1
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R, Banerjee N. Identification of genes associated with persistence in Mycobacterium smegmatis. Front Microbiol 2024; 15:1302883. [PMID: 38410395 PMCID: PMC10894938 DOI: 10.3389/fmicb.2024.1302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The prevalence of bacterial persisters is related to their phenotypic diversity and is responsible for the relapse of chronic infections. Tolerance to antibiotic therapy is the hallmark of bacterial persistence. In this study, we have screened a transposon library of Mycobacterium smegmatis mc2155 strain using antibiotic tolerance, survival in mouse macrophages, and biofilm-forming ability of the mutants. Out of 10 thousand clones screened, we selected ten mutants defective in all the three phenotypes. Six mutants showed significantly lower persister abundance under different stress conditions. Insertions in three genes belonging to the pathways of oxidative phosphorylation msmeg_3233 (cydA), biotin metabolism msmeg_3194 (bioB), and oxidative metabolism msmeg_0719, a flavoprotein monooxygenase, significantly reduced the number of live cells, suggesting their role in pathways promoting long-term survival. Another group that displayed a moderate reduction in CFU included a glycosyltransferase, msmeg_0392, a hydrogenase subunit, msmeg_2263 (hybC), and a DNA binding protein, msmeg_2211. The study has revealed potential candidates likely to facilitate the long-term survival of M. smegmatis. The findings offer new targets to develop antibiotics against persisters. Further, investigating the corresponding genes in M. tuberculosis may provide valuable leads in improving the treatment of chronic and persistent tuberculosis infections.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nirupama Banerjee
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Yang Q, Ran Y, Guo S, Li F, Xiang D, Cao Y, Qiao D, Xu H, Cao Y. Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Int J Biol Macromol 2023; 253:127008. [PMID: 37844810 DOI: 10.1016/j.ijbiomac.2023.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fazhi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dongyou Xiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
3
|
Jiang Z, Guan J, Liu T, Shangguan C, Xu M, Rao Z. The flavohaemoprotein hmp maintains redox homeostasis in response to reactive oxygen and nitrogen species in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:158. [PMID: 37596674 PMCID: PMC10436651 DOI: 10.1186/s12934-023-02160-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND During the production of L-arginine through high dissolved oxygen and nitrogen supply fermentation, the industrial workhorse Corynebacterium glutamicum is exposed to oxidative stress. This generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are harmful to the bacteria. To address the issue and to maintain redox homeostasis during fermentation, the flavohaemoprotein (Hmp) was employed. RESULTS The results showed that the overexpression of Hmp led to a decrease in ROS and RNS content by 9.4% and 22.7%, respectively, and improved the survivability of strains. When the strains were treated with H2O2 and NaNO2, the RT-qPCR analysis indicated an up-regulation of ammonium absorption and transporter genes amtB and glnD. Conversely, the deletion of hmp gives rise to the up-regulation of eight oxidative stress-related genes. These findings suggested that hmp is associated with oxidative stress and intracellular nitrogen metabolism genes. Finally, we released the inhibitory effect of ArnR on hmp. The Cc-ΔarnR-hmp strain produced 48.4 g/L L-arginine during batch-feeding fermentation, 34.3% higher than the original strain. CONCLUSIONS This report revealed the influence of dissolved oxygen and nitrogen concentration on reactive species of Corynebacterium glutamicum and the role of the Hmp in coping with oxidative stress. The Hmp first demonstrates related to redox homeostasis and nitrite metabolism, providing a feasible strategy for improving the robustness of strains.
