insight from these structures, we examine possible mechanisms of gas vesicle biogenesis and growth, presenting a testable model to guide future experimental work. We conclude by discussing future directions in the structural biology of gas vesicles, particularly considering advancements in AI-driven structure prediction.
Collapse
Affiliation(s)
- Stefan T. Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Arjen J. Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Herzfeld J. Adventures in interdisciplinary science: a half century at the nexus between chemistry, physics and biology. Phys Chem Chem Phys 2024; 26:6483-6489. [PMID: 38345336 DOI: 10.1039/d4cp90021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A look back over five decades of research.
Collapse
Affiliation(s)
- Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
5
|
Huber ST, Terwiel D, Evers WH, Maresca D, Jakobi AJ. Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell 2023; 186:975-986.e13. [PMID: 36868215 PMCID: PMC9994262 DOI: 10.1016/j.cell.2023.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Å cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.
Collapse
Affiliation(s)
- Stefan T Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft 2628CD, the Netherlands.
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands.
| |
Collapse
|
6
|
Zhao TY, Dunbar M, Keten S, Patankar NA. The buckling-condensation mechanism driving gas vesicle collapse. SOFT MATTER 2023; 19:1174-1185. [PMID: 36651808 DOI: 10.1039/d2sm00493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gas vesicles (GVs) are proteinaceous cylindrical shells found within bacteria or archea growing in aqueous environments and are composed primarily of two proteins, gas vesicle protein A and C (GvpA and GvpC). GVs exhibit strong performance as next-generation ultrasound contrast agents due to their gas-filled interior, tunable collapse pressure, stability in vivo and functionalizable exterior. However, the exact mechanism leading to GV collapse remains inconclusive, which leads to difficulty in predicting collapse pressures for different species of GVs and in extending favorable nonlinear response regimes. Here, we propose a two stage mechanism leading to GV loss of echogenicity and rupture under hydrostatic pressure: elastic buckling of the cylindrical shell coupled with condensation driven weakening of the GV membrane. Our goal is to therefore test whether the final fracture of the GV membrane occurs by the interplay of both mechanisms or purely through buckling failure as previously believed. To do so, we (1) compare the theoretical condensation and buckling pressures with that for experimental GV collapse and (2) describe how condensation can lead to plastic buckling failure. GV shell properties that are necessary input to this theoretical description, such as the elastic moduli and wettability of GvpA, are determined using molecular dynamics simulations of a novel structural model of GvpA that better represents the hydrophobic core. For GVs that are not reinforced by GvpC, this analytical framework shows that the experimentally observed pressures resulting in loss of echogenicity coincide with both the elastic buckling and condensation pressure regimes. We also found that the stress strain curve for GvpA wetted on both the interior and exterior exhibits a loss of mechanical stability compared to GvpA only wetted on the exterior by the bulk solution. We identify a pressure vs. vesicle size regime where condensation can occur prior to buckling, which may preclude nonlinear shell buckling responses in contrast imaging.
Collapse
Affiliation(s)
- Tom Y Zhao
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Martha Dunbar
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Neelesh A Patankar
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| |
Collapse
|
7
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
8
|
Jost A, Pfeifer F. Interaction of the gas vesicle proteins GvpA, GvpC, GvpN, and GvpO of Halobacterium salinarum. Front Microbiol 2022; 13:971917. [PMID: 35966690 PMCID: PMC9372576 DOI: 10.3389/fmicb.2022.971917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
|
9
|
Paschold A, Voigt B, Hause G, Kohlmann T, Rothemund S, Binder WH. Modulating the Fibrillization of Parathyroid-Hormone (PTH) Peptides: Azo-Switches as Reversible and Catalytic Entities. Biomedicines 2022; 10:biomedicines10071512. [PMID: 35884817 PMCID: PMC9313110 DOI: 10.3390/biomedicines10071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
We here report a novel strategy to control the bioavailability of the fibrillizing parathyroid hormone (PTH)-derived peptides, where the concentration of the bioactive form is controlled by an reversible, photoswitchable peptide. PTH1–84, a human hormone secreted by the parathyroid glands, is important for the maintenance of extracellular fluid calcium and phosphorus homeostasis. Controlling fibrillization of PTH1–84 represents an important approach for in vivo applications, in view of the pharmaceutical applications for this protein. We embed the azobenzene derivate 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (3,4′-AMPB) into the PTH-derived peptide PTH25–37 to generate the artificial peptide AzoPTH25–37 via solid-phase synthesis. AzoPTH25–37 shows excellent photostability (more than 20 h in the dark) and can be reversibly photoswitched between its cis/trans forms. As investigated by ThT-monitored fibrillization assays, the trans-form of AzoPTH25–37 fibrillizes similar to PTH25–37, while the cis-form of AzoPTH25–37 generates only amorphous aggregates. Additionally, cis-AzoPTH25–37 catalytically inhibits the fibrillization of PTH25–37 in ratios of up to one-fifth. The approach reported here is designed to control the concentration of PTH-peptides, where the bioactive form can be catalytically controlled by an added photoswitchable peptide.
