1
|
Zhao S, Wang X, Cai S, Zhang S, Luo H, Wu C, Zhang R, Zhang J. A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:78-85. [PMID: 29734021 DOI: 10.1016/j.dci.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition receptors (PRRs) are employed in insects to defend against infectious pathogens by triggering various immune responses. Peptidoglycan recognition proteins (PGRPs), a vital family of PRRs, are widely distributed and highly conserved from vertebrates to invertebrates. To date, five PGRP genes have been identified in Antheraea pernyi, but their biochemical roles still remain unknown. In this study, we focused on the immune functions of PGRP-SA in A. pernyi (ApPGRP-SA), which was confirmed to be immune-related according to its significantly up-regulated expression level post microbial injection. In addition, the binding properties of ApPGRP-SA were investigated using a recombinant protein produced in a prokaryotic expression system, revealing that rApPGRP-SA displayed a multi-binding ability to various microbes, including the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus, Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans, together with their surface pathogen associated molecular patterns (PAMPs). Further studies showed that after recognition, the mixture of rApPGRP-SA/PAMP remarkably stimulated prophenoloxidase (PPO) activation in the hemolymph of A. pernyi in vitro, while the ds-PGRP-SA-treated hemolymph exhibited a lower sensitivity to PAMPs in comparison to the native sample. Moreover, the transcriptional level of the three antimicrobial peptides was also decreased in PGRP-SA knock-down larvae in response to immune-challenge. In summary, we conclude that ApPGRP-SA is a novel identified PGRP in A. pernyi that might act as a broad-spectrum pattern recognition receptor and is involved in the PPO activation system as well as antimicrobial peptide production.
Collapse
Affiliation(s)
- Siqi Zhao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Siyu Cai
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Siqiang Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Chunfu Wu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China.
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| |
Collapse
|
2
|
De Marzi MC, Todone M, Ganem MB, Wang Q, Mariuzza RA, Fernández MM, Malchiodi EL. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology 2015; 145:429-42. [PMID: 25752767 DOI: 10.1111/imm.12460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 02/02/2023] Open
Abstract
Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile.
Collapse
Affiliation(s)
- Mauricio C De Marzi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Marcos Todone
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - María B Ganem
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Qian Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Kumar A, Kumar S, Kumar D, Mishra A, Dewangan RP, Shrivastava P, Ramachandran S, Taneja B. The structure of Rv3717 reveals a novel amidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2543-54. [PMID: 24311595 PMCID: PMC3852659 DOI: 10.1107/s0907444913026371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
Bacterial N-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Å resolution by the Pt-SAD phasing method. Rv3717 possesses an α/β-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-L-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.
Collapse
Affiliation(s)
- Atul Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Sanjiv Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Dilip Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Arpit Mishra
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Rikeshwer P. Dewangan
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Priyanka Shrivastava
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | | | - Bhupesh Taneja
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| |
Collapse
|
4
|
Sharma P, Dube D, Sinha M, Yadav S, Kaur P, Sharma S, Singh TP. Structural insights into the dual strategy of recognition by peptidoglycan recognition protein, PGRP-S: structure of the ternary complex of PGRP-S with lipopolysaccharide and stearic acid. PLoS One 2013; 8:e53756. [PMID: 23326499 PMCID: PMC3541179 DOI: 10.1371/journal.pone.0053756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S) is one of the four mammalian PGRPs. The concentration of PGRP-S in camel (CPGRP-S) has been shown to increase considerably during mastitis. The structure of CPGRP-S consists of four protein molecules designated as A, B, C and D forming stable intermolecular contacts, A–B and C–D. The A–B and C–D interfaces are located on the opposite sides of the same monomer leading to the the formation of a linear chain with alternating A–B and C–D contacts. Two ligand binding sites, one at C–D contact and another at A–B contact have been observed. CPGRP-S binds to the components of bacterial cell wall molecules such as lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN) from both Gram-positive and Gram-negative bacteria. It also binds to fatty acids including mycolic acid of the Mycobacterium tuberculosis (Mtb). Previous structural studies of binary complexes of CPGRP-S with LPS and stearic acid (SA) have shown that LPS binds to CPGRP-S at C–D contact (Site-1) while SA binds to it at the A–B contact (Site-2). The binding studies using surface plasmon resonance showed that LPS and SA bound to CPGRP-S in the presence of each other. The structure determination of the ternary complex showed that LPS and SA bound to CPGRP-S at Site-1 and Site-2 respectively. LPS formed 13 hydrogen bonds and 159 van der Waals contacts (distances ≤4.2 Å) while SA formed 56 van der Waals contacts. The ELISA test showed that increased levels of productions of pro-inflammatory cytokines TNF-α and IFN-γ due to LPS and SA decreased considerably upon the addition of CPGRP-S.
Collapse
Affiliation(s)
- Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Dube
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mau Sinha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Sharma P, Yamini S, Dube D, Singh A, Mal G, Pandey N, Sinha M, Singh AK, Dey S, Kaur P, Mitra DK, Sharma S, Singh TP. Structural basis of the binding of fatty acids to peptidoglycan recognition protein, PGRP-S through second binding site. Arch Biochem Biophys 2013; 529:1-10. [PMID: 23149273 DOI: 10.1016/j.abb.2012.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/31/2012] [Accepted: 11/03/2012] [Indexed: 11/24/2022]
Abstract
Short peptidoglycan recognition protein (PGRP-S) is a member of the mammalian innate immune system. PGRP-S from Camelus dromedarius (CPGRP-S) has been shown to bind to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Its structure consists of four molecules A, B, C and D with ligand binding clefts situated at A-B and C-D contacts. It has been shown that LPS, LTA and PGN bind to CPGRP-S at C-D contact. The cleft at the A-B contact indicated features that suggested a possible binding of fatty acids including mycolic acid of Mycobacterium tuberculosis. Therefore, binding studies of CPGRP-S were carried out with fatty acids, butyric acid, lauric acid, myristic acid, stearic acid and mycolic acid which showed affinities in the range of 10(-5) to 10(-8) M. Structure determinations of the complexes of CPGRP-S with above fatty acids showed that they bound to CPGRP-S in the cleft at the A-B contact. The flow cytometric studies showed that mycolic acid induced the production of pro-inflammatory cytokines, TNF-α and IFN-γ by CD3+ T cells. The concentrations of cytokines increased considerably with increasing concentrations of mycolic acid. However, their levels decreased substantially on adding CPGRP-S.
Collapse
Affiliation(s)
- Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|