Collapse
Affiliation(s)
- Ziqin Jiang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingyi Guan
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Tingting Liu
- Yantai Shinho Enterprise Foods Co., Ltd, Yantai, 265503, China
| | - Chunyu Shangguan
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
4
|
Pech-Santiago EO, Argüello-García R, Vázquez C, Saavedra E, González-Hernández I, Jung-Cook H, Rafferty SP, Ortega-Pierres MG. Giardia duodenalis: Flavohemoglobin is involved in drug biotransformation and resistance to albendazole. PLoS Pathog 2022; 18:e1010840. [PMID: 36166467 PMCID: PMC9514659 DOI: 10.1371/journal.ppat.1010840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
Giardia duodenalis causes giardiasis, a major diarrheal disease in humans worldwide whose treatment relies mainly on metronidazole (MTZ) and albendazole (ABZ). The emergence of ABZ resistance in this parasite has prompted studies to elucidate the molecular mechanisms underlying this phenomenon. G. duodenalis trophozoites convert ABZ into its sulfoxide (ABZSO) and sulfone (ABZSOO) forms, despite lacking canonical enzymes involved in these processes, such as cytochrome P450s (CYP450s) and flavin-containing monooxygenases (FMOs). This study aims to identify the enzyme responsible for ABZ metabolism and its role in ABZ resistance in G. duodenalis. We first determined that the iron-containing cofactor heme induces higher mRNA expression levels of flavohemoglobin (gFlHb) in Giardia trophozoites. Molecular docking analyses predict favorable interactions of gFlHb with ABZ, ABZSO and ABZSOO. Spectral analyses of recombinant gFlHb in the presence of ABZ, ABZSO and ABZSOO showed high affinities for each of these compounds with Kd values of 22.7, 19.1 and 23.8 nM respectively. ABZ and ABZSO enhanced gFlHb NADH oxidase activity (turnover number 14.5 min-1), whereas LC-MS/MS analyses of the reaction products showed that gFlHb slowly oxygenates ABZ into ABZSO at a much lower rate (turnover number 0.01 min-1). Further spectroscopic analyses showed that ABZ is indirectly oxidized to ABZSO by superoxide generated from the NADH oxidase activity of gFlHb. In a similar manner, the superoxide-generating enzyme xanthine oxidase was able to produce ABZSO in the presence of xanthine and ABZ. Interestingly, we find that gFlHb mRNA expression is lower in albendazole-resistant clones compared to those that are sensitive to this drug. Furthermore, all albendazole-resistant clones transfected to overexpress gFlHb displayed higher susceptibility to the drug than the parent clones. Collectively these findings indicate a role for gFlHb in ABZ conversion to its sulfoxide and that gFlHb down-regulation acts as a passive pharmacokinetic mechanism of resistance in this parasite.
Collapse
Affiliation(s)
- Edar O. Pech-Santiago
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Iliana González-Hernández
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | - Helgi Jung-Cook
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | | | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
5
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
6
|
Thakur N, Sharma AN, Hade MD, Chhaya A, Kumar A, Jolly RS, Dikshit KL. New Insights Into the Function of Flavohemoglobin in Mycobacterium tuberculosis: Role as a NADPH-Dependent Disulfide Reductase and D-Lactate-Dependent Mycothione Reductase. Front Cell Infect Microbiol 2022; 11:796727. [PMID: 35237528 PMCID: PMC8883573 DOI: 10.3389/fcimb.2021.796727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces an unconventional flavohemoglobin (MtbFHb) that carries a FAD-binding site similar to D-lactate dehydrogenases (D-LDH) and oxidizes D-lactate into pyruvate. The molecular mechanism by which MtbFHb functions in Mtb remains unknown. We discovered that the D-LDH-type FAD-binding site in MtbFHb overlaps with another FAD-binding motif similar to thioredoxin reductases and reduces DTNB in the presence of NADPH similar to trxB of Mtb. These results suggested that MtbFHb is functioning as a disulfide oxidoreductase. Interestingly, D-lactate created a conformational change in MtbFHb and attenuated its ability to oxidize NADPH. Mass spectroscopy demonstrated that MtbFHb reduces des-myo-inositol mycothiol in the presence of D-lactate unlike NADPH, indicating that D-lactate changes the specificity of MtbFHb from di-thiol to di-mycothiol. When M. smegmatis carrying deletion in the fhbII gene (encoding a homolog of MtbFHb) was complemented with the fhb gene of Mtb, it exhibited four- to fivefold reductions in lipid peroxidation and significant enhancement in the cell survival under oxidative stress. These results were corroborated by reduced lipid peroxidation and enhanced cell survival of wild-type M. smegmatis after overexpression of the fhb gene of Mtb. Since D-lactate is a by-product of lipid peroxidation and MtbFHb is a membrane-associated protein, D-lactate-mediated reduction of mycothiol disulfide by MtbFHb may uniquely equip Mtb to relieve the toxicity of D-lactate accumulation and protect the cell from oxidative damage, simultaneously balancing the redox environment under oxidative stress that may be vital for the pathogenesis of Mtb.