Collapse
Affiliation(s)
- André Paschold
- Department of Chemistry, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.P.); (T.K.)
| | - Bruno Voigt
- Department of Physics, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Gerd Hause
- Biozentrum, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Tim Kohlmann
- Department of Chemistry, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.P.); (T.K.)
| | - Sven Rothemund
- Core Unit Peptide—Technologies, University Leipzig, 04103 Leipzig, Germany;
| | - Wolfgang H. Binder
- Department of Chemistry, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.P.); (T.K.)
- Correspondence:
| |
Collapse
|
10
|
Jung H, Ling H, Tan YQ, Chua NH, Yew WS, Chang MW. Heterologous expression of cyanobacterial gas vesicle proteins in Saccharomyces cerevisiae. Biotechnol J 2021; 16:e2100059. [PMID: 34499423 DOI: 10.1002/biot.202100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.
Collapse
Affiliation(s)
- Harin Jung
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Yong Quan Tan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore.,Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
12
|
Levkovich SA, Gazit E, Laor Bar-Yosef D. Two Decades of Studying Functional Amyloids in Microorganisms. Trends Microbiol 2020; 29:251-265. [PMID: 33041179 DOI: 10.1016/j.tim.2020.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
In the past two decades, amyloids, typically associated with human diseases, have been described to play various functional roles in nearly all life forms. The structural and functional diversity of microbial 'functional amyloids' has dramatically increased in recent years, expanding the canonical definition of these assembled molecules. Here, we provide a broad review of the current understanding of microbial functional amyloids and their diverse roles, putting the spotlight on recent discoveries in the field. We discuss their functions as structural scaffolds, surface-tension modulators, adhesion molecules, cell-cycle and gametogenesis regulators, toxins, and mediators of host-pathogen interactions. We outline how noncanonical amyloid morphologies and sophisticated regulatory mechanisms underlie their functional diversity and emphasize their therapeutic and biotechnological implications and applications.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Duval S, Baymann F, Schoepp-Cothenet B, Trolard F, Bourrié G, Grauby O, Branscomb E, Russell MJ, Nitschke W. Fougerite: the not so simple progenitor of the first cells. Interface Focus 2019; 9:20190063. [PMID: 31641434 DOI: 10.1098/rsfs.2019.0063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
We here review the extraordinary mineralogical properties of green rusts and their naturally occurring form, fougerite, and discuss the pertinence of these properties within the alkaline hydrothermal vent (AHV) hypothesis for life's emergence. We put forward an extended version of the AHV scenario which enhances the conformity between extant life and its earliest progenitor by extensively making use of fougerite's mechanistic and catalytic particularities.
Collapse
Affiliation(s)
- Simon Duval
- Aix Marseille Université, CNRS, BIP (UMR 7281), Marseille, France
| | - Frauke Baymann
- Aix Marseille Université, CNRS, BIP (UMR 7281), Marseille, France
| | | | | | | | - Olivier Grauby
- Aix Marseille Université, CINaM (UMR 7325), Luminy, France
| | - Elbert Branscomb
- Carl R. Woese Institute for Genomic Biology, and Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
14
|
Chen M, Tian LL, Ren CY, Xu CY, Wang YY, Li L. Extracellular polysaccharide synthesis in a bloom-forming strain of Microcystis aeruginosa: implications for colonization and buoyancy. Sci Rep 2019; 9:1251. [PMID: 30718739 PMCID: PMC6362013 DOI: 10.1038/s41598-018-37398-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Microcystis, the dominant species among cyanobacterial blooms, normally forms colonies under natural conditions but exists as single cells or paired cells in axenic laboratory cultures after long-term cultivation. Here, a bloom-forming Microcystis aeruginosa strain CHAOHU 1326 was studied because it presents a colonial morphology and grows on the water surface during axenic laboratory culturing. We first examined the morphological features of strain CHAOHU 1326 and three other unicellular M. aeruginosa strains FACHB-925, FACHB-940, and FACHB-975 cultured under the same conditions by scanning and transmission electron microscopy. Then, we compared the extracellular polysaccharide (EPS)-producing ability of colonial strain CHAOHU 1326 to that of the three unicellular M. aeruginosa strains, and found that strain CHAOHU 1326 produced a higher amount of EPS than the other strains during growth. Moreover, based on genome sequencing, multiple gene clusters implicated in EPS biosynthesis and a cluster of 12 genes predicted to be involved in gas vesicle synthesis in strain CHAOHU 1326 were detected. These predicted genes were all functional and expressed in M. aeruginosa CHAOHU 1326 as determined by reverse transcription PCR. These findings provide a physiological and genetic basis to better understand colony formation and buoyancy control during M. aeruginosa blooming.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li-Li Tian
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chong-Yang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chun-Yang Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yi-Ying Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
15
|
Emerging Paradigms for Synthetic Design of Functional Amyloids. J Mol Biol 2018; 430:3720-3734. [DOI: 10.1016/j.jmb.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
|
16
|
Knitsch R, Schneefeld M, Weitzel K, Pfeifer F. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii. Mol Microbiol 2017; 106:530-542. [PMID: 28898511 DOI: 10.1111/mmi.13833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/28/2022]
Abstract
Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac+ phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac- transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac- transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac- transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR.
Collapse
Affiliation(s)
- Regine Knitsch
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Marie Schneefeld
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Kerstin Weitzel
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
17
|
Andar AU, Karan R, Pecher WT, DasSarma P, Hedrich WD, Stinchcomb AL, DasSarma S. Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm 2017; 14:953-958. [PMID: 28068767 DOI: 10.1021/acs.molpharmaceut.6b00859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas vesicle nanoparticles (GVNPs) are hollow, buoyant protein organelles produced by the extremophilic microbe Halobacterium sp. NRC-1 and are being developed as bioengineerable and biocompatible antigen and drug-delivery systems (DDS). Dynamic light scattering measurements of purified GVNP suspensions showed a mean diameter of 245 nm. In vitro diffusion studies using Yucatan miniature pig skin showed GVNP permeation to be enhanced after MN-treatment compared to untreated skin. GVNPs were found to be nontoxic to mammalian cells (human kidney and rat mycocardial myoblasts). These findings support the use of GVNPs as DDS for intradermal/transdermal permeation of protein- and peptide-based drugs.
Collapse
Affiliation(s)
- Abhay U Andar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Ram Karan
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - Wolf T Pecher
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States.,Yale Gordon College of Arts and Sciences, University of Baltimore , Baltimore, Maryland 21201, United States
| | - Priya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| |
Collapse
|
18
|
Lu JX, Bayro MJ, Tycko R. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments. J Biol Chem 2016; 291:13098-112. [PMID: 27129282 DOI: 10.1074/jbc.m116.720557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing.
Collapse
Affiliation(s)
- Jun-Xia Lu
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Marvin J Bayro
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Robert Tycko
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
19
|
DasSarma S, DasSarma P. Gas Vesicle Nanoparticles for Antigen Display. Vaccines (Basel) 2015; 3:686-702. [PMID: 26350601 PMCID: PMC4586473 DOI: 10.3390/vaccines3030686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
20
|
Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G, Vad BS, Bøggild A, Otzen DE, Nielsen PH. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids. J Biol Chem 2015; 290:20590-600. [PMID: 26109065 DOI: 10.1074/jbc.m115.654780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 11/06/2022] Open
Abstract
Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.
Collapse
Affiliation(s)
- Morten S Dueholm
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark
| | - Poul Larsen
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark
| | | | - Marcel R Stenvang
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | | | - Brian S Vad
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | | | - Daniel E Otzen
- the Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN), the Department of Molecular Biology and Genetics, and
| | - Per Halkjær Nielsen
- From the Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark,
| |
Collapse
|
21
|
McGlinchey RP, Jiang Z, Lee JC. Molecular origin of pH-dependent fibril formation of a functional amyloid. Chembiochem 2014; 15:1569-72. [PMID: 24954152 PMCID: PMC4142984 DOI: 10.1002/cbic.201402074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/08/2022]
Abstract
Fibrils derived from Pmel17 are functional amyloids upon which melanin is deposited. Fibrils of the repeat domain (RPT) of Pmel17 form under strict melanosomal pH (4.5-5.5) and completely dissolve at pH≥6. To determine which Glu residue is responsible for this reversibility, aggregation of single, double, and quadruple Ala and Gln mutants were examined by intrinsic Trp fluorescence, circular dichroism spectroscopy, and transmission electron microscopy. Charge neutralization of E404, E422, E425, or E430, which are located in the putative amyloid-forming region, modulated aggregation kinetics. Remarkably, the removal of a single negative charge at E422, one of 16 carboxylic acids, shifted the pH dependence by a full pH unit. Mutation at E404, E425, or E430 had little to no effect. We suggest that protonation at E422 is essential for initiating amyloid formation and that the other Glu residues play an allosteric role in fibril stability.