Collapse
Affiliation(s)
- Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ashwani Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Kanak L. Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- *Correspondence: Kanak L. Dikshit,
| |
Collapse
|
7
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
8
|
Nardini M, Pesce A, Bolognesi M. Truncated (2/2) hemoglobin: Unconventional structures and functional roles in vivo and in human pathogenesis. Mol Aspects Med 2021; 84:101049. [PMID: 34776271 DOI: 10.1016/j.mam.2021.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Truncated hemoglobins (trHbs) build a sub-class of the globin family, found in eubacteria, cyanobacteria, unicellular eukaryotes, and in higher plants; among these, selected human pathogens are found. The trHb fold is based on a 2/2 α-helical sandwich, consisting of a simplified and reduced-size version of the classical 3/3 α-helical sandwich of vertebrate and invertebrate globins. Phylogenetic analysis indicates that trHbs further branch into three groups: group I (or trHbN), group II (or trHbO), and group III (or trHbP), each group being characterized by specific structural features. Among these, a protein matrix tunnel, or a cavity system implicated in diatomic ligand diffusion through the protein matrix, is typical of group I and group II, respectively. In general, a highly intertwined network of hydrogen bonds stabilizes the heme bound ligand, despite variability of the heme distal residues in the different trHb groups. Notably, some organisms display genes from more than one trHb group, suggesting that trHbN, trHbO, and trHbP may support different functions in vivo, such as detoxification of reactive nitrogen and oxygen species, respiration, oxygen storage/sensoring, thus aiding survival of an invading microorganism. Here, structural features and proposed functions of trHbs from human pathogens are reviewed.
Collapse
Affiliation(s)
- Marco Nardini
- Department of Biosciences, University of Milano, Milano, Italy
| | | | | |
Collapse
|
9
|
Picciano AL, Crane BR. A nitric oxide synthase-like protein from Synechococcus produces NO/NO 3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca 2+-dependent manner. J Biol Chem 2019; 294:10708-10719. [PMID: 31113865 PMCID: PMC6615690 DOI: 10.1074/jbc.ra119.008399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that convert l-Arg to l-citrulline and nitric oxide (NO), a key signaling molecule and cytotoxic agent in mammals. Bacteria also contain NOS proteins, but the role of NO production within these organisms, where understood, differs considerably from that of mammals. For example, a NOS protein in the marine cyanobacterium Synechococcus sp. PCC 7335 (syNOS) has recently been proposed to function in nitrogen assimilation from l-Arg. syNOS retains the oxygenase (NOSox) and reductase (NOSred) domains present in mammalian NOS enzymes (mNOSs), but also contains an N-terminal globin domain (NOSg) homologous to bacterial flavohemoglobin proteins. Herein, we show that syNOS functions as a dimer and produces NO from l-Arg and NADPH in a tetrahydrobiopterin (H4B)-dependent manner at levels similar to those produced by other NOSs but does not require Ca2+-calmodulin, which regulates NOSred-mediated NOSox reduction in mNOSs. Unlike other bacterial NOSs, syNOS cannot function with tetrahydrofolate and requires high Ca2+ levels (>200 μm) for its activation. NOSg converts NO to NO3- in the presence of O2 and NADPH; however, NOSg did not protect Escherichia coli strains against nitrosative stress, even in a mutant devoid of NO-protective flavohemoglobin. We also found that syNOS does not have NOS activity in E. coli (which lacks H4B) and that the recombinant protein does not confer growth advantages on l-Arg as a nitrogen source. Our findings indicate that syNOS has both NOS and NO oxygenase activities, requires H4B, and may play a role in Ca2+-mediated signaling.
Collapse
Affiliation(s)
- Angela L Picciano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
10
|
Thakur N, Kumar A, Dikshit KL. Type II flavohemoglobin of Mycobacterium smegmatis oxidizes d-lactate and mediate electron transfer. Int J Biol Macromol 2018; 112:868-875. [PMID: 29428388 DOI: 10.1016/j.ijbiomac.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
Two distantly related flavohemoglobins (FHbs), MsFHbI and MsFHbII, having crucial differences in their heme and reductase domains, co-exist in Mycobacterium smegmatis. Function of MsFHbI is associated with nitric-oxide detoxification but physiological relevance of MsFHbII remains unknown. This study unravels some unique spectral and functional characteristics of MsFHbII. Unlike conventional type I FHbs, MsFHbII lacks nitric-oxide dioxygenase and NADH oxidase activities but utilizes d-lactate as an electron donor to mediate electron transfer. MsFHbII carries a d-lactate dehydrogenase type FAD binding motif in its reductase domain and oxidizes d-lactate in a FAD dependent manner to reduce the heme iron, suggesting that the globin is acting as an electron acceptor. Importantly, expression of MsFHbII in Escherichia coli imparted protection under oxidative stress, suggesting its important role in stress management of its host. Since M. smegmatis lacks the gene encoding for d-lactate dehydrogenase and d-lactate is produced during aerobic metabolism and also as a by-product of lipid peroxidation, the ability of MsFHbII to metabolize d-lactate may provide it a unique ability to balance the oxidative stress generated due to accumulation of d-lactate in the cell and at the same time sequester electrons and pass it to the respiratory apparatus.
Collapse
Affiliation(s)
- Naveen Thakur
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Ashwani Kumar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Kanak L Dikshit
- Department of Biotechnology, Panjab University, Sector 25, South Block, Chandigarh, India.
| |
Collapse
|
11
|
Julistiono H, Lestari FG, Iryanto R, Lotulung PD. Antimycobacterial activity of fruit of Zanthoxylum acanthopodium DC against M ycobacterium smegmatis. AVICENNA JOURNAL OF PHYTOMEDICINE 2018; 8:432-438. [PMID: 30345230 PMCID: PMC6190246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Fruits of lemon pepper (Zanthoxylum acanthopodium DC., Rutaceae) have been traditionally used as a spice and in folk medicine for treatment of diarrhea and stomachache. Stomachache could be associated with mycobacterial infection. The present study was designed to investigate the activity of Z. acanthopodium fruits against a non-infectious Mycobacterium smegmatis and to identify the important phytochemical constituent that is toxic towards mycobacteria. MATERIALS AND METHODS The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) of ethyl acetate or hexane extract of green, young fruits of Z. acanthopodium. Effect of active extract (hexane) on cell membranee integrity was studied by measuring sodium and potassium leakage into extracelullar liquid using Atomic Absorbtion Spectrophotometer (AAS). Next, cell morphology was observed by using Scanning Microscope Electron (SEM). Column chromatography was used for fractionation and purification of hexane extract while the chemical structure of the active compound was determined using NMR technique. Rifampicin, an antimycobacterial compound, was used as positive control. RESULTS Hexane extract was active against M. smegmatis with an MIC of 64 µg/ml. Plant extract at the concentration of 128 µg/ml caused ions leakage. Concentration of sodium in extracellular liquid of cells treated with plant extract was significantly higher than that of untreated cells. SEM observation revealed cell wall deformation in cultures treated with the extract. NMR spectroscopy analysis of the most active fraction revealed that the compound that exerted toxicity on M. smegmatis was geranyl acetate. CONCLUSION Geranyl acetate was an important constituent of Z. acanthopodium fruit that has antimycobacterial activity. Possibly, Z. acanthopodium fruit exert its toxic effects against M. smegmatis through damaging cell membrane.