Collapse
Affiliation(s)
- Ryan P. McGlinchey
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - Zhiping Jiang
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 (USA)
| | - Jennifer C. Lee
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 (USA)
| |
Collapse
|
22
|
Bayro MJ, Chen B, Yau WM, Tycko R. Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. J Mol Biol 2013; 426:1109-27. [PMID: 24370930 DOI: 10.1016/j.jmb.2013.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent (15)N and (13)C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide (1)H nuclei, and quantitative measurements of site-specific (15)N-(15)N dipole-dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD-CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD-CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD-CTD dimerization interfaces are less significant.
Collapse
Affiliation(s)
- Marvin J Bayro
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Bo Chen
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
23
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
24
|
Daviso E, Belenky M, Griffin RG, Herzfeld J. Gas vesicles across kingdoms: a comparative solid-state nuclear magnetic resonance study. J Mol Microbiol Biotechnol 2013; 23:281-9. [PMID: 23920491 DOI: 10.1159/000351340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The buoyancy organelles of aquatic microorganisms have to meet stringent specifications: allowing gases to equilibrate freely across the proteinaceous shell, preventing the condensation of water vapor inside the hollow cavity and resisting collapse under hydrostatic pressures that vary with column depth. These properties are provided by the 7- to 8-kDa gas vesicle protein A (GvpA), repeats of which form all but small, specialized portions of the shell. Magic angle spinning nuclear magnetic resonance is uniquely capable of providing high-resolution information on the fold and assembly of GvpA. Here we compare results for the gas vesicles of the haloarchaea Halobacterium salinarum with those obtained previously for the cyanobacterium Anabaena flos-aquae. The data suggest that the two organisms follow similar strategies for avoiding water condensation. On the other hand, in its relatively shallow habitat, H. salinarum is able to avoid collapse with a less costly GvpA fold than is adopted by A. flos-aquae.
Collapse
Affiliation(s)
- Eugenio Daviso
- Department of Chemistry, Brandeis University, Waltham, Mass. 02454-9110, USA
| | | | | | | |
Collapse
|
25
|
Banigan JR, Gayen A, Traaseth NJ. Combination of ¹⁵N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. JOURNAL OF BIOMOLECULAR NMR 2013; 55:391-9. [PMID: 23539118 PMCID: PMC3747971 DOI: 10.1007/s10858-013-9724-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of (15)N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the (15)N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.
Collapse
Affiliation(s)
| | | | - Nathaniel J. Traaseth
- Author for correspondence: Nathaniel J. Traaseth 100 Washington Square East New York, NY 10003 Phone: (212) 992-9784
| |
Collapse
|
26
|
Daviso E, Eddy MT, Andreas LB, Griffin RG, Herzfeld J. Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 55:257-65. [PMID: 23334347 PMCID: PMC3615138 DOI: 10.1007/s10858-013-9707-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/09/2013] [Indexed: 05/10/2023]
Abstract
Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR (15)N-(13)C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.
Collapse
Affiliation(s)
- Eugenio Daviso
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA, 02454-9110
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Matthew T. Eddy
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Loren B. Andreas
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | - Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA, 02454-9110
| |
Collapse
|
27
|
|
28
|
Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure. J Struct Biol 2012; 179:18-28. [PMID: 22580065 DOI: 10.1016/j.jsb.2012.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/15/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
The structure and assembly process of gas vesicles have received significant attention in recent decades, although relatively little is still known. This work combines state-of-the-art computational methods to develop a model for the major gas vesicle protein, GvpA, and explore its structure within the assembled vesicle. Elucidating this protein's structure has been challenging due to its adherent and aggregative nature, which has so far precluded in-depth biochemical analyses. Moreover, GvpA has extremely low similarity with any known protein structure, which renders homology modeling methods ineffective. Thus, alternate approaches were used to model its tertiary structure. Starting with the sequence from haloarchaeon Halobacterium sp. NRC-1, we performed ab initio modeling and threading to acquire a multitude of structure decoys, which were equilibrated and ranked using molecular dynamics and mechanics, respectively. The highest ranked predictions exhibited an α-β-β-α secondary structure in agreement with earlier experimental findings, as well as with our own secondary structure predictions. Afterwards, GvpA subunits were docked in a quasi-periodic arrangement to investigate the assembly of the vesicle wall and to conduct simulations of contact-mode atomic force microscopy imaging, which allowed us to reconcile the structure predictions with the available experimental data. Finally, the GvpA structure for two representative organisms, Anabaena flos-aquae and Calothrix sp. PCC 7601, was also predicted, which reproduced the major features of our GvpA model, supporting the expectation that homologous GvpA sequences synthesized by different organisms should exhibit similar structures.
Collapse
|