Collapse
Affiliation(s)
- Heddy Julistiono
- Research Center for Biology - The Indonesian Institute of Sciences (LIPI). Jl. Raya Jakarta – Bogor Km 46, Cibinong 16911, Indonesia,Corresponding Author:Tel: +62218765066, Fax: +62218765067 ,
| | - Fani Gustiani Lestari
- Research Center for Biology - The Indonesian Institute of Sciences (LIPI). Jl. Raya Jakarta – Bogor Km 46, Cibinong 16911, Indonesia
| | - Rifki Iryanto
- Research Center for Biology - The Indonesian Institute of Sciences (LIPI). Jl. Raya Jakarta – Bogor Km 46, Cibinong 16911, Indonesia
| | - Puspa Dewi Lotulung
- Research Center for Chemsitry - The Indonesian Institute of Sciences (LIPI). Tangerang Selatan, Banten 15314, Indonesia
| |
Collapse
|
12
|
Wisecaver JH, Alexander WG, King SB, Todd Hittinger C, Rokas A. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes. Mol Biol Evol 2016; 33:1979-87. [DOI: 10.1093/molbev/msw073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
13
|
Ascenzi P, di Masi A, Tundo GR, Pesce A, Visca P, Coletta M. Nitrosylation mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni truncated hemoglobins N, O, and P. PLoS One 2014; 9:e102811. [PMID: 25051055 PMCID: PMC4106858 DOI: 10.1371/journal.pone.0102811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- * E-mail:
| | - Alessandra di Masi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Grazia R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Paolo Visca
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
14
|
Thakur N, Gupta S, Hade MD, Dikshit KL. Type I flavohemoglobin of mycobacterium smegmatis is a functional nitric oxide dioxygenase. IUBMB Life 2014; 66:396-404. [PMID: 24861678 DOI: 10.1002/iub.1275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022]
Abstract
Two flavohemoglobins, type I and type II, displaying distinct structural features and cofactor binding sites coexist in Mycobacterium smegmatis; however, none of these flavohemeproteins are characterized so far. We have cloned and expressed type I flavohemoglobin (FHb1) of Mycobacterium smegmatis, encoded by MSMEG_1336, and characterized its spectral and functional properties. FHb1 exists as a monomer and displays spectral and functional characteristics similar to HMP of E. coli. Specific NO dioxygenase (NOD) activity of FHb1 was estimated to be 63.5 nmol heme(-1) sec(-1) , which was nearly eightfold higher than the HbN of M. tuberculosis and matched closely to the HMP of E. coli on the basis of cellular heme content. FHb1 preferred NADH for the NO dioxygenation and exhibited rapid reduction of flavin adenine dinucleotide and heme iron using NADH as electron donor. Level of FHb1 transcript increased significantly in M. smegmatis in the presence of acidified nitrite, and a nitric oxide-responsive transcriptional regulator of Rrf2 family exists together with the FHb1 under the same operon. These results suggested that FHb1 of M. smegmatis is a functional NOD and may be involved in the stress management of its host toward nitric oxide and nitrosative stress.
Collapse
Affiliation(s)
- Naveen Thakur
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | | | | | | |
Collapse
|
15
|
Abstract
The genus Mycobacterium is comprised of Gram-positive bacteria occupying a wide range of natural habitats and includes species that range from severe intracellular pathogens to economically useful and harmless microbes. The recent upsurge in the availability of microbial genome data has shown that genes encoding haemoglobin-like proteins are ubiquitous among Mycobacteria and that multiple haemoglobins (Hbs) of different classes may be present in pathogenic and non-pathogenic species. The occurrence of truncated haemoglobins (trHbs) and flavohaemoglobins (flavoHbs) showing distinct haem active site structures and ligand-binding properties suggests that these Hbs may be playing diverse functions in the cellular metabolism of Mycobacteria. TrHbs and flavoHbs from some of the severe human pathogens such as Mycobacterium tuberculosis and Mycobacterium leprae have been studied recently and their roles in effective detoxification of reactive nitrogen and oxygen species, electron cycling, modulation of redox state of the cell and facilitation of aerobic respiration have been proposed. This multiplicity in the function of Hbs may aid these pathogens to cope with various environmental stresses and survive during their intracellular regime. This chapter provides recent updates on genomic, structural and functional aspects of Mycobacterial Hbs to address their role in Mycobacteria.
Collapse
|
16
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
17
|
Stark BC, Dikshit KL, Pagilla KR. The Biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J 2012; 3:e201210002. [PMID: 24688662 PMCID: PMC3962134 DOI: 10.5936/csbj.201210002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated.
Collapse
Affiliation(s)
- Benjamin C Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago IL 60616, USA
| | - Kanak L Dikshit
- Institute of Microbial Technology, Sec-39a, Chandigarh, 160036, India
| | - Krishna R Pagilla
- Department of Civil and Architectural Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| |
Collapse